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Dual view deep learning
for enhanced breast cancer
screening using mammography

Samuel Rahimeto Kebede'37", Fraol Gelana Waldamichael®’?, Taye Girma Debelee?,
Muluberhan Aleme®, Wubalem Bedane*, Bethelhem Mezgebu* & Zelalem Chimdesa Merga®

Breast cancer has the highest incidence rate among women in Ethiopia compared to other types of
cancer. Unfortunately, many cases are detected at a stage where a cure is delayed or not possible.

To address this issue, mammography-based screening is widely accepted as an effective technique
for early detection. However, the interpretation of mammography images requires experienced
radiologists in breast imaging, a resource that is limited in Ethiopia. In this research, we have
developed a model to assist radiologists in mass screening for breast abnormalities and prioritizing
patients. Our approach combines an ensemble of EfficientNet-based classifiers with YOLOV5, a
suspicious mass detection method, to identify abnormalities. The inclusion of YOLOV5 detection is
crucial in providing explanations for classifier predictions and improving sensitivity, particularly when
the classifier fails to detect abnormalities. To further enhance the screening process, we have also
incorporated an abnormality detection model. The classifier model achieves an F1-score of 0.87 and a
sensitivity of 0.82. With the addition of suspicious mass detection, sensitivity increases to 0.89, albeit
at the expense of a slightly lower F1-score of 0.79.

Breast cancer has the highest incidence rate of 40.6 per 100,000 population among all cancers in Ethiopia in
2020". Due to the lack of therapy and late diagnosis, the mortality rates from breast cancer in developing coun-
tries like Ethiopia are much higher?. In most of the developed world, more than 70% of breast cancer patients
are diagnosed when the cancer is at its earlier stages I and II. However, only 20-50% of patients in the majority
of low- and middle-income countries were diagnosed at early stages®. A study conducted in northern Ethiopia*
shows that about 85% of the cases diagnosed in Ethiopia were at an advanced stage III and IV.

A study cited in® found that the 5-year survival rate for breast cancer detected at stage I, IL, III, or IV is 98%,
93%, 63%, and 31%, respectively. This suggests that early detection is critical for improving the chances of sur-
vival. For early detection, women (especially those whose age is greater than 40) must perform breast self-exams,
regular clinical breast exams, and mammograms®. Screening through mammography is one of the most effective
and affordable methods for early detection of breast mass”®.

Radiologists meticulously analyze mammography images and document their observations on any detected
abnormalities, utilizing the Breast Imaging Reporting and Data System (BI-RADS) due to its user-friendly nature
and provision of management guidance’®. Nevertheless, to cultivate a screening culture among women, mass
screening needs to be promoted; however, the limited number of radiologists makes this approach impractical in
developing countries like Ethiopia. Therefore, the development of an AI model with high sensitivity in detecting
breast abnormalities would assist radiologists in prioritizing cases and improving diagnostic accuracy. This paper
presents an ensemble of classification and object detection algorithms aimed at identifying breast abnormalities,
emphasizing the importance of early-stage detection. Currently, most cases are diagnosed at an advanced stage,
underscoring the life-saving potential of early detection and making it a paramount responsibility for radiologists.

Machine learning and deep learning methods have found extensive applications in various domains, includ-
ing disease detection and classification!®-”. In the context of breast cancer detection and classification, classical
machine learning methods have been commonly employed'®!?. However, these classical methods require robust
feature engineering to extract relevant features from a smaller dataset. Nonetheless, manual feature extraction
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techniques often fail to capture all the necessary features, resulting in the inclusion of irrelevant ones. In contrast,
convolutional neural network (CNN) models have shown promising performance for breast cancer classifica-
tion by automatically generating high-quality feature maps when efficiently trained®. These CNN-based models
demonstrate encouraging results in distinguishing normal and abnormal mammograms?>*!. Nevertheless, full
image classification alone may be challenging to explain to radiologists and might not provide information on
the precise location of abnormalities. To address these limitations, machine learning-based breast cancer detec-
tion and classification methods offer improved explanations and increased trustworthiness. Various techniques
have been proposed for detecting abnormal regions in mammograms, including both classical methods'® and
deep learning methods?**,

