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Cost‑effectiveness analysis 
of COVID‑19 intervention policies 
using a mathematical model: 
an optimal control approach
Md Abdul Kuddus 1, Anip Kumar Paul 1 & Thitiya Theparod 2*

COVID-19 is an infectious disease that causes millions of deaths worldwide, and it is the principal 
leading cause of morbidity and mortality in all nations. Although the governments of developed 
and developing countries are enforcing their universal control strategies, more precise and cost-
effective single or combination interventions are required to control COVID-19 outbreaks. Using 
proper optimal control strategies with appropriate cost-effectiveness analysis is important to 
simulate, examine, and forecast the COVID-19 transmission phase. In this study, we developed a 
COVID-19 mathematical model and considered two important features including direct link between 
vaccination and latently population, and practical healthcare cost by separation of infections into 
Mild and Critical cases. We derived basic reproduction numbers and performed mesh and contour 
plots to explore the impact of different parameters on COVID-19 dynamics. Our model fitted and 
calibrated with number of cases of the COVID-19 data in Bangladesh as a case study to determine the 
optimal combinations of interventions for particular scenarios. We evaluated the cost-effectiveness 
of varying single and combinations of three intervention strategies, including transmission control, 
treatment, and vaccination, all within the optimal control framework of the single-intervention 
policies; enhanced transmission control is the most cost-effective and prompt in declining the COVID-
19 cases in Bangladesh. Our finding recommends that a three-intervention strategy that integrates 
transmission control, treatment, and vaccination is the most cost-effective compared to single and 
double intervention techniques and potentially reduce the overall infections. Other policies can 
be implemented to control COVID-19 depending on the accessibility of funds and policymakers’ 
judgments.

The SARS-CoV-2 virus responsible for COVID-19 emerged as a severe global public health crisis from the begin-
ning of December 2019 to now and continues to pose a significant economic threat worldwide1. The coronavirus 
is recognized as a highly contagious disease that spreads so fast worldwide and all countries are grappling with 
the challenges of managing its severity. SARS-CoV-2 is an RNA virus that belongs to the Coronaviridae fam-
ily, and the Betacoronavirus genus2,3. As of March 15, 2022, the total number of coronavirus-infected people 
worldwide is 760,897,555 with a total of 13,232,780,775 vaccine doses and the total death case record to the date 
is 6,874,585 though the reported figures for COVID-19 cases are likely underestimated due to asymptomatic and 
unreported cases4–6. Since 2019, people have faced several waves of attack due to emerging of different strains of 
the SARS-CoV-2 virus with varying levels of contagiousness and severity7,8.

The cause of the continuous illness is a newly discovered, highly infectious variant of severe acute respiratory 
syndrome coronavirus such as the Alpha variant (B.1.1.7; first identified in the UK), Beta variant (B.1.351; first 
identified in South Africa), Gamma variant (P.1; first identified in Brazil), Delta variant (B.1.617.2; first identified 
in India), Epsilon variant (B.1.427/B.1.429; first identified in California, USA), Zeta variant (P.2; first identified 
in Brazil), Eta variant (B.1.525; first identified in the UK and Nigeria), Theta variant (P.3; first identified in the 
Philippines), Iota variant (B.1.526; first identified in the US), Kappa variant (B.1.617.1; first identified in India), 
Lambda variant (C.37; first identified in Peru), Omicron variant (B.1.1.529; first identified in South Africa)9,10. 
To prevent the severity of coronavirus strains, all countries worldwide imposed transmission control, treatment, 
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and vaccination strategies with multiple doses5. As a result, corresponding governments worldwide have taken 
significant measures to prevent and control the spread of the disease.

Mathematical modelling with optimal control strategies is now essential for meaningful understanding to 
curb the virus transmission and predict its potential outcomes. Therefore, employing appropriate optimal control 
strategies with proper cost-effectiveness analysis is important to simulate, examine, and forecast the COVID-19 
transmission phase11. The vaccination strategy and enhanced treatments are the most significant parameters to 
curb disease transmission. Many vaccines and treatments have been authorized for emergency use globally, and 
research is ongoing to optimize their effectiveness12. In this study, we discussed the optimal control strategies 
and their cost-effectiveness analysis to identify more insights into the control and prevent the severity of the 
coronavirus.

Mathematical modelling plays a significant role in designing and predicting the transmission dynamics and 
identifying the parameter responsible for spreading COVID-19. The outbreak due to infectious diseases, includ-
ing COVID-19, can be studied and controlled more effectively using mathematical modelling tools13. Several 
researchers are continuously trying to figure out more effective mathematical measures to control the severity 
and identify all sensitive parameters to mitigate and die out the novel coronavirus from the community. Several 
researchers proposed a mathematical model with multi-dose vaccination and stated that the proper implication 
of vaccination strategy is the most sensitive parameter to prevent the disease14–18. Ali et al.19 performed a global 
parameter sensitivity analysis using a mathematical model for COVID-19 and proposed a non-autonomous 
epidemic model with quarantine and isolation as time-dependent control functions. A stochastic and deter-
ministic approach to the COVID-19 disease model was presented for forecasting the spread of COVID-19 in 
Africa and Europe20. A double-dose vaccination model is proposed to identify the disease dynamics behaviour 
after imposing the vaccination21,22. A fractional order approach is applied to the double dose vaccination model 
to identify significant consequences in coronavirus disease dynamics23. A modified SIR compartmental model 
for COVID-19 is presented to determine the spread of the disease with nonlinear incidence and identify the 
disease control policies24.

The COVID-19 outbreak is modelled mathematically considering the age-dependent SIR system and deter-
mined whether it is more effective to vaccinate the elderly, who are at the most risk of severe illness, or those 
who are more likely to spread the disease25. A multi-strain disease model is proposed that accounts for different 
disease variants with the sensitivity analysis of the model parameter26–28. In developing the vaccines and drugs 
for both prevention and treatment of the virus as well as boosting the immune responses of hosts, an animal 
model is discussed and evaluated for virulence of variants29. Parolini et al.30 introduce a modified version of the 
SUIHTER model to evaluate the spread of COVID-19 in Italy, considering the ongoing vaccination program 
and incorporating new variants’ emergence as they become prevalent. Mengüç et al.31 presented a study on a 
mathematical model to tackle the challenges in organizing vaccination programs that arise from population het-
erogeneity in cities. The study aims to optimize the vaccination process by considering the available resources31. 
A multi-scale model was created that includes both population-level transmission and individual-level vaccina-
tion. The purpose was to calculate the expenses associated with hospitalization and vaccination, as well as the 
economic advantages of lowering COVID-19 deaths via dose-fractionation strategies in India32.

Optimal control strategy identifies the best intervention strategies from a non-autonomous mathematical 
model that can prevent virus transmission into the community while considering the available resources and 
economic costs. We can evaluate effective control measures which account for uncertainty and provide a robust 
decision-making framework. Optimal control strategies are essential for designing effective interventions that can 
save lives while minimizing the negative impact on society’s economy. Implementing optimal control strategies 
can help minimize the number of infected cases, hospitalizations, and deaths caused by a coronavirus, ultimately 
leading to a faster and more sustained recovery from the pandemic. Kouidere et al.33 presented an optimal control 
strategy with reasonable policies for preventing COVID-19 infection by analyzing the Pontryagin’s maximum 
principle. Cost-effectiveness analysis and three control strategies are considered, and it is found that isolating 
and monitoring the health of infected individuals and employing quarantine measures are the most significant 
to minimize the virus’s spread34.

An optimal control strategy applied different infectious diseases including COVID-19, Dengue, and HIV, 
focusing on the control of disease transmission35. A vaccination model is proposed and analyzed for the co-
spread of triple infections like the impacts of COVID-19 and dengue vaccinations on the dynamics of Zika 
transmission36. Additionally, a comprehensive optimal control and cost-effective analysis is undertaken within 
a co-infection model for human papillomavirus (HPV), revealing that syphilis treatment for singly infected 
individuals emerges as the most cost-effective approach for mitigating the burden of HPV37. A cost-effectiveness 
analysis is conducted on diabetes considering the healthy lifestyle and prevention of the development of TB by 
encouraging personal hygiene38. A novel fractional-order vaccination strategy is introduced and analyzed in the 
context of coronavirus and presented consequential order variations39.

An optimal control framework and different interventions are analyzed and presented for the mathematical 
modelling of drug-resistant tuberculosis in Bangladesh40. A deterministic Lassa fever model is analyzed with 
a nonlinear optimal control strategy for controlling the spread of the fever and evaluating the least costly con-
trol intervention41,42. Bandekar and Ghosh43 proposed a ten-compartment COVID-19 model with two control 
strategies for preventing the disease’s severity in India. A non-autonomous mathematical model representing 
the malaria dynamics is analyzed using optimal control theory and performed the cost-effectiveness analysis for 
demonstrating the controlling strategy with limited resources44–46. A malaria transmission dynamic model with 
climate variation factor is discussed and delineates the optimal reduction strategies of malaria contamination 
with infected human treatment, bed net care, and anti-mosquito spraying inside the house47. A non-autonomous 
nonlinear deterministic model of COVID-19 is studied and performed cost-effectiveness analysis for evaluating 
the cost and economic health outcomes affected by the attack of the novel coronavirus13,48–50. They proposed 
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four controls and analyzed fourteen optimal control strategies with numerical determination41. Yuan and Li51 
performed a cost-effectiveness analysis and demonstrated a combination of three strategies to minimize the 
number of infected individuals.

