
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3839  | https://doi.org/10.1038/s41598-023-50797-8

www.nature.com/scientificreports

Dual view deep learning 
for enhanced breast cancer 
screening using mammography
Samuel Rahimeto Kebede 1,3,7*, Fraol Gelana Waldamichael 1,7, Taye Girma Debelee 1,2, 
Muluberhan Aleme 6, Wubalem Bedane 4, Bethelhem Mezgebu 4 & Zelalem Chimdesa Merga 5

Breast cancer has the highest incidence rate among women in Ethiopia compared to other types of 
cancer. Unfortunately, many cases are detected at a stage where a cure is delayed or not possible. 
To address this issue, mammography-based screening is widely accepted as an effective technique 
for early detection. However, the interpretation of mammography images requires experienced 
radiologists in breast imaging, a resource that is limited in Ethiopia. In this research, we have 
developed a model to assist radiologists in mass screening for breast abnormalities and prioritizing 
patients. Our approach combines an ensemble of EfficientNet-based classifiers with YOLOv5, a 
suspicious mass detection method, to identify abnormalities. The inclusion of YOLOv5 detection is 
crucial in providing explanations for classifier predictions and improving sensitivity, particularly when 
the classifier fails to detect abnormalities. To further enhance the screening process, we have also 
incorporated an abnormality detection model. The classifier model achieves an F1-score of 0.87 and a 
sensitivity of 0.82. With the addition of suspicious mass detection, sensitivity increases to 0.89, albeit 
at the expense of a slightly lower F1-score of 0.79.

Breast cancer has the highest incidence rate of 40.6 per 100,000 population among all cancers in Ethiopia in 
 20201. Due to the lack of therapy and late diagnosis, the mortality rates from breast cancer in developing coun-
tries like Ethiopia are much  higher2. In most of the developed world, more than 70% of breast cancer patients 
are diagnosed when the cancer is at its earlier stages I and II. However, only 20-50% of patients in the majority 
of low- and middle-income countries were diagnosed at early  stages3. A study conducted in northern  Ethiopia4 
shows that about 85% of the cases diagnosed in Ethiopia were at an advanced stage III and IV.

A study cited  in5 found that the 5-year survival rate for breast cancer detected at stage I, II, III, or IV is 98%, 
93%, 63%, and 31%, respectively. This suggests that early detection is critical for improving the chances of sur-
vival. For early detection, women (especially those whose age is greater than 40) must perform breast self-exams, 
regular clinical breast exams, and  mammograms6. Screening through mammography is one of the most effective 
and affordable methods for early detection of breast  mass7,8.

Radiologists meticulously analyze mammography images and document their observations on any detected 
abnormalities, utilizing the Breast Imaging Reporting and Data System (BI-RADS) due to its user-friendly nature 
and provision of management  guidance9. Nevertheless, to cultivate a screening culture among women, mass 
screening needs to be promoted; however, the limited number of radiologists makes this approach impractical in 
developing countries like Ethiopia. Therefore, the development of an AI model with high sensitivity in detecting 
breast abnormalities would assist radiologists in prioritizing cases and improving diagnostic accuracy. This paper 
presents an ensemble of classification and object detection algorithms aimed at identifying breast abnormalities, 
emphasizing the importance of early-stage detection. Currently, most cases are diagnosed at an advanced stage, 
underscoring the life-saving potential of early detection and making it a paramount responsibility for radiologists.

Machine learning and deep learning methods have found extensive applications in various domains, includ-
ing disease detection and  classification10–17. In the context of breast cancer detection and classification, classical 
machine learning methods have been commonly  employed18,19. However, these classical methods require robust 
feature engineering to extract relevant features from a smaller dataset. Nonetheless, manual feature extraction 
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techniques often fail to capture all the necessary features, resulting in the inclusion of irrelevant ones. In contrast, 
convolutional neural network (CNN) models have shown promising performance for breast cancer classifica-
tion by automatically generating high-quality feature maps when efficiently  trained8. These CNN-based models 
demonstrate encouraging results in distinguishing normal and abnormal  mammograms20,21. Nevertheless, full 
image classification alone may be challenging to explain to radiologists and might not provide information on 
the precise location of abnormalities. To address these limitations, machine learning-based breast cancer detec-
tion and classification methods offer improved explanations and increased trustworthiness. Various techniques 
have been proposed for detecting abnormal regions in mammograms, including both classical  methods18 and 
deep learning  methods22–24.

One class of object detection algorithms consists of separate region proposal and classifier networks, such as 
Fast R-CNN25 and Faster R-CNN26. However, these networks tend to be slower for real-time applications. Another 
class of algorithms combines region detection and classification in a single process. Notable examples include 
Single Shot MultiBox Detector (SSD)27 and You Only Look Once (YOLO)28. While the R-CNN family achieves 
high accuracy in detection and classification, recent advancements in the YOLO method have demonstrated 
superior results in accuracy and speed. However, most object detection algorithms suffer from low sensitivity and 
may overlook certain objects. This is primarily attributed to being trained on limited datasets that fail to cover all 
possible scenarios. Consequently, these models struggle to generalize effectively to new images. A recent study 
by Redmon et al.29 investigated the issue of low sensitivity in object detection algorithms. The authors found that 
these algorithms were prone to missing small objects, partially occluded objects, and objects within cluttered 
scenes. The paper proposed several methods to enhance the sensitivity of object detection algorithms, including 
utilizing larger datasets, employing more powerful models, and applying data augmentation techniques. Despite 
the progress made, further research is necessary to improve the sensitivity of object detection algorithms.