One class of object detection algorithms consists of separate region proposal and classifier networks, such as
Fast R-CNN?® and Faster R-CNN%. However, these networks tend to be slower for real-time applications. Another
class of algorithms combines region detection and classification in a single process. Notable examples include
Single Shot MultiBox Detector (SSD)?” and You Only Look Once (YOLO)?. While the R-CNN family achieves
high accuracy in detection and classification, recent advancements in the YOLO method have demonstrated
superior results in accuracy and speed. However, most object detection algorithms suffer from low sensitivity and
may overlook certain objects. This is primarily attributed to being trained on limited datasets that fail to cover all
possible scenarios. Consequently, these models struggle to generalize effectively to new images. A recent study
by Redmon et al.”? investigated the issue of low sensitivity in object detection algorithms. The authors found that
these algorithms were prone to missing small objects, partially occluded objects, and objects within cluttered
scenes. The paper proposed several methods to enhance the sensitivity of object detection algorithms, including
utilizing larger datasets, employing more powerful models, and applying data augmentation techniques. Despite
the progress made, further research is necessary to improve the sensitivity of object detection algorithms.

Therefore, for the application of the developed Al model in the mass screening of breast cancer using mam-
mography, we propose an ensemble approach that combines the accuracy of an abnormality classifier model with
the explainability of our object detection algorithm. By leveraging both models, we aim to determine the presence
of abnormalities in mammograms. The abnormality classifier, trained on a large dataset (as it is less expensive to
build compared to the object detection dataset), determines the presence or absence of abnormalities, while the
YOLOV5-based detection algorithm locates the abnormality regions within the mammogram.

Related works

Samuel et al.’® used classical machine learning methods for the presence and localization of breast mass. They
used pre-processing steps for removing pectoral muscle and other unwanted parts® and used the k-means
clustering algorithm to extract a region of interest (ROI), and used classical feature extraction to classify the
ROI using support vector machines (SVM). They achieved relatively good performance, but it is limited to mass
detection.

Yu et al.*! used a modified version of VGG16, which concatenates the feature from each convolutional block
using the global average pooling method onto the last flatten layer, to classify patches generated after image pro-
cessing steps from the MIAS dataset®?. The pre-processing step includes a median filter for blurring the original
image followed by the contrast limited adaptive histogram equalization (CLAHE)*. They achieved an F1 score
of 0.87 using their proposed model. Although they explain how they generated random ROIs for the negative
class, they didn’t mention any method for the positive class.

Vaira et al.”> use a VGG-like CNN network to classify ROI generated through a region-growing algorithm.
Before applying the region-growing algorithm, labels and pectoral muscles (present in the MLO view) were
removed using top-hat morphological operation and thresholding techniques. They still need expert annotation
to determine the seed point for the region-growing algorithm to segment the ROIL.

Allogmanin et al.** proposes a pre-trained MobileNetV2 model for feature extraction from and a single-layer
perceptron to classify mammography images as normal or abnormal. The framework is evaluated on two pub-
lic datasets: INbreast and MIAS, and achieves a high AUC-ROC score of 89.79% on the INbreast dataset. The
paper also demonstrates the effect of data pre-processing steps on the results and compares the framework with
recent and relevant works. The paper claims that the proposed framework overcomes the limitations of previous
works and contributes to the development of scientific research in the field of anomaly detection techniques for
breast cancer.

Shen et al.* proposed a lightweight deep learning anomaly detection framework for breast cancer diagnosis.
The proposed framework uses a pre-trained MobileNetV2 feature extractor and a single-layer perceptron to
classify mammography images as benign or malignant. The authors evaluated the framework on two datasets;
INbreast and MIAS. To address the problem of data imbalance present in the dataset, they employed Gaussian
noise to generate fake data samples.

Lilei et al.*® used template matching to extract a region of interest from mammography images and a CNN
classifier to classify ROIs into a mass or not. They used a pre-processing step of erosion with 7 x 7 kernel size
followed by dilation with 50 x 50 kernel size. They prepared a breast mass template and did a template matching
across all image regions and selected regions with the highest match. Then, a CNN model was trained and used
to extract regions with mass. Finally, they used particle swarm optimization (PSO) to refine the bounding box.
Their detection algorithm achieved a fair F1 score of 66.31 using the DDSM dataset.

Mugahed et al.¥’ trained the YOLO9000%* algorithm on detecting breast lesions using the INbreast® and
DDSM datasets*’. After the detection, they compared three different classifiers to classify them into benign and
malignant. The trained YOLO detector achieved F1 scores of 99.28% and 98.02% for DDSM and INbreast data-
sets respectively. Of the three classifiers they compared, the InceptionResNetV?2 classifier achieved the highest
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accuracy at 97.5%. However, the researchers have selectively sampled the DDSM dataset for training and testing,
which has limited the overall understanding of the model’s performance.