In this article, our objective is to perform a mathematical analysis of COVID-19 and find out the most effective 
control measure with the cost–benefit of the health economy. Our research will provide significant insights into 
preventing disease outbreaks with the most cost-effective benefit. To attain our goal, we propose three effective 
control strategies, which are (a) transmission control strategy, (b) vaccination control strategy, (c) improving 
the treatment of Latent cases, and employ those strategies in the dynamic disease model. The suggested trio of 
approaches will significantly impact curbing the virus’s transmission, leading to positive outcomes. We introduce 
the Pontryagin maximum principle and analyze our model to attain the optimality system. We perform numerical 
simulations to support the analytical determination and demonstrate several interventions for combining the 
proposed control strategies. Finally, the cost-effective measures are performed using the cost-effective incre-
mental ratio (ICER) and the average cost-effectiveness ratio (ACER) to identify the most cost-effective control 
intervention strategy for every combination of the control strategies52,53.

This study is exhibited in several sections. In the Methods and materials section, we develop COVID-19 
model with the mathematical formulation. The corresponding model parameters are estimated and tabulated in 
the parameter estimation section. The analysis and visual demonstration of the basic reproduction number and 
corresponding parameters are presented in the basic reproduction number section. The optimal control strategy 
and cost-effectiveness analysis are performed in results section. Finally, a brief discussion and conclusion are 
outlined at the end of this study.

Methods and materials
The autonomous model description
We presented a mathematical model to analyze COVID-19 spreads after imposing the vaccination strategy. 
Our model splits the population into seven distinct groups: the susceptible individuals (S) who can be infected 
through the coronavirus; those who have had first-dose vaccine (V1); those who have had second-dose vaccine 
(V2); the Latent compartment who are infected but not contagious (L); the virus-infected individuals who have 
mild disease symptoms like a low-grade fever, fatigue, muscle or body aches, loss of taste or smell, runny nose, 
etc., stay in the mild compartment case (M), those who have faced life-threatening complications like severe 
shortness of breath, persistent pain or pressure in the chest, bluish lips or face, etc. due to the virus infection stay 
in the critical case compartment (C), and the individuals who are recovered but previously infected, patients 
under treatment and isolation, dead due to the virus attack, etc., stay in the recovery compartment (R). We 
consider that the total population size, N(t), is constant and evenly distributed. We used this model to analyse 
the control of coronavirus and discuss the cost-effectiveness of varying single and combinations of several 
intervention strategies.

The total number of populations can be expressed as:

The graphical flow diagram of the disease model is shown in the Fig. 1.
In this model, we assume that all deaths are replaced with the newborn and included into the susceptible 

compartment to remain the population size constant. The disease transmission rate is β. The susceptible indi-
viduals receive their first dose of vaccine with a constant rate parameter η. The first-dose vaccinated people can 
move to susceptible compartments with a constant rate ρ due to their immunity loss. Individuals who have been 
vaccinated but later lose immunity can become infected again and move to the latent class at rates α1 while the 

(1)N(t) = S(t)+ V1(t)+ V2(t)+ L(t)+M(t)+ C(t)+ R(t).

Figure 1.   The flow diagram of the coronavirus disease dynamics.
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remaining first-dose vaccinated move to the second-dose vaccinated group V2 at a rate σ. There is also a possibility 
of being infected for the second-dose vaccinated people with no complicacy at a constant rate α2 , whereas the 
rest of the individuals can move to the recovery compartment at a rate κ. Other parameters used in the model 
include ω1 and ω2 , which represent the rates at which the latent individuals become mildly or critically infec-
tious, respectively; the infected individuals reach the recovery stage from the mild and critical compartment 
with a constant rate γ1 and γ2 , respectively; the disease co-infection rate from the mildly infected individuals to 
the critical individuals is ϕ; μ, which is the birth or death rate due to natural causes occurring in all states; and 
δ, which represents the constant per capita rate of COVID-19-related deaths.

From the above description of the disease variables, we can originate a differential equation system represent-
ing the coronavirus dynamics. The system of differential equations is:

The corresponding initial conditions are:

Positivity and boundedness of solution:
For the above system (2), we find a region of attraction which is given by Lemma 1.

Lemma 1  The set D =
{

(S,V1,V2, L,M,C,R) ∈ R
7
+ : S + V1 + V2 + L+M + C + R = N

}

 is invariant region 
of system (2).

Proof  Let, N = S + V1 + V2 + L+M + C + R then

Integrating

This shows that the solution of system (2) toward D. Hence, D is positively invariant and solution of system 
(2) is bounded. The above Lemma 1 show that the solution of system (2) is non-negative and bounded.

Basic reproduction number
The basic reproduction number (R0) significantly impacts monitoring the dynamics of an infectious disease 
outbreak and developing effective control strategies. This number quantifies a pathogen’s transmission potential 
within a population and demonstrates the average number of secondary infections by a single infected indi-
vidual in a fully susceptible population. To predict the potential impact of the coronavirus in the community 
and determining the necessity of the control measures, the determination of a basic reproduction number is 
required. The basic reproduction number depends on distinct factors, such as the pathogen’s infectiousness, 
mode of transmission, duration of infectiousness, and population characteristics.

In this section, we demonstrate the basic reproduction number and its variation corresponding to the rela-
tive parameters value. We determined the basic reproduction number from our proposed model (2), using the 
next-generation matrix method. The next-generation matrix is the product of matrices M and −ℵ−1 , where 
the matrix M represents the transmission components of infected states and the matrix ℵ describes transitions 
between, and out of the infected states. In this model, the infected compartments are L,M and C . The matrices 
M and ℵ for this model are given as

and 

(2)

dS
dt = µN + ρV1 + δC − βS(M+ C)− ηS − µS,

dV1
dt = ηS − (ρ+ σ+ α1 + µ)V1,
dV2
dt = σV1 − (κ+ α2 + µ)V2,

dL
dt = βS(M+ C)+ α1V1 + α2V2 − (ω1 + ω2 + µ)L,

dM
dt = ω1L− (φ+ γ1 + µ)M,

dC
dt = ω2L+ φM − (γ2 + δ+ µ)C,
dR
dt = γ1M + γ2C + κV2 − µR.


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(3)S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, L(0) ≥ 0,M(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0.

dN

dt
=

dS

dt
+

dV1

dt
+

dV2

dt
+
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dt
+
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dt
+

dC

dt
+
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dt
,
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dt
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N(t) = constant = N.

M =


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0 βS0 βS0

0 0 0
0 0 0


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The next-generation matrix K is given by24,40

The spectral radius of the next generation matrix K is considered as the basic reproduction number. Hence 
the mathematical expression of the basic reproduction number is:

From Eq. (4), if R0 < 1 then the disease will fade-out in the population, but if R0 > 1 then the disease will 
persist in the population. To reduce R0 , we can vary parameters in the mathematical expression for R0 . R0 is 
dependent on these parameters; β, ρ, σ,ω1,ω2,φ, γ1, γ2, η, and δ . From the Eq. (4), we can also observe that R0 has 
positive and negative correlation with these parameters and potential repercussions of the coronavirus within the 
community and ascertain the imperative for controlling measures. Figure 2 represents the variation of the basic 
reproduction number corresponding to the impact of several model parameters which are included in Eq. (4) 
and depicts the result with mesh and contour plots. Our intention in performing this analysis to determine the 
effect of the control parameters on R0. In Fig. 2A1,A2, the first parameter is the number of individuals who take 
the first-dose vaccine (Ƞ), and the second parameter is the disease transmission rate (β). From the figure, we 
observe that the basic reproduction number is significantly decreasing due to the increasing first vaccination 
rate. This makes intuitive sense, as more individuals taking vaccination means that there are more people who 
are immune to the virus. However, the second parameter is disease transmission rate, which represents that a 
susceptible individual will become infected if they come into contact with an infected individual. From the figure, 
we observe that the basic reproduction number increases when the disease transmission rate increases. The higher 
value of disease transmission rate represents that the virus is more easily transmitted from person to person.

From Fig. 2B1,B2, we consider the recovery parameter from the mild case (γ1) and the co-infection rate from 
the mild case to the critical case (ϕ). Observing Fig. 2B1,B2, we realise that increasing the disease recovery from 
the mild case decreases the basic reproduction number, whereas the co-infection rate significantly increases the 
basic reproduction number. In Fig. 2C1,C2, we introduce a comparison of the recovery rate (γ2) and death rate (δ) 
from the critically infected case. We observe from the figure that when both the parameter’s value increases, the 
basic reproduction number decreases, i.e., both the operator are responsible for decreasing the R0. In Fig. 2D1,D2, 
we demonstrated the combined effect of the progression rate of Latent case to mild case (ω1) and the second dose 
vaccination rate (σ). We notice from the figure that increasing the second dose vaccination rate keep a significant 
impact on reducing the basic reproduction number, whereas the progression rate of the Latent case to the mild 
case has a positive impact on increasing the R0.

In Fig. 2E1,E2, we introduce the effect of the progression rate from latent case to critical case (ω2) and the rate 
at which the first dose vaccinated person moves to susceptible class due to decreasing their immunity to fight 
against the disease (ρ). We observe that there is no significant impact of the progression rate from latent case to 
critical case in increasing the basic reproduction number. However, the number of individuals who lose their 
body immunity to fight against the coronavirus after getting the first vaccination significantly increases the R0. 
This makes intuitive sense, as more individuals joining the susceptible group means that there are more people 
who are not immune to the virus.