In their research, Ghada et al.”® compared YOLO (You Only Look Once) versions 1, 2, and 3 to detect breast
masses using the INbreast dataset. They investigated different input image sizes (448, 608, and 832) and anchor
numbers (6, 9, and 12) specifically for YOLO v3. The best performance, with a mean Average Precision (mAP)
of 77.8 at 0.5 Intersection over Union (IoU), was achieved using an image size of 832 x 832 and 12 anchors
generated through the k-means algorithm.

Hwejin et al.*! use a RetinaNet-based breast mass detection model and evaluate its performance on both pub-
lic and in-house datasets. The model achieved a false positive rate of 0.34 for model confidence as high as 0.95.
The authors describe several clinical application challenges, including addressing mass malignancy determination
and overcoming data shortage issues. The authors emphasize the need for larger training sets and diverse cases
to improve the model’s generalization capabilities.

Ethical approval

Our research was conducted following the ethical principles set forth by the National Ethical Review Committee
(NERB). The Addis Ababa Health Bureau institutional review board Committee approved our study and provided
us with an official letter reference number of AAHB/16591/227. We obtained informed consent from all adult
female patients who underwent breast imaging.

Dataset

In this paper, a dataset for breast-wise abnormality classification was constructed using two primary sources.
The first source is VinDr-mammo*?, which consists of approximately 5000 studies of four-view mammography
exams. This dataset includes breast-level assessment and finding annotations. The second source is a locally
prepared dataset comprising 3123 breast scans obtained from 1028 patients. Lastly we used the Mini-DDSM*?
dataset for the purpose of model evaluation. The Mini-DDSM dataset contains 679 CC and MLO scanned breast
mammography views belonging to 679 unique cancer cases. The dataset also contains 2408 images of 602 unique
patients with normal mammography readings.

To ensure the reliability of the local dataset, annotations were independently performed by two different
radiologists. In cases where minor disputes arose, a jury was involved to resolve them. The dataset encompasses
annotations for seven types of common breast abnormalities typically reported in mammography screening.
These abnormalities include masses, calcification, architectural distortion, lymph nodes, skin thickening, nipple
retraction, and asymmetry Fig. 1. We have not used asymmetry since we should consider all four views, which
will diminish the size of the dataset though the data has an annotation for breast asymmetry. Additionally, the
dataset includes breast-wise BI-RADS level classification.

For training our object detection algorithms to support the decision-making process of the classifier, we
filtered scans that contained annotations for lymph nodes, masses, architectural distortions, calcification (specifi-
cally Birads 3 and above, as it tends to produce false positives), skin thickening, and nipple retraction.
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Figure 1. Dataset distribution.
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Due to the limited availability of annotations for abnormalities in our local dataset, we combined annotations
from the VinDr-mammo dataset, which specifically covered masses with BI-RADS 3 and higher. By merging
these datasets, we generated a suspicious mass dataset comprising 3800 annotations for masses with BI-RADS 3
and above. This focus on the masses is justified as they are the most likely indicators of breast cancer**.

During our examination of the VinDr-mammo Dataset** annotations, we identified certain inconsistencies
compared to our local dataset. Some abnormalities like calcifications and lymph nodes were labeled as normal in
the VinDr-mammo dataset but were identified as abnormalities in our collected dataset. As a result, we decided
to rely solely on the suspicious mass detection model to reinforce the decision-making process for abnormality
classification. Hence, we utilized the abnormality detection model to offer further insight into the model’s deci-
sion (refer to section “Methodology”) and prioritize patient admission.

This exclusive approach was necessary because including the abnormality detection model for determining
abnormality led to a significant number of false positives. The main reason for this issue lies in the differences
in data annotation between the two datasets.

Methodology

All research methods described in this study were performed in strict accordance with the ethical principles set
forth by the National Ethical Review Committee (NERB). The study protocol was approved by the Addis Ababa
Health Bureau institutional review board Committee (Reference Number: AAHB/16591/227). Informed consent
was obtained from all adult female patients who underwent breast imaging, and their confidentiality and privacy
were rigorously maintained throughout the study.