Existence of equilibria
We found two equilibrium solutions: the disease-free equilibrium happens when R0 is less than one i.e., R0 < 1 
and the disease endemic equilibrium happen when R0 is greater than one i.e., R0 > 1 . We deliberate these in the 
following order.

Clearly, system (2) always has a disease-free equilibrium.

ℵ =

(

−(ω1 + ω2 + µ) 0 0
ω1 −(φ+ γ1 + µ) 0
ω2 φ −(γ2 + δ+ µ)

)

.

K = M(−ℵ−1) =





0 βS0 βS0

0 0 0

0 0 0











1
(ω1+ω2+µ)

0 0
ω1

(ω1+ω2+µ)(φ+γ1+µ)
1

(φ+γ1+µ)
0

ω1φ+ω2(φ+γ1+µ)
(ω1+ω2+µ)(φ+γ1+µ)(γ2+δ+µ)

φ
(γ2+δ+µ)(φ+γ1+µ)

1
(γ2+δ+µ)







=





βS0[ω1(φ+γ2+δ+µ)+ω2(φ+γ1+µ)]
(ω1+ω2+µ)(φ+γ1+µ)(γ2+δ+µ)

βS0[(φ+γ2+δ+µ)]
(φ+γ1+µ)(γ2+δ+µ)

βS0

(γ2+δ+µ)

0 0 0

0 0 0



.

(4)
R0 =

βS0[ω1(φ+ γ2 + δ+ µ)+ ω2(φ+ γ1 + µ)]

(ω1 + ω2 + µ)(φ+ γ1 + µ)(γ2 + δ+ µ)

=
βµN(ρ+ σ+ µ)[ω1(φ+ γ2 + δ+ µ)+ ω2(φ+ γ1 + µ)]

((ρ+ σ+ µ)(η+ µ)− ηρ)(ω1 + ω2 + µ)(φ+ γ1 + µ)(γ2 + δ+ µ)
.
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Figure 2.   Mesh and contour plots of the basic reproduction number with the different parameters related to the 
R0.
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From system (2) we can also determine the endemic equilibrium

E0 =
(

S0, V0
1, V

0
2, L

0, M0, C0
)

, where,

S0 =
µN(ρ + σ + α1 + µ)

((ρ + σ + α1 + µ)(η + µ)− ηρ)
,

V0
1 =

µηN

((ρ + σ + α1 + µ)(η + µ)− ηρ)
,

V0
2 =

µησN

((ρ + σ + α1 + µ)(η + µ)− ηρ)(κ + α2 + µ)
,

L0 = 0,

M0 = 0,

C0 = 0.

Figure 2.   (continued)
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Equation (5) displays that the endemic equilibrium E∗ =
(

S∗, V∗
1, V

∗
2, L

∗,M∗, C∗, R∗
)

∈ D (i.e., exist) if, and 
only if R0 > 1 . In the realm of infectious disease modelling, the profound impact of stability analysis on both 
disease-free and disease-endemic equilibrium points is paramount. This analytical framework serves as the 
linchpin for unravelling the ultimate trajectory of the pathogen at these equilibrium points, providing invalu-
able insights into the enduring dynamics of the disease within a specific population. Through these analyses, we 
discern that the disease-free equilibrium attains locally asymptotically stable when R0 is less than 1. Conversely, if 
R0 is greater than 1, i.e., R0 > 1 , the COVID-19 persists in the population. This analysis can assist us to recognise 
areas in the parameter space where the numerous asymptotic states are stable or unstable, thus permitting us to 
forecast the long-term behaviour of the COVID-19 dynamics.

Model parameter estimation
In this section, we estimated the model parameters value introduced in the model. Parameter estimation is a 
significant aspect of infectious disease modelling studies, as it allows the determination of the key model param-
eters that help govern the spread of disease. The appropriate estimation of the model parameter is important 
for evaluating the effectiveness of control measures and informing public health policy. Using the most effective 
least square method, we analyzed real COVID-19 case data to estimate the model parameter values. The least 
square method is a powerful tool for parameter estimation as it can handle noisy data. It finds the line or curve 
that best represents the data by minimizing the distance between the actual data points and the model’s predicted 
values. In the context of estimating parameters for the cumulative incidence of COVID-19, the following objec-
tive function is employed.

Here, Dti reveals the actual number of the infected case due to the coronavirus infection, and the number of 
infected individuals over time (ti) in the model can be reflected by the solution K(ti, x), which is obtained using 
a set of estimated parameters (x). The number of available data points is n.

In this estimation, we used the incidence data for the Bangladeshi from March 2021 to June 202234. COVID-
19 incidence data from Bangladesh were analyzed to understand the outbreak of different variants from March 
to June 2021–2022. We fitted several model parameters such as β,ω1,ω2,η,α1 and α2 which is shown in Table 1 
using the least-squares fitting technique54, whereas the rest of the model parameter’s values are chosen from the 
well-established COVID-19 model. We considered the natural death rate (μ), which was taken as the inverse 
of Bangladesh’s life expectancy (70 years). In incidence data and the model fitting curve with the estimated 
parameter values are shown in Fig. 3 with a blue dot and solid green curve, respectively, with the 95% confidence 
interval (CI) measured in the blue-shaded limits.

Ethical approval
This study is based on aggregated measles surveillance data in Bangladesh provided by the Directorate General 
of Health Services (DGHS). No confidential information was included because mathematical analyses were 
performed at the aggregate level. We complied data from the publicly available website https://​dashb​oard.​dghs.​
gov.​bd/​pages/​covid​19.​php.

(5)

E* =
(

S*, V*
1, V

*
2, L

*,M*, C*
)

, where

S* =
S0

R0

V∗
1 =

η S0

R0(ρ+ σ+ α1 + µ)

V∗
2 =

σηS0

R0(ρ+ σ+ α1 + µ)(κ+ α2 + µ)

L* =
µN(R0 − 1)(φ + γ1 + µ)(δ+ γ2 + µ)

R0[(ω1 + ω2 + µ)(φ + γ1 + µ)(δ+ γ2 + µ)− δ{ω2(φ + γ1 + µ)+ φω1}]

M* =
µNω1(R0 − 1)(δ+ γ2 + µ)

R0[(ω1 + ω2 + µ)(φ + γ1 + µ)(δ+ γ2 + µ)− δ{ω2(φ + γ1 + µ)+ φω1}]

C* =
µN(R0 − 1)(ω2(φ + γ1 + µ)+ φω1)

R0[(ω1 + ω2 + µ)(φ + γ1 + µ)(δ+ γ2 + µ)− δ{ω2(φ + γ1 + µ)+ φω1}]

R* =
γ1Nω1(R0 − 1)(δ+ γ2 + µ)

R0[(ω1 + ω2 + µ)(φ + γ1 + µ)(δ+ γ2 + µ)− δ{ω2(φ + γ1 + µ)+ φω1}]

+
γ2N(R0 − 1)(ω2(φ + γ1 + µ)+ φω1)

R0[(ω1 + ω2 + µ)(φ + γ1 + µ)(δ+ γ2 + µ)− δ{ω2(φ + γ1 + µ)+ φω1}]

+
κσηS0

µR0(ρ+ σ+ α1 + µ)(κ+ α2 + µ)

E = argmin

n
∑

i=1

(K(ti , x)− Dti)
2.

https://dashboard.dghs.gov.bd/pages/covid19.php
https://dashboard.dghs.gov.bd/pages/covid19.php
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Results
Optimal control strategy
In this section, we performed an optimal control strategy and implemented three time-dependent control vari-
ables to explore their effectiveness and cost-effective analysis in controlling the spread of COVID-19 in Bangla-
desh. From the analysis of the basic reproduction number with corresponding rate parameters value, we identi-
fied several sensitive parameters to increase R0. That is why we propose three time-dependent control variables 
u1(t), u2(t) and u3(t)  to control disease transmission into the community, and the controls are defined as follows:

i)	 u1(t) designates the transmission control strategy that is the exertion at preventing the coronavirus transmis-
sion from Susceptible to Latent, Mild, and Critical cases population. This can be contacted through public 
health encouragement for social distancing, mask-wearing, good personal hygiene, reducing participation 
in outdoor activities, diagnosis campaigns, and education programs for public health. Noting that u1(t) = 1 
designates the strategy successfully protects against COVID-19 infection while u1(t) = 0 represents strategy 
failure.

ii)	 u2(t) represents the vaccination control strategy, it is presumed that the number of vaccines available during 
this time period and they are all administrated and used completely. If u2(t) = 1 , then the control strategy 
is efficiently used while u2(t) = 0 means the lack of a control strategy.

iii)	 u3(t) designates control variables to improve the treatment of the Mild and Critical cases with a view to 
confirm the quick provision of extra treatment, including providing comfort measures to release COVID-19 

Table 1.   The model parameter’s value.

Parameters Description Values References

N Population in 2021 164,689,383 56

µ Death rate 1
70

57

β Transmission rate 2.86× 10−6 Fitted

ω1 Progression rate from L to M 0.023 Fitted

ω2 Progression rate from L to C 0.001 Fitted

γ1 Recovered rate of mildly infected individuals 0.02 58

γ2 Recovered rate of critically infected individuals 0.01 58

φ Transfer rate from mild to critical compartment 0.3 58

ρ The rate at which first dose vaccinated person move to susceptible class 0.2 59

δ Death rate of critically infected individuals 0.125 60

η First dose vaccination rate 1.02 Fitted

α1 Loss of immunity from first dose vaccinated person 0.0053 Fitted

α2 Loss of immunity from second dose vaccinated person 0.0204 Fitted

σ Second dose vaccination rate 0.90 Assumed

κ Recovered rate from second dose vaccinated individuals 0.80 60

Figure 3.   Actual reported COVID-19 incidence data (blue dots) and the model fitted curve (solid green line) 
with the 95% confidence interval (CI) measure in the blue-shaded limits.
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symptoms and preventing complications. Observing u3(t) = 1 , then the control strategy is efficiently treating 
the COVID-19-infected population while u3(t) = 0 means the strategy failure.

Consequently, the optimal control model with the three above-mentioned time-dependent variables is given 
by the following non-linear differential equations:

The objective of giving the three control variables is to pursue the optimal solution essential to minimize 
the numbers of Latent, Mild, and Critical cases at minimum cost. Hence, the objective function for this optimal 
control problem is given by

where, constants Pi, i = 1, 2, 3 are positive weights crucial to balance the objective function. Following other 
studies on optimal control problems25,30–32, quadratic cost on the controls are selected to guarantee the control 
has only one extremum (i.e., maximum or minimum), where 12Q1u

2
1(t) is the total cost of implementing the 

transmission, and 12Q2u
2
2(t) is the total cost of vaccination and 12Q3u

2
3(t) is the total cost of treatment for Latent, 

Mild, and Critical populations over the time interval [T0, Tf] (where the initial time T0 = 0 , final time Tf = 30 
months period).

Precisely, the optimal control strategy u∗ =
(

u∗1, u
∗
2, u

∗
3

)

 is required such that

where U is the non-empty control set defined by

Therefore, to adjust the necessary conditions that the optimal control strategy 
(

u∗1, u
∗
2, u

∗
3

)

 must satisfy, Pon-
tryagin’s maximum principle61, which changes into the optimal control problem (8) subject to the model (6) 
that minimizes pointwise a Hamiltonian H , with respect to the control measures. This Hamiltonian is given as

where, �i, i = S, V1, V2, L,M, C, R, represent the adjoint variables allied with the state variables of the model (6). 
The predictable consequence for minimizing the control problem as implemented in32,44 is adjusted below. Now 
using Pontryagin’s maximum principle, we acquire the following theorem.

Theorem  Given that 
(

u∗1, u
∗
2, u

∗
3

)

 minimizes the objective function (7) subject to the corresponding system (6), then 
the adjoint variables S, V1, V2, L,M, C, R, satisfy the following system.

with the terminal (transversality) conditions

(6)

dS
dt = µN + ρV1 + δC − (1− u1(t))βS(M+ C)− ηS − µS,

dV1
dt = ηS − (ρ+ α1 + µ)V1 − σ(1+ u2(t))V1,

dV2
dt = σ(1+ u2(t))V1 − κ(1+ u2(t))V2 − (α2 + µ)V2,

dL
dt = (1− u1(t))βS(M+ C)+ (α1 + α2)L− (ω1 + ω2 + µ)L,

dM
dt = ω1L− (φ+ µ)M − (1+ u3(t))γ1M,

dC
dt = ω2L+ φM − (δ+ µ)M − γ2(1+ u3(t))C,

dR
dt = γ1(1+ u3(t))M + γ2(1+ u3(t))C + κ(1+ u2(t))V2 − µR.











































(7)J
(

u∗1, u
∗
2, u

∗
3

)

= min
0≤u1,u2,u3≤1

∫ Tf

T0

(

P1L+ P2M+ P3C+
1

2

(

Q1u
2
1(t)+Q2u

2
2(t)+Q3u

2
3(t)

)

)

dt.

(8)J
(

u∗1, u
∗
2, u

∗
3

)

= min
{

J(u1, u2, u3) : u1, u2,u3 ∈ U
}

.

U =
{

(u1, u2, u3) : (u1(t), u2(t), u3(t))are measurable with 0 ≤ u1, u2, u3 ≤ 1 for t ∈ [T0, Tf]
}

(9)

H = P1L+ P2M+ P3C+
1

2

(

Q1u
2
1(t)+Q2u

2
2(t)+Q3u

2
3(t)

)

+ �S(µN+ ρV1 + δC− (1− u1(t))βS(M+ C)− ηS− µS )

+ �V1(ηS− (ρ+ α1 + µ)V1 − σ (1+ u2(t))V1)

+ �V2(σ(1+ u2(t))V1 − κ(1+ u2(t))V2 − (α2 + µ))V2

+ �L((1− u1(t))βS(M + C)+ (α1 + α2)L− (ω1 + ω2 + µ)L)

+ �M(ω1L− (φ + µ)M− (1+ u3(t))γ1M)

+ �C(ω2L+ φM− (δ+ µ)M − γ2(1+ u3(t))C)

+ �R(γ1(1+ u3(t))M+ γ2(1+ u3(t))C+ κ(1+ u2(t))V2 − µR).

(10)

d�S
dt = �S((1− u1)β(M+ C)+ (η+ µ))− �V1η − �L(1− u1)β(M+ C),

d�V1
dt = −�Sρ + �V1((ρ+ α1 + µ)+ σ(1+ u2))− �V2σ(1+ u2),

d�V2
dt = �V2(κ(1+ u2)+ (α2 + µ))− �Rκ(1+ u2),

d�L
dt = −P1 + �L((ω1 + ω2 + µ)− (α1 + α2))− �Mω1 − �Cω2,

d�M
dt = −P2 + �S(1− u1)βS − �L(1− u1)βS + �M((φ+ µ)+ γ1(1+ u3))− �C(φ− (δ+ µ))− �Rγ1(1+ u3),

d�C
dt = −P3 + �S(1− u1)βS − �L(1− u1)βS + �Cγ2(1+ u3)− �Rγ2(1+ u3),

d�R
dt = µ�R.
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Further, the optimal control pair (u∗1, u
∗
2, u

∗
3) is given as follows.

Proof The existence of the optimal controls u∗1, u
∗
2 and u∗3 such that

J
(

u∗1(t), u
∗
2(t), u

∗
3(t)

)

= U
minJ(u1, u2, u3) with state system (6) is given by the convexity of the objective func-

tion integrand. The adjoint equations and transversality conditions are achieved by Pontryagin’s Maximum 
Principle61. Differentiation of Hamiltonian H for the state variables gives the following system,

with �i = 0 , for i = S, V1, V2, L,M, C, R.
Optimal controls u∗1(t), u

∗
2(t) and u∗3(t) are derived by the following optimality conditions,

at u∗1(t), u
∗
2(t) and u∗3(t) on the set U . On this set

This ends the proof.
Here, we employed the Runge–Kutta fourth-order forward and backward technique using MATLAB program-

ming language to solve the consequent optimality system, which contains (6) and (10) with the characterization 

(11)�i(Tf) = 0, i = S, V1, V2, L,M, C, R.

(12)

u∗1 = max

{

0, min

{

1,
βS(M+ C)(�L − �S)

Q1

}}

,

u∗2 = max

{

0, min

{

1,

(

�V1 − �V2

)

σV1 +
(

�V2 − �R

)

κV2

Q2

}}

,

u∗3 = max

{

0, min

{

1,
(�M − �R)γ1M + (�C − �R)γ2C

Q3

}}

.

d�S

dt
= −

∂H

∂S
,

d�V1

dt
= −

∂H

∂V1
,

d�V2

dt
= −

∂H

∂V2
,

d�L

dt
= −

∂H

∂L
,

d�M

dt
= −

∂H

∂M
,

d�C

dt
= −

∂H

∂C
,

d�R

dt
= −

∂H

∂R
,

∂H

∂u1
= Q1u

∗
1 + �SβS(M+ C)− �LβS(M+ C) = 0,

∂H

∂u2
= Q2u

∗
2 − �V1σV1 − �V2κV2 + �RκV2 + �V2σV1 = 0,

∂H

∂u3
= P3u

∗
3 − �Mγ1M− �Cγ2C+ �Rγ1M+ �Rγ2C = 0,

u∗1(t) =
βS(M+ C)(�L − �S)

Q1
,

u∗2(t) =

(

�V1 − �V2

)

σV1 +
(

�V2 − �R

)

κV2

Q2
,

u∗3(t) =
(�M − �R)γ1M+ (�C − �R)γ2C

Q3
.
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(12) within the period of [0, 30] months. The weight constants implemented for corresponding to the objec-
tive function (7) are designated to confirm that no term dictates the other. Therefore, we used identical weight 
constants to minimize Latent, Mild, and Critical classes so that P1 = P2 = P3 = 1. Under other circumstances, 
the weight constants for decisive efforts or cost crucial to implement the controls are relatively different, and 
outcomes in values for Q1 = 100, Q2 = 1000 and Q3 = 1050 are consistent with previous modeling studies62. 
Details of the numerical technique for simulating the achieved optimality system are contained63.

Figure 4 establishes how transmission control (u1) , vaccination (u2) and treatment (u3) control strategies 
that affect the spread of COVID-19 in Bangladesh. As shown in Fig. 4, to minimize the objective function (7), 
the optimal control u1(t) ,  u2(t) and u3(t) are continued at the maximum level (i.e., 100%) for about 18 months, 
17 months, and 30 months respectively, for the Bangladesh population before relaxing to the minimum in the 
final time. Also, as expected, the number of COVID-19 infectious individuals is reduced when control is in 
place. We observed that the treatment control strategy has a small impact on Mild and Critical cases, while the 
transmission control strategy has a high impact on reducing the burden of COVID-19 cases in Bangladesh.