We propose a system that utilizes an ensemble of different YOLO models for object detection, along with
an EfficientNetB3-based classifier (Fig. 3). This system aims to detect breast abnormalities by considering both
CC and MLO views. The first YOLOv5 model is trained specifically to detect suspicious masses from a single
mammography image, while the second YOLOv5 model is designed to detect a wide range of abnormalities
requiring further screening, ranging from BI-RADS2 to BI-RADS 5. Our third model is an EfficientNetB3-based
abnormality classifier, which predicts the probability of abnormality in a breast by simultaneously considering
both the CC and MLO views.

We employ object detection models for two main purposes. Firstly, they help explain the decisions made by
the classifier, providing insights into the reasoning behind its predictions. Additionally, they assist the classifier
in not overlooking any suspicious masses, thereby reducing false positives and improving the overall screening
process. The abnormality detection model is utilized to aid radiologists in decision-making and to prioritize
examinations, particularly when screening a large number of normal cases.

The overall methodology we adopted for this paper can be generalized in Fig. 2. To determine which exami-
nations should proceed for further screening, we follow the steps outlined below:

Step 1: Acquire the CC and MLO views of the breast, either left or right.

Step 2: Perform breast mass object detection on both breast views.

Step 3: Perform object detection of common breast abnormalities on both breast views.

Step 4: Estimate the probability of breast abnormality by considering both views.

Step 5: If the estimated breast-wise abnormality probability exceeds a threshold of 0.5 and the objectness
score for suspicious mass detection is 0.25 or higher, proceed to the next step.

® Step 6: Sort patients based on the decision, with those having detected suspicious masses screened first by the
radiologist, followed by patients identified as abnormal by the classifier, patients with detected abnormalities
by the abnormality detector, and lastly, patients identified as normal by the system.

MLO View

Figure 2. Overall approach.
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Figure 3. Breast-wise abnormality detection architecture.

Breast-wise abnormality classification

To classify breast images as either normal or abnormal, we use an architecture that accepts both CC and MLO
views, passes each view through an EfficientNet-B3 feature extractor separately, and then transforms and con-
catenates the output feature vectors linearly to produce the input feature vector for the classification head.
Our approach utilizes both cranio-caudal (CC) and mediolateral oblique (MLO) views, employing separate
instances of the EfficientNet-B3 feature extractor. By applying linear transformations and concatenating the
resultant feature vectors, we achieve a consistent input representation for the classification head. To ensure
uniformity, we horizontally mirror breast views exhibiting right laterality. Our architecture comprises three key
components: the feature extraction block, the linear transformation block, and the classification head Fig. 3.
Specifically, the feature extraction block leverages two pre-trained EfficientNet-B3 networks, renowned for their
superior accuracy, reduced parameters, and computational efficiency compared to alternative convolutional
neural networks (CNNs) like ResNet and Inception. EfficientNet-B3 adopts a compound scaling approach, scal-
ing depth, width, and resolution simultaneously. With 26 layers and approximately 12.2 million parameters, it is
designed to optimize efficiency while maintaining accuracy. Notably, the architecture of EfficientNet-B3 encom-
passes a stem convolutional layer, a series of repeating blocks integrating depthwise and pointwise convolutions,
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squeeze-and-excitation (SE) blocks, and skip connections. For our framework, we employ the ImageNet weights
for the top CNN blocks of EfficientNet-B3 and fine-tune the weights on the upper layers using our dataset.
Additionally, the linear transformation block, comprising a single linear block, receives the MLO view feature
vectors obtained from the EfficientNet-B3 feature extraction block as input. The primary objective of the linear
transformation block is to learn a linear mapping from the MLO view to the CC view, as expressed in Eq. (1).

T
V:nlo =W VYmilo (1)

where v, is the transformed feature vector v,,j, with learnable parameters w.

The classification head is the concatenation of the feature extractor output for the CC view and the linear
transformation block output of the MLO view. The architecture was trained to optimize a loss function L Eq. (2),
which is formulated from the combination of the cross-entropy loss of the classification head Eq. (3), and cosine
similarity loss of the linear transformation block Eq. (4).