Figure 5 represents the implication of double intervention strategies, including transmission control and vac-
cination, transmission control and treatment, and vaccination and treatment. Each of the interventions resulted 
in decreasing the number of COVID-19 cases during the time period. The analysis shows that a combination of 
transmission control and vaccination is the best dual intervention strategy for reducing the number of the total 
number of COVID-19 cases and minimum cost compared to other dual intervention strategies (see Table 2 and 
Fig. 5). An alternative, a combination of transmission control and treatment rate, is another option.

Figure 4.   Single intervention strategy and its impacts on the COVID-19 cases in Bangladesh.
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Figure 6 shows the implication of combining the three optimal controls in bringing down the total number 
of infectious humans to zero in Bangladesh. It is observed that optimal solution has achieved when distancing 
control strategy (u1) is strictly followed to at the maximum level of 100% for around 10 months, while the vac-
cination and treatment control strategies (u2, u3) are at a maximum level above 40% and 30%, respectively. It 
can be seen that the combination of the three control strategies is significantly more effective in decreasing the 
spread of COVID-19 compared to implementing each control strategy individually, which is consistent with the 
previous modeling studies32,64,65.

Figure 5.   Double intervention strategy and its impacts on the COVID-19 cases in Bangladesh.

Table 2.   ICER and ACER in the order of COVID-19 cases averted by single control measures.

Control measures Total infected averted Total cost ICER ACER

S1 7.3961× 108 1.2910× 106 0.0017 0.0017

S2 9.0816× 107 9.5607× 108 −1.47 10.5276

S3 5.4928× 106 1.1152× 109 −1.87 203
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Cost‑effective analysis
It is essential to identify the most cost-effective scheme for transmission, vaccination, and treatment control as 
well as their combination control policies to optimally mitigate the spread of COVID-19 at the possible minimum 
cost. This is achieved by correlating the differences among each intervention’s costs and consequences; acquired 
by assessing the incremental cost-effective ratio (ICER), which is demarcated as the extra cost per further inter-
vention effect. Incrementally, when analysing two or more competing intervention strategies, one intervention 
is related to the next less operative option. The total difference in intervention costs gives the ICER numerator, 
active COVID-19 cases averted costs and averted output losses if applicable, between each setting and starting 
point. The ICER denominator is the difference in the total number of active COVID-19 cases averted. Hence, 
the following formula acquires the ICER:

We also completed the average cost-effectiveness ratio (ACER), which assesses the effectiveness of a particular 
intervention’s performance. The ACER is the ratio between the total cost incurred and the total number of active 
COVID-19 cases averted by that policy. This is calculated by

The total cost for each transmission, vaccination, and treatment implementation and mutual effort of the 
optimal control strategy is obtainable from the objective function (7). The cases are averted by computing the 
difference between infectious individuals with and without control strategy.

Let, S1, S2 and S3 respectively represent a single transmission control strategy u1(t) , single vaccination control 
strategy u2(t) and single-treatment control strategy u3(t) . Table 2 summaries the ICER and ACER for each control 
variable u1(t), u2(t) and u3(t) in increasing order of the total infection averted. The ICER and ACER results for 
S1, S2 and S3 are calculated using (13) and (14) shown in Table 2.

Comparing S1, S2 and S3 in Table 2 and Fig. 7, it is seen that transmission (S1) control strategy is the most 
cost-effective, which reduces a significant number of COVID-19 cases with a low cost compared to vaccination 
(S2) and treatment (S3) individually, while S3 is the least cost-effective intervention strategy among them.

Table 3 and Fig. 8 represent the double interventions strategies which include a combination of transmission 
control and vaccination (S12) , transmission control  and treatment (S13) as well as vaccination and treatment (S23) . 
Each of the interventions resulted in decreasing the number of COVID-19 cases and relative cost. The analysis 
shows that a combination of transmission control and vaccination (S12) , is the best dual intervention strategy 
for reducing the number of COVID-19 cases and the minimum cost in Bangladesh (see Table 3 and Fig. 8). 
Alternative, the combination of transmission control  and treatment (S13) is another option.

Finally, S123 represents the triple intervention strategy which includes a combination of transmission control 
u1(t) , vaccination u2(t) and treatment u3(t) . Under this strategy, the total number of COVID-19 cases reduces 
enormously with minimum cost over 30 months period due to the combination of triple interventions. We also 
compared all the scenarios with each other to know which is the most effective (see Table 4 and Fig. 9). Our 
finding suggests that the combination of triple interventions is the most cost-effective within the best control 
strategy, which reduces the massive number of COVID-19 cases in Bangladesh. However, another scenario in 
Table 4 and Fig. 9 can be considered depending on the availability of funds.

Discussion
Currently, COVID-19 is one of the most persistent public health problems in Bangladesh. Overall, the trans-
mission dynamics and epidemiology of COVID-19 in Bangladesh are poorly understood. The government 
of Bangladesh started numerous intervention programs, including non-pharmaceutical and pharmaceutical, 
to eliminate COVID-19. Although COVID-19 control in Bangladesh has expressively proceeded—improved 

(13)ICER =
Difference in total cost between control strategies

Difference in total number of active cases averted by control strategies

(14)ACER =
Total cost

Total active cases averted

Figure 6.   Triple intervention strategy and its impacts on the COVID-19 cases in Bangladesh.
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Figure 7.   Comparing cost-effective analysis among best single intervention strategies.

Table 3.   ICER and ACER in the order of COVID-19 cases averted by double control measures.

Control measures Total infected averted Total cost ICER ACER

S12 7.4377× 108 1.2861× 106 1.73× 10−3 1.73× 10−3

S13 7.3976× 108 1.2900× 106 −9.73× 104 1.74× 10−3

S23 8.5338× 107 9.3250× 108 −1.42 1.09× 10−1

Figure 8.   Comparing cost-effective analysis among best double intervention strategies.

Table 4.   Selecting the best control strategy.

Best control strategy Total infected averted Total cost ICER ACER

u1, u2andu3(S123) 7.5378× 108 1.2855× 106 1.71× 10−3 1.71× 10−3

u1andu2(S12) 7.4377× 108 1.2861× 106 −5.99× 10−5 1.73× 10−3

u1(S1) 7.3961× 108 1.2910× 106 −1.18× 10−3 1.75× 10−3
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treatment and vaccination coverage, transmission control, adequate capacity, and guidelines—more effort is 
essential. To diminish COVID-19 incidence, prevalence, and deaths in Bangladesh, we need to recognize the 
risk factors for increasing COVID-19 cases.

In this paper, we developed a COVID-19 model in Bangladesh to understand the transmission dynamics of 
COVID-19 in Bangladesh. We derived the basic reproduction number and assessed the role of reproduction 
number on the dynamics of COVID-19. We performed mesh and contour plots to explore the impact of different 
parameters on the basic reproduction number. Our investigation led to the explanation that, of the adaptable 
parameters, the transmission rate had a positive correlation with the basic reproduction number of COVID-
19. This associate’s parameter has the highest impact on COVID-19 dynamics and strongly recommends that 
investments in public health responses that focus on transmission control should be the foundation of enhanced 
COVID-19 control. We calibrated our model with COVID-19 incidence data in Bangladesh to estimate some 
model parameters using least-square methods.

We implemented optimal control investigation via Pontryagin’s Maximal principle61 and formulated the 
optimal control strategies for reducing the COVID-19 epidemic in Bangladesh. Three different control strate-
gies were assumed (single, double, and triple) from the combination of transmission control, treatment, and 
vaccination and were examined to measure their cost-effectiveness.

Between the three single-control interventions, the transmission control strategy is the most cost-effective 
for reducing the number of COVID-19 cases in Bangladesh. The vaccination control strategy seems to be more 
effective than the treatment control strategy. Therefore, when only one control strategy is considered, our out-
comes recommend that the Ministry of Health in Bangladesh should increase transmission control interventions, 
dropping transmission between infectious and susceptible individuals.

Combinations with transmission control achieved best within the three-dual-control strategies, and incorpo-
rating vaccination control is the most cost-effective and more quickly decreases COVID-19 cases compared to 
other double intervention strategies. In view of the struggle of employing transmission measures which includes 
a high social cost and high population density in Bangladesh, pharmaceutical control which contains vaccination 
and treatment control strategies, should be measured. Therefore, if double control strategies are considered, we 
suggest that transmission control should be involved. If transmission control is employed effectively, the Min-
istry of Health in Bangladesh can succeed in the elimination goal with fewer pharmaceutical control practices. 
Mutual vaccination and treatment control strategy is also advisable if the transmission is infeasible. From the 
investigation of all the control policies, we found that the most cost-effective control is the triple control strategy, 
followed by the dual control strategy and single control.

Optimal control approaches have been implemented in other endemic locations to reduce the number of 
COVID-19 cases and the intervention operation costs66–68. Earlier studies show that the transmission control 
approach is the best approach for the single intervention policy to decline the number of COVID-19 cases and 
intervention budgets21,69, which is similar to our results. In our study, we incorporate the influence of a double-
dose vaccination strategy to conduct a cost-effective analysis, unveiling significant implications that accurately 
reflect the real dynamics of the COVID-19, but other study only considered single dose vaccination strategy66. 
We also considered two important features including direct link between vaccination and latently population, 
and practical healthcare cost by separation of infections into Mild and Critical cases. In addition, our study 
displays that transmission control and vaccination are the best preference for the three double-control policies, 
which is similar to54. Our main outcome in this study is that the triple control policy, which contains transmis-
sion control, vaccination, and treatment together, is the most impactful and cost-effective strategy for reducing 
the number of COVID-19 cases. Our result also recommends that effort on a single control strategy will not 
intensely affect the drop in COVID-19 cases in Bangladesh, whereas combining two or more control strategies 

Figure 9.   Comparing cost-effective analysis among best single, double, and triple intervention strategies.
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concurrently will decline the burden of COVID-19 in Bangladesh, which is found to be consistent with earlier 
modelling studies57,69.

In Bangladesh setting, the current COVID-19 surveillance system may not capture every case, introducing 
potential bias into our estimates due to underreporting. To mitigate this, it is imperative to implement more 
refined data collection methods, enhancing the accuracy of COVID-19-related information. The acquisition of 
precise data not only improves estimation quality but also strengthens the foundation for informed decision-
making. Consequently, decisionmakers should be mindful of the potential underreporting bias as they scrutinize 
our findings for comprehensive and reliable insights.

Conclusion
In summary, our study sheds light on the critical challenges posed by COVID-19, a global infectious disease 
responsible for a significant global health burden. Despite universal control measures implemented by gov-
ernments worldwide, the need for more precise and cost-effective interventions remains evident. Utilizing a 
mathematical model fitted to Bangladesh’s COVID-19 data, we delved into the transmission dynamics, deriving 
reproduction numbers and employing mesh and contour plots to assess parameter impacts. Within an optimal 
control framework, our evaluation of single and combination intervention strategies—transmission control, 
treatment, and vaccination—revealed enhanced transmission control as the most cost-effective approach for 
rapidly reducing COVID-19 cases in Bangladesh. Leveraging Pontryagin’s Maximal Principle, we formulated 
optimal control strategies to curtail the epidemic. Our findings advocate for a three-pronged intervention strategy 
integrating transmission control, treatment, and vaccination, proving more cost-effective than single or double 
interventions. Notably, the vaccination strategy demonstrated greater efficacy than treatment alone. The imple-
mentation of these findings underscores the importance of resource availability and policymaker decisions in 
the ongoing battle against COVID-19.

The forthcoming research will centre on the significance of enhancing household and public awareness as 
a critical element in controlling the transmission of COVID-19. Consequently, there is a need for additional 
investigations to ascertain more pertinent and precise policy strategies aimed at eradicating COVID-19 from 
communities. Accordingly, we suggest that future endeavours should concentrate on determining the optimal 
policy measures at the local level to manage the transmission of COVID-19 effectively. Therefore, our future 
research will centre on (i) Investigating the cost-effective analysis for reducing human-to-human transmission of 
COVID-19 and compare different strategies both local and national levels to control the COVID-19 transmission 
(iii) Exploring the cost-effectiveness of intervention policies in local and national levels considering differences 
in healthcare infrastructure, population density, and socio-economic factors (Supplementary Information S1).

Data availability
Data will be made available on reasonable request. All data were compiled from the publicly available website 
https://​dashb​oard.​dghs.​gov.​bd/​pages/​covid​19.​php.

Received: 30 August 2023; Accepted: 26 December 2023

References
	 1.	 Center for disease control and prevention. Coronavirus disease 2019 safety-of-vaccines. https://​www.​cdc.​gov/​coron​avirus/​2019-​

ncov/​vacci​nes/​safety/​safety-​of-​vacci​nes.​html (Accessed March 12, 2022).
	 2.	 Abidemi, A., Zainuddin, Z. M. & Aziz, N. A. B. Impact of control interventions on COVID-19 population dynamics in Malaysia: 

A mathematical study. Eur. Phys. J. Plus 136(2), 1–35. https://​doi.​org/​10.​1140/​epjp/​s13360-​021-​01205-5 (2021).
	 3.	 Hattaf, K. et al. Mathematical modeling and analysis of the dynamics of RNA viruses in presence of immunity and treatment: A 

case study of SARS-CoV-2. Vaccines 11(2), 201. https://​doi.​org/​10.​3390/​vacci​nes11​020201 (2023).
	 4.	 World Health Organization (WHO). https://​covid​19.​who.​int/ (Accessed March 15, 2023).
	 5.	 González-Parra, G. & Arenas, A. J. Mathematical modeling of SARS-CoV-2 omicron wave under vaccination effects. Comput. 

11(2), 36. https://​doi.​org/​10.​3390/​compu​tatio​n1102​0036 (2023).
	 6.	 Prado, M. F. D. et al. Analysis of COVID-19 under-reporting in Brazil. Rev. Bras. Ter. 32, 224–228. https://​doi.​org/​10.​5935/​0103-​

507X.​20200​030 (2020).
	 7.	 Le Page, M. Threats from new variants. New Sci. 249, 8–9. https://​doi.​org/​10.​1016/​S0262-​4079(21)​00003-8 (2021).
	 8.	 van Oosterhout, C., Hall, N., Ly, H. & Tyler, K. M. COVID-19 evolution during the pandemic–Implications of new SARS-CoV-2 

variants on disease control and public health policies. Virulence 12, 507. https://​doi.​org/​10.​1080/​21505​594.​2021.​18770​66 (2021).
	 9.	 World health organization (WHO). https://​www.​who.​int/​activ​ities/​track​ing-​SARS-​CoV-2-​varia​nts/ (Acceced on March 15, 2023).
	10.	 Peter, O. J., Panigoro, H. S., Abidemi, A., Ojo, M. M. & Oguntolu, F. A. Mathematical model of COVID-19 pandemic with double 

dose vaccination. Acta Biotheor. 71(2), 9. https://​doi.​org/​10.​1007/​s10441-​023-​09460-y (2023).
	11.	 Yang, H., Lin, X., Li, J., Zhai, Y., & Wu, J. A review of mathematical models of COVID-19 transmission. Contemp. Math. 75–98. 

https://​doi.​org/​10.​37256/​cm.​41202​32080 (2023).
	12.	 Theparod, T., Kreabkhontho, P. & Teparos, W. Booster dose vaccination and dynamics of COVID-19 pandemic in the fifth wave: 

An efficient and simple mathematical model for disease progression. Vaccines 11(3), 589. https://​doi.​org/​10.​3390/​vacci​nes11​030589 
(2023).

	13.	 Asamoah, J. K. K. et al. Optimal control and comprehensive cost-effectiveness analysis for COVID-19. Res. Phys. 33, 105177. 
https://​doi.​org/​10.​1016/j.​rinp.​2022.​105177 (2022).

	14.	 Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N., Dotoli, M. Modeling, estimation, and optimal control of anti-covid-19 multi-
dose vaccine administration. In IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 
990–995. https://​doi.​org/​10.​1109/​CASE4​9439.​2021.​95514​18 (2021).

	15.	 Batra, K., Sharma, M., Dai, C. L. & Khubchandani, J. COVID-19 booster vaccination hesitancy in the United States: A multi-
theory-model (MTM)-based national assessment. Vaccines 10(5), 758. https://​doi.​org/​10.​3390/​vacci​nes10​050758 (2022).

	16.	 Guttieres, D., Sinskey, A. J. & Springs, S. L. Modeling framework to evaluate vaccine strategies against the COVID-19 pandemic. 
Systems 9(1), 4. https://​doi.​org/​10.​3390/​syste​ms901​0004 (2021).

https://dashboard.dghs.gov.bd/pages/covid19.php
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html
https://doi.org/10.1140/epjp/s13360-021-01205-5
https://doi.org/10.3390/vaccines11020201
https://covid19.who.int/
https://doi.org/10.3390/computation11020036
https://doi.org/10.5935/0103-507X.20200030
https://doi.org/10.5935/0103-507X.20200030
https://doi.org/10.1016/S0262-4079(21)00003-8
https://doi.org/10.1080/21505594.2021.1877066
https://www.who.int/activities/tracking-SARS-CoV-2-variants/
https://doi.org/10.1007/s10441-023-09460-y
https://doi.org/10.37256/cm.4120232080
https://doi.org/10.3390/vaccines11030589
https://doi.org/10.1016/j.rinp.2022.105177
https://doi.org/10.1109/CASE49439.2021.9551418
https://doi.org/10.3390/vaccines10050758
https://doi.org/10.3390/systems9010004


18

Vol:.(1234567890)

Scientific Reports |          (2024) 14:494  | https://doi.org/10.1038/s41598-023-50799-6

www.nature.com/scientificreports/

	17.	 Wang, J., Chan, Y. C., Niu, R., Wong, E. W. & van Wyk, M. A. Modeling the impact of vaccination on COVID-19 and its Delta and 
Omicron variants. Viruses 14(7), 1482. https://​doi.​org/​10.​3390/​v1407​1482 (2022).

	18.	 Fadaki, M., Abareshi, A., Far, S. M. & Lee, P. T. W. Multi-period vaccine allocation model in a pandemic: A case study of COVID-
19 in Australia. Transp. Res. E: Logist. Transp. Rev. 161, 102689. https://​doi.​org/​10.​1016/j.​tre.​2022.​102689 (2022).

	19.	 Ali, M., Shah, S. T. H., Imran, M. & Khan, A. The role of asymptomatic class, quarantine and isolation in the transmission of 
COVID-19. J. Biol. Dyn. 14(1), 389–408. https://​doi.​org/​10.​1080/​17513​758.​2020.​17730​00 (2020).