L= Ot[CElass] + ,3[(303(9)1055] (2)
Where,
N
CEioss = —; D_lyilogFi + (1 = i) log(1 — )] 3)
i=1
T, *x
co8(6)pss = 1 M (4)

Ve Vo]

where v; and v, are two non-zero feature vectors of the two breast views. For, 0 < «, 8 < 1 To train the breast-
wise abnormality detection model, we used a total of 26,056 mammography images belonging to 6514 studies.
The datasets are divided into groups of studies, where each unique study contains four mammography images
and two images for each breast laterality. We reserved 20% of the data as a test set for the cross validation. We
performed a 5-fold group cross-validation, where samples are grouped based on their study IDs. We used AUC-
ROC, fl-score, precision, recall, and accuracy metrics for model evaluation. To fortify the robustness of our
prediction models, we meticulously conducted cross-validation with a comprehensive approach. The dataset was
initially partitioned into training and testing sets using a fixed random seed, ensuring the reproducibility of our
results. Subsequently, a rigorous 5-fold cross-validation procedure was employed on the training set, wherein the
entire model development pipeline was iteratively executed during each fold. It is crucial to underscore that at
the culmination of each fold, the model underwent evaluation on the designated test set, which had been care-
fully excluded from any aspect of the model development process. For abnormality detection, we grouped each
study according to their BI-RADS category. BI-RADS is a standardized system used by radiologists to describe
the results of breast imaging tests. The BI-RADS system assigns a category to each breast imaging study, ranging
from 1 (negative) to 6 (known biopsy-proven malignancy) Table 1.

Category 1: Negative No abnormal findings

Category 2: Benign There is a very low probability of cancer.

Category 3: Probably benign There is a slightly increased probability of cancer.
Category 4: Suspicious for malignancy There is a moderate to high probability of cancer.
Category 5: Highly suggestive of malignancy There is a very high probability of cancer.
Category 6: Known biopsy-proven malignancy. Cancer has been confirmed by biopsy.

For the task of abnormality detection, we classified studies with BI-RADS of category 2 and above as ’Abnor-
mal” and studies with BI-RADS category 1 as 'Normal. Overall we trained the architecture on Nvidia Tesla T4
GPU for a maximum of 100 epochs with early stopping. We used the Adam optimizer and we experimented with
various learning rates of 1 x 10751 x 1072,1 x 107>, and 3 x 10~%. We found that a learning rate of 3 x 1074
is the best learning rate in terms of mean classification accuracy.

Category Number of studies
BI-RADS 1 15,773
BI-RADS 2 7039
BI-RADS 3 1574
BI-RADS 4 1304
BI-RADS 5 366

Table 1. BI-RADS distribution of the used dataset.
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Object detection

We trained YOLOvV5 models of various sizes (small, medium, normal, large, and extra large) to detect breast
abnormalities in mammographic images. YOLOVS5 is a state-of-the-art object detection algorithm based on
the You Only Look Once (YOLO) architecture®. Introduced in 2020*, YOLOVS5 is an improved version of its
predecessors, YOLOv4 and YOLOv3.

The YOLOVS5 architecture consists of three main components: a backbone network, a neck network, and a
head network. The backbone network, a convolutional neural network (CNN), extracts features from the input
image. The neck network combines features from different scales, while the head network predicts bounding
boxes and class probabilities for objects in the image. YOLOvV5 employs an anchor-based approach for object
detection, where each anchor box is associated with a specific aspect ratio and scale. The anchor boxes are used
to predict object bounding boxes and class probabilities are determined using a softmax function.

One notable feature of YOLOVS5 is its use of a Siamese network, enabling parallel image processing. This
allows YOLOV5 to maintain high accuracy while processing images faster than its predecessors. YOLOV5 has
demonstrated state-of-the-art performance on various benchmarks, including the COCO dataset®’.

In addition to its object detection capabilities, the YOLOv5 models contribute to the explainability and
interpretability of the classifier system. By detecting and localizing breast abnormalities, the models provide
visual evidence for the classification decisions. This interpretable nature of the system enhances transparency
and allows medical professionals to understand the basis of the classifier’s predictions. Consequently, the object
detection algorithms not only improve the sensitivity of the overall system but also provide insights into the
diagnostic process through explainable results.

To ensure accurate object detection, we ensemble the predictions of the trained models and apply Non-
Maximum Suppression (NMS). Utilizing object detection models with explain-ability/interpret-ability features
enhances the sensitivity and transparency of the overall system, particularly for screening purposes in breast
cancer detection.

We have trained the Yolov5 models for two sets of tasks, Suspicious mass detection and Other Abnormality
detection. We used the suspicious mass detection model to assist the normal abnormal classifier in the abnormal-
ity detection. We also trained the other abnormalities classifier for the detection of abnormalities, not only mass
but also lymph nodes, calcifications, architectural distortions, ductal dilation, and nipple retraction.