	20.	 Atangana, A. & Araz, S. Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa 
and Europe. Adv. Differ. Equ. 1, 1–107. https://​doi.​org/​10.​1186/​s13662-​021-​03213-2 (2021).

	21.	 Paul, A. K. & Kuddus, M. A. Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Res. Phys. 
35, 105392. https://​doi.​org/​10.​1016/j.​rinp.​2022.​105392 (2022).

	22.	 Kuddus, M. A., Mohiuddin, M. & Rahman, A. Mathematical analysis of a measles transmission dynamics model in Bangladesh 
with double dose vaccination. Sci. Rep. 11, 16571. https://​doi.​org/​10.​1038/​s41598-​021-​95913-8 (2021).

	23.	 Paul, A. K., Basak, N. & Kuddus, M. A. A mathematical model for simulating the transmission dynamics of COVID-19 using the 
Caputo-Fabrizio fractional-order derivative with nonsingular kernel. Inform. Med. Unlocked. 101, 416. https://​doi.​org/​10.​1016/j.​
imu.​2023.​101416 (2023).

	24.	 Kuddus, M. A. & Rahman, A. Analysis of COVID-19 using a modified SLIR model with nonlinear incidence. Res. Phys. 27, 104478. 
https://​doi.​org/​10.​1016/j.​rinp.​2021.​104478 (2021).

	25.	 Campos, E. L., Cysne, R. P., Madureira, A. L. & Mendes, G. L. Multi-generational SIR modeling: Determination of parameters, 
epidemiological forecasting and age-dependent vaccination policies. Infect. Dis. Model 6, 751–765. https://​doi.​org/​10.​1016/j.​idm.​
2021.​05.​003 (2021).

	26.	 Tithi, S. K., Paul, A. K. & Kuddus, M. A. Mathematical investigation of a two-strain disease model with double dose vaccination 
control policies. Res. Phys 53, 106930. https://​doi.​org/​10.​1016/j.​rinp.​2023.​106930 (2023).

	27.	 de León, U. A. P., Avila-Vales, E. & Huang, K. L. Modeling COVID-19 dynamic using a two-strain model with vaccination. Chaos 
Solitons Fractals 157, 111927. https://​doi.​org/​10.​1016/j.​chaos.​2022.​111927 (2022).

	28.	 Kuddus, M. A. & Paul, A. K. Global dynamics of a two-strain disease model with amplification, nonlinear incidence and treatment. 
Iran. J. Med. Sci. 47, 259–274. https://​doi.​org/​10.​1007/​s40995-​023-​01412-y (2023).

	29.	 Fan, C. et al. Animal models for COVID-19: Advances, gaps and perspectives. Signal Transduct. Target Ther. 7(1), 220. https://​doi.​
org/​10.​1038/​s41392-​022-​01087-8 (2022).

	30.	 Parolini, N., Ardenghi, G. & Quarteroni, A. Modelling the COVID-19 epidemic and the vaccination campaign in Italy by the 
SUIHTER model. Infect. Dis. Model 7(2), 45–63. https://​doi.​org/​10.​1016/j.​idm.​2022.​03.​002 (2022).

	31.	 Mengüç, K., Aydin, N. & Ulu, M. Optimisation of COVID-19 vaccination process using GIS, machine learning, and the multi-
layered transportation model. Int. J. Prod. Res. 1, 1–14. https://​doi.​org/​10.​1080/​00207​543.​2023.​21821​51 (2023).

	32.	 Du, Z. et al. Modeling comparative cost-effectiveness of SARS-CoV-2 vaccine dose fractionation in India. Nat. Med. 28(5), 934–938. 
https://​doi.​org/​10.​1038/​s41591-​022-​01736-z (2022).

	33.	 Kouidere, A., Youssoufi, L. E., Ferjouchia, H., Balatif, O. & Rachik, M. Optimal control of mathematical modeling of the spread of 
the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness. Chaos 
Solitons Fractals 145, 110777. https://​doi.​org/​10.​1016/j.​chaos.​2021.​110777 (2021).

	34.	 DGHS, COVID-19 dynamics dashboard for Bangladesh. https://​dashb​oard.​dghs.​gov.​bd/​pages/​covid​19.​php (Accessed July 10, 
2022).

	35.	 Omame, A., Raezah, A. A., Diala, U. H. & Onuoha, C. The optimal strategies to be adopted in controlling the co-circulation of 
COVID-19, dengue and HIV: Insight from a mathematical model. Axioms 12(8), 773. https://​doi.​org/​10.​3390/​axiom​s1208​0773 
(2023).

	36.	 Omame, A. & Abbas, M. The stability analysis of a co-circulation model for COVID-19, dengue, and zika with nonlinear incidence 
rates and vaccination strategies. Healthcare Anal. 3, 100151. https://​doi.​org/​10.​1016/j.​health.​2023.​100151 (2023).

	37.	 Omame, A., Okuonghae, D., Nwafor, U. E. & Odionyenma, B. U. A co-infection model for HPV and syphilis with optimal control 
and cost-effectiveness analysis. Int. J. Biomath. 14(07), 2150050. https://​doi.​org/​10.​1142/​S1793​52452​15005​09 (2021).

	38.	 Agwu, C. O., Omame, A. & Inyama, S. C. Analysis of mathematical model of diabetes and tuberculosis co-infection. Int. J. Appl. 
Comput. Math. 9(3), 36. https://​doi.​org/​10.​1007/​s40819-​023-​01515-5 (2023).

	39.	 Atede, A. O., Omame, A. & Inyama, S. C. A fractional order vaccination model for COVID-19 incorporating environmental 
transmission: A case study using Nigerian data. Bull. Biomath. 1(1), 78–110. https://​doi.​org/​10.​59292/​bulle​tinbi​omath.​20230​05 
(2023).

	40.	 Kuddus, M. A., Meehan, M. T., White, L. J., McBryde, E. S. & Adekunle, A. I. Modeling drug-resistant tuberculosis amplification 
rates and intervention strategies in Bangladesh. PloS One 15(7), 0236112. https://​doi.​org/​10.​1371/​journ​al.​pone.​02361​12 (2020).

	41.	 Abidemi, A., Owolabi, K. M. & Pindza, E. Assessing the dynamics of Lassa fever with impact of environmental sanitation: Optimal 
control and cost-effectiveness analysis. Model. Earth Syst. Environ. 1, 1–26. https://​doi.​org/​10.​1007/​s40808-​022-​01624-y (2022).

	42.	 Ojo, M. M. & Goufo, E. F. D. Mathematical analysis of a Lassa fever model in Nigeria: Optimal control and cost-efficacy. Int. J. 
Dyn. Control. 10(6), 1807–1828. https://​doi.​org/​10.​1007/​s40435-​022-​00951-3 (2022).

	43.	 Bandekar, S. R. & Ghosh, M. Mathematical modeling of COVID-19 in India and its states with optimal control. Model. Earth Syst. 
Environ. 8(2), 2019–2034. https://​doi.​org/​10.​1007/​s40808-​021-​01202-8 (2022).

	44.	 Olaniyi, S., Okosun, K. O., Adesanya, S. O. & Lebelo, R. S. Modelling malaria dynamics with partial immunity and protected 
travellers: Optimal control and cost-effectiveness analysis. J. Biol. Dyn. 14(1), 90–115. https://​doi.​org/​10.​1080/​17513​758.​2020.​
17222​65 (2020).

	45.	 Mwamtobe, P. M., Abelman, S., Tchuenche, J. M. & Kasambara, A. Optimal (control of) intervention strategies for malaria epidemic 
in Karonga District. Malawi. Abstr. Appl. Anal. 2014, 2015. https://​doi.​org/​10.​1155/​2014/​594256 (2015).

	46.	 Olaniyi, S., Okosun, K. O., Adesanya, S. O. & Areo, E. A. Global stability and optimal control analysis of malaria dynamics in the 
presence of human travelers. Open Infect. Dis. J. 10(1), 166–186. https://​doi.​org/​10.​2174/​18742​79301​81001​0166 (2018).

	47.	 Keno, T. D., Dano, L. B. & Ganati, G. A. Optimal control and cost-effectiveness strategies of malaria transmission with impact of 
climate variability. J. Math. 2022, 1–20. https://​doi.​org/​10.​1155/​2022/​59245​49 (2022).

	48.	 Perkins, T. A. & España, G. Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions. Bull. Math. Biol. 
82(9), 118. https://​doi.​org/​10.​1007/​s11538-​020-​00795-y (2020).

	49.	 Alqarni, M. S., Alghamdi, M., Muhammad, T., Alshomrani, A. S. & Khan, M. A. Mathematical modeling for novel coronavirus 
(COVID-19) and control. Numer. Methods Partial Differ. Equ. 38(4), 760–776. https://​doi.​org/​10.​1002/​num.​22695 (2022).

	50.	 Asamoah, J. K. K. et al. Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic 
model with control interventions. Chaos Solitons Fractals 146, 110885. https://​doi.​org/​10.​1016/j.​chaos.​2021.​110885 (2021).

	51.	 Yuan, Y. & Li, N. Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness. 
Phys. A: Stat. Mech. Appl. 603, 127804. https://​doi.​org/​10.​1016/j.​physa.​2022.​127804 (2022).

	52.	 Agusto, F. B. & Elmojtaba, I. M. Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection. PLoS 
One 12(2), e0171102. https://​doi.​org/​10.​1371/​journ​al.​pone.​01711​02 (2017).