Results

Classification model

We performed testing at the end of each fold and we calculated the AUC-ROC and the Confusion matrix. We
evaluated the models on two test sets; Hold out test data from the VinDr-mammo dataset and on the Mini-DDMS
dataset. On the VinDr-mammo dataset, the breast-wise abnormality classifier achieved a mean cross-validation
precision, recall, f1 score, and AUC of 0.91, 0.82, 0.87 and 0.83 respectively Table 2. On the Mini-DDMS dataset,
the model achieved a mean precision, recall, f1 score, and AUC of 0.82, 0.82,0.82, and 0.82 respectively. Confu-
sion matrix for each 5-fold validation is given in Figs. 4, 5.

Breast-wise Ensemble
Precision Recall F1 Precision Recall F1
Mean 091 0.82 0.87 0.71 0.89 0.79

Table 2. Performance comparison of the breast-wise abnormality detection network and ensemble on five-
fold cross-validation on VinDr-mammo dataset. Significant value is in bold.
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Figure 4. Confusion matrix of the 5-fold cross validation results.
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Figure 5. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values for a 5-fold
cross-validation of the breast-wise abnormality classifier.

Object detection models

We trained and evaluated the suspicious mass detection models and the other abnormality detection models
separately. The addition of VinDr-mammo’s suspicious mass annotations significantly improved mass detection
performance, as demonstrated in Figs. 6 and 7. When trained solely on the local dataset, the object detection
algorithm achieved an mAP of 0.57. However, with the inclusion of VinDr-mammo’s annotations, the mAP
improved to 0.67.

The proposed suspicious mass detection model demonstrated similar performance on the Inbreast dataset.
The incorporation of VinDr-mammo’s mass annotations enhanced the robustness of the suspicious mass detec-
tion, as evidenced by its performance on the VinDr-mammo dataset.

It is important to note that the performance of the object detection models decreased for most classes, except
for mass and lymph nodes. This decline in performance can be attributed to the low representation of these classes
in the training dataset. Although we had sufficient representation for calcifications in the dataset, the detection
performance was poor due to the small size of these annotations, which makes them more challenging to train
and detect using YOLO models.

In the confusion matrix plots, it is important to note that there are no true background predictions because
the model only outputs predictions for the mass class and not for the background class. Therefore, it is more
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Figure 6. Confusion matrix: Yolo models.
appropriate to consider only the outputs of the positive class when evaluating the model’s performance. In such
cases, average precision is a suitable metric to assess performance in most object detection algorithms.

The abnormality classifier trained on the local dataset performs well in detecting lymph nodes. This is likely
because lymph nodes are well-represented in the dataset and are relatively easy to detect. The increased rep-
resentation of lymph nodes in the training data allows the model to learn more effectively and achieve better
results for this class.

Figure 6 shows that the majority of mislabeling occurs between the mass and lymph node classes. This is
consistent with the challenges that radiologists face in distinguishing between these two classes in some cases. The
similarities in appearance and characteristics between masses and lymph nodes can lead to mis-classifications.

The performance of the lymph node class, with an mAP of 0.74, and the observation that increased represen-
tation improves performance, further support the importance of having a sufficient number of samples for each
class in the dataset. The more representative instances there are during training, the better the model’s ability to
accurately detect and classify different abnormalities.

Ensemble model

For mass screening of breast cancer cases, the most important factor we need to track is the sensitivity of the

network, which implies the percentage of actual true cancer cases detected. We can improve the sensitivity(recall)

of the network by adopting the abnormality detection presented in Fig. 2, where we ensembled the predictions

of the YOLO mass detection network and the breast-wise abnormality network. To evaluate the ensembled

network we selected a subset of the VinDr-mammo test set we used for evaluating the breast-wise abnormality
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Figure 7. PR curve: Yolo models.

detection network but excluded studies with no corresponding bounding box information. As we can see from
Table 2, ensembling the results of the two networks, we can improve the sensitivity by a good margin. This is an
important factor in designing a mass screening tool, where we need the highest possible detection rate of actual
suspicious cases.

Figure 8 shows that the suspicious mass detection algorithm is effective in identifying the type and location of
abnormalities. This enhances the interpretability of the classifier model’s decision, making it easier for radiologists
to understand. Additionally, using the detection of suspicious masses as an indicator of abnormality increases
the system’s sensitivity. Figure 9 shows that the object detection model can still identify masses, even if the clas-
sifier misses the abnormality. This further increases the system’s sensitivity in detecting potential abnormalities.
However, it is important to note that this increased sensitivity can also introduce false positives, as shown in
Fig. 10. This highlights the possibility of the model incorrectly identifying certain instances as masses, resulting
in false positive predictions. Nonetheless, the all-abnormality detection model is very good at distinguishing
between masses and lymph nodes, and it correctly classified the instance in Fig. 10 as a lymph node. Hence, the
radiologist should check all abnormality detection model’s outputs for further investigation before he makes
his final decision.

These observations highlight the trade-oft between sensitivity and specificity in the system. While increased
sensitivity increases the chances of detecting abnormalities, it can also lead to false positives. Achieving the right
balance between sensitivity and specificity is crucial for optimizing the performance of the system in clinical
applications.

We have also conducted real-world testing to validate the performance of the model by involving radiologists.
In total, we conducted tests on 360 patients. The overall accuracy of the model in identifying abnormalities was
83.19%. Moreover, the suspicious mass detection model, based on YOLOVS5, assisted the abnormality classifier
in detecting an additional 85 abnormalities that would have otherwise been missed. Figure 11 demonstrates
the sustained testing performance of the suspicious mass detection model, successfully detecting 82% of the
masses. However, there were approximately 82 false positives. The best performance was observed in lymph
node detection, achieving an accuracy of 89% and correctly identifying 90% of them. On the other hand, the
model performed poorly in detecting the architectural distortion abnormality, missing all instances. This can
be attributed to insufficient representation in the training dataset and the inherent difficulty of detecting such
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(a) Correct mass detection - CC view (b) Correct mass detection - MLO
view

Figure 8. Object detection model supporting correct classifier decisions for mass detection.

abnormalities. Regarding calcification, there were no missed or incorrectly annotated cases, as the radiologists
only considered calcifications with BI-RADS 3 or above. The performance of other classes was generally very
good, but their infrequent occurrence may have contributed to their high performance.

Conclusion

This paper introduces a method for the detection of breast abnormality for mass screening programs using
mammography. Our approach utilizes an ensemble of networks, including an EfficientNet-based breast-wise
abnormality detection network that predicts the probability of breast abnormality using CC and MLO views,
along with a YOLO suspicious mass detection network. By combining these networks, our method aims to
enhance the robustness and sensitivity of the mass screening process, particularly for suspected cancer cases,
while also improving the explainability of the Al model.

To evaluate the effectiveness of our method, we conducted experiments on the VinDr-mammo dataset using a
5-fold cross-validation technique. We assessed the performance using precision (specificity), recall (sensitivity),
and f1-score metrics. The results demonstrate that our ensemble approach significantly improves sensitivity by
8%. The mean cross-validation precision, recall, and f1-score were found to be 0.71, 0.89, and 0.79, respectively.

Furthermore, the pilot testing results indicate a consistent performance of our approach, similar to what
was observed in the VinDr-mammo dataset. However, there are some challenges with abnormalities that have a
smaller representation in the training set. To address this, we recommend enhancing the system’s performance
by incorporating more data into the training set and improving the classifier model by including different types
of datasets to increase its robustness. Additionally, it is advisable to separate the detection of calcifications from
other abnormality detection, as their size warrants separate treatment.
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(a) Missed by the classifier - CC view (b) Missed by the classifier - MLO

view

Figure 9. Object detection model supporting classifier models to avoid missing masses.
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Figure 10. A lymph node was incorrectly labeled as suspicious mass.

350

300

250

Counts

150

100

50

Figure 11. A pilot test result.

Detection Performance at Pilot Testing

348.0
Catagory
Correct
Wrong
Missed
2180
82.0
48.0 ; 48.0
38.0 1o 29.0
- 18.0
00 00 5.0 00 0030 00 0.0 1.0 0.0 0.0 10
. jon de S on fon . ] LA ON
s g M et DI ppemenet T o
o
Abnormality Type

Data availability

The local data that support the findings of this study are available from the Ethiopian Artificial Intelligence
Institute. Still, restrictions apply to the availability of these data, which were used under license for the current
study, and so are not publicly available. Data are however available from the authors upon reasonable request
and with permission of the Ethiopian Artificial Intelligence Institute. Hence, anyone who wants to have access
to the data can contact the corresponding author or directly via the institute’s email (mailto:contact@aii.et).
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