	53.	 Agusto, F. B. & Leite, M. C. A. Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria. Infect. Dis. 
Model 4, 161–187. https://​doi.​org/​10.​1016/j.​idm.​2019.​05.​003 (2019).

https://doi.org/10.3390/v14071482
https://doi.org/10.1016/j.tre.2022.102689
https://doi.org/10.1080/17513758.2020.1773000
https://doi.org/10.1186/s13662-021-03213-2
https://doi.org/10.1016/j.rinp.2022.105392
https://doi.org/10.1038/s41598-021-95913-8
https://doi.org/10.1016/j.imu.2023.101416
https://doi.org/10.1016/j.imu.2023.101416
https://doi.org/10.1016/j.rinp.2021.104478
https://doi.org/10.1016/j.idm.2021.05.003
https://doi.org/10.1016/j.idm.2021.05.003
https://doi.org/10.1016/j.rinp.2023.106930
https://doi.org/10.1016/j.chaos.2022.111927
https://doi.org/10.1007/s40995-023-01412-y
https://doi.org/10.1038/s41392-022-01087-8
https://doi.org/10.1038/s41392-022-01087-8
https://doi.org/10.1016/j.idm.2022.03.002
https://doi.org/10.1080/00207543.2023.2182151
https://doi.org/10.1038/s41591-022-01736-z
https://doi.org/10.1016/j.chaos.2021.110777
https://dashboard.dghs.gov.bd/pages/covid19.php
https://doi.org/10.3390/axioms12080773
https://doi.org/10.1016/j.health.2023.100151
https://doi.org/10.1142/S1793524521500509
https://doi.org/10.1007/s40819-023-01515-5
https://doi.org/10.59292/bulletinbiomath.2023005
https://doi.org/10.1371/journal.pone.0236112
https://doi.org/10.1007/s40808-022-01624-y
https://doi.org/10.1007/s40435-022-00951-3
https://doi.org/10.1007/s40808-021-01202-8
https://doi.org/10.1080/17513758.2020.1722265
https://doi.org/10.1080/17513758.2020.1722265
https://doi.org/10.1155/2014/594256
https://doi.org/10.2174/1874279301810010166
https://doi.org/10.1155/2022/5924549
https://doi.org/10.1007/s11538-020-00795-y
https://doi.org/10.1002/num.22695
https://doi.org/10.1016/j.chaos.2021.110885
https://doi.org/10.1016/j.physa.2022.127804
https://doi.org/10.1371/journal.pone.0171102
https://doi.org/10.1016/j.idm.2019.05.003


19

Vol.:(0123456789)

Scientific Reports |          (2024) 14:494  | https://doi.org/10.1038/s41598-023-50799-6

www.nature.com/scientificreports/

	54.	 Keno, T. D. & Etana, H. T. Optimal control strategies of COVID-19 dynamics model. J. Math. 2050, 684. https://​doi.​org/​10.​1155/​
2023/​20506​84 (2023).

	55.	 Asamoah, J. K. K. et al. Optimal control dynamics of Gonorrhea in a structured population. Heliyon 9(10), 1. https://​doi.​org/​10.​
1016/j.​heliy​on.​2023.​e20531 (2023).

	56.	 Worldometers, Population of Bangladesh in 2020. https://​www.​world​omete​rs.​info/​world-​popul​ation/​bangl​adesh-​popul​ation/ 
(Accessed on March 15, 2023).

	57.	 Rahman, A., Kuddus, M. A., Ip, R. H. L. & Bewong, M. Modelling COVID-19 pandemic control strategies in metropolitan and 
rural health districts in New South Wales, Australia. Sci. Rep. 13(1), 10352. https://​doi.​org/​10.​1038/​s41598-​023-​37240-8 (2023).

	58.	 Kuddus, M. A., Mohiuddin, M. & Rahman, A. Mathematical analysis of a measles transmission dynamics model in Bangladesh 
with double dose vaccination. Sci. Rep. 11(1), 1–16. https://​doi.​org/​10.​1038/​s41598-​021-​95913-8 (2021).

	59.	 Ahmad, S. et al. Mathematical analysis of COVID-19 via new mathematical model. Chaos Solitons Fractals 143, 110585. https://​
doi.​org/​10.​1016/j.​chaos.​2020.​110585 (2021).

	60.	 DGHS, COVID-19 dynamics dashboard for Bangladesh. 2021. https://​www.​world​omete​rs.​info/​world-​popul​ation/​bangl​adesh-​
popul​ation/ (Accesed on March 05, 2021).

	61.	 Pontryagin, L.S. Mathematical theory of optimal processes. Routledge 2018. https://​doi.​org/​10.​1201/​97802​03749​319 (2018).
	62.	 Olaniyi, S., Obabiyi, O. S., Okosun, K. O., Oladipo, A. T. & Adewale, S. O. Mathematical modelling and optimal cost-effective 

control of COVID-19 transmission dynamics. Eur. Phys. J. Plus 135(11), 938. https://​doi.​org/​10.​1140/​epjp/​s13360-​020-​00954-z 
(2020).

	63.	 Lenhart, S., & Workman, J.T. Optimal control applied to biological models (CRC press, 2007).
	64.	 Chu, Y. M. et al. Mathematical modeling and stability analysis of Buruli ulcer in Possum mammals. Res. Phys. 27, 104471. https://​

doi.​org/​10.​1016/j.​rinp.​2021.​104471 (2021).
	65.	 Alzahrani, E. O., Ahmad, W., Khan, M. A. & Malebary, S. J. Optimal control strategies of Zika virus model with mutant. Commun. 

Nonlinear Sci. Numer. Simul. 93, 105532. https://​doi.​org/​10.​1016/j.​cnsns.​2020.​105532 (2021).
	66.	 Rajput, A., Sajid, M., Tanvi, S. C. & Aggarwal, R. Optimal control strategies on COVID-19 infection to bolster the efficacy of vac-

cination in India. Sci. Rep. 11(1), 20124. https://​doi.​org/​10.​1038/​s41598-​021-​99088-0 (2021).
	67.	 Seddighi, C. S., Seddighi, C. S., Hassanzadeh, A. J. & Phang, P. S. Controlling of pandemic COVID-19 using optimal control theory. 

Res. Phys. 26, 104311. https://​doi.​org/​10.​1016/j.​rinp.​2021.​104311 (2021).
	68.	 Singh, H. P., Bhatia, S. K., Bahri, Y. & Jain, R. Optimal control strategies to combat COVID-19 transmission: A mathematical model 

with incubation time delay. Res. Control Optim. 9, 100176. https://​doi.​org/​10.​1016/j.​rico.​2022.​100176 (2022).
	69.	 Rahman, A. & Kuddus, M. A. Modelling the transmission dynamics of COVID-19 in six high-burden countries. Biomed. Res. Int. 

508, 9184. https://​doi.​org/​10.​1155/​2021/​50891​84 (2021).
	70.	 Kuddus, M. A., Rahman, A., Alam, F. & Mohiuddin, M. Analysis of the different interventions scenario for programmatic measles 

control in Bangladesh: A modelling study. PLoS One. 18(6), e0283082. https://​doi.​org/​10.​1371/​journ​al.​pone.​02830​82 (2023).

Acknowledgements
This research project was financially supported by Mahasarakham University 2021.

Author contributions
M.A.K., A.K.P. and T.T. conceived of the project concept; M.A.K. cleaned the data. M.A.K. wrote the code and 
completed the data analysis under T.T. supervision. M.A.K., A.K.P. and T.T. performed model development and 
interpretation. M.A.K. wrote the initial draft of this manuscript, and all authors provided input into revisions 
and approved the final manuscript and submission for publication.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​50799-6.

Correspondence and requests for materials should be addressed to T.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1155/2023/2050684
https://doi.org/10.1155/2023/2050684
https://doi.org/10.1016/j.heliyon.2023.e20531
https://doi.org/10.1016/j.heliyon.2023.e20531
https://www.worldometers.info/world-population/bangladesh-population/
https://doi.org/10.1038/s41598-023-37240-8
https://doi.org/10.1038/s41598-021-95913-8
https://doi.org/10.1016/j.chaos.2020.110585
https://doi.org/10.1016/j.chaos.2020.110585
https://www.worldometers.info/world-population/bangladesh-population/
https://www.worldometers.info/world-population/bangladesh-population/
https://doi.org/10.1201/9780203749319
https://doi.org/10.1140/epjp/s13360-020-00954-z
https://doi.org/10.1016/j.rinp.2021.104471
https://doi.org/10.1016/j.rinp.2021.104471
https://doi.org/10.1016/j.cnsns.2020.105532
https://doi.org/10.1038/s41598-021-99088-0
https://doi.org/10.1016/j.rinp.2021.104311
https://doi.org/10.1016/j.rico.2022.100176
https://doi.org/10.1155/2021/5089184
https://doi.org/10.1371/journal.pone.0283082
https://doi.org/10.1038/s41598-023-50799-6
https://doi.org/10.1038/s41598-023-50799-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Cost-effectiveness analysis of COVID-19 intervention policies using a mathematical model: an optimal control approach
	Methods and materials
	The autonomous model description
	Basic reproduction number
	Existence of equilibria
	Model parameter estimation
	Ethical approval

	Results
	Optimal control strategy
	Cost-effective analysis

	Discussion
	Conclusion
	References
	Acknowledgements