Therefore, for the application of the developed AI model in the mass screening of breast cancer using mam-
mography, we propose an ensemble approach that combines the accuracy of an abnormality classifier model with 
the explainability of our object detection algorithm. By leveraging both models, we aim to determine the presence 
of abnormalities in mammograms. The abnormality classifier, trained on a large dataset (as it is less expensive to 
build compared to the object detection dataset), determines the presence or absence of abnormalities, while the 
YOLOv5-based detection algorithm locates the abnormality regions within the mammogram.

Related works
Samuel et al.18 used classical machine learning methods for the presence and localization of breast mass. They 
used pre-processing steps for removing pectoral muscle and other unwanted  parts30 and used the k-means 
clustering algorithm to extract a region of interest (ROI), and used classical feature extraction to classify the 
ROI using support vector machines (SVM). They achieved relatively good performance, but it is limited to mass 
detection.

Yu et al.31 used a modified version of VGG16, which concatenates the feature from each convolutional block 
using the global average pooling method onto the last flatten layer, to classify patches generated after image pro-
cessing steps from the MIAS  dataset32. The pre-processing step includes a median filter for blurring the original 
image followed by the contrast limited adaptive histogram equalization (CLAHE)33. They achieved an F1 score 
of 0.87 using their proposed model. Although they explain how they generated random ROIs for the negative 
class, they didn’t mention any method for the positive class.

Vaira et al.22 use a VGG-like CNN network to classify ROI generated through a region-growing algorithm. 
Before applying the region-growing algorithm, labels and pectoral muscles (present in the MLO view) were 
removed using top-hat morphological operation and thresholding techniques. They still need expert annotation 
to determine the seed point for the region-growing algorithm to segment the ROI.

Alloqmanin et al.34 proposes a pre-trained MobileNetV2 model for feature extraction from and a single-layer 
perceptron to classify mammography images as normal or abnormal. The framework is evaluated on two pub-
lic datasets: INbreast and MIAS, and achieves a high AUC-ROC score of 89.79% on the INbreast dataset. The 
paper also demonstrates the effect of data pre-processing steps on the results and compares the framework with 
recent and relevant works. The paper claims that the proposed framework overcomes the limitations of previous 
works and contributes to the development of scientific research in the field of anomaly detection techniques for 
breast cancer.

Shen et al.35 proposed a lightweight deep learning anomaly detection framework for breast cancer diagnosis. 
The proposed framework uses a pre-trained MobileNetV2 feature extractor and a single-layer perceptron to 
classify mammography images as benign or malignant. The authors evaluated the framework on two datasets; 
INbreast and MIAS. To address the problem of data imbalance present in the dataset, they employed Gaussian 
noise to generate fake data samples.

Lilei et al.36 used template matching to extract a region of interest from mammography images and a CNN 
classifier to classify ROIs into a mass or not. They used a pre-processing step of erosion with 7× 7 kernel size 
followed by dilation with 50× 50 kernel size. They prepared a breast mass template and did a template matching 
across all image regions and selected regions with the highest match. Then, a CNN model was trained and used 
to extract regions with mass. Finally, they used particle swarm optimization (PSO) to refine the bounding box. 
Their detection algorithm achieved a fair F1 score of 66.31 using the DDSM dataset.

Mugahed et al.37 trained the  YOLO900038 algorithm on detecting breast lesions using the  INbreast39 and 
DDSM  datasets40. After the detection, they compared three different classifiers to classify them into benign and 
malignant. The trained YOLO detector achieved F1 scores of 99.28% and 98.02% for DDSM and INbreast data-
sets respectively. Of the three classifiers they compared, the InceptionResNetV2 classifier achieved the highest 
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accuracy at 97.5%. However, the researchers have selectively sampled the DDSM dataset for training and testing, 
which has limited the overall understanding of the model’s performance.

In their research, Ghada et al.23 compared YOLO (You Only Look Once) versions 1, 2, and 3 to detect breast 
masses using the INbreast dataset. They investigated different input image sizes (448, 608, and 832) and anchor 
numbers (6, 9, and 12) specifically for YOLO v3. The best performance, with a mean Average Precision (mAP) 
of 77.8 at 0.5 Intersection over Union (IoU), was achieved using an image size of 832× 832 and 12 anchors 
generated through the k-means algorithm.

Hwejin et al.41 use a RetinaNet-based breast mass detection model and evaluate its performance on both pub-
lic and in-house datasets. The model achieved a false positive rate of 0.34 for model confidence as high as 0.95. 
The authors describe several clinical application challenges, including addressing mass malignancy determination 
and overcoming data shortage issues. The authors emphasize the need for larger training sets and diverse cases 
to improve the model’s generalization capabilities.

Ethical approval
Our research was conducted following the ethical principles set forth by the National Ethical Review Committee 
(NERB). The Addis Ababa Health Bureau institutional review board Committee approved our study and provided 
us with an official letter reference number of AAHB/16591/227. We obtained informed consent from all adult 
female patients who underwent breast imaging.

Dataset
In this paper, a dataset for breast-wise abnormality classification was constructed using two primary sources. 
The first source is VinDr-mammo42, which consists of approximately 5000 studies of four-view mammography 
exams. This dataset includes breast-level assessment and finding annotations. The second source is a locally 
prepared dataset comprising 3123 breast scans obtained from 1028 patients. Lastly we used the Mini-DDSM43 
dataset for the purpose of model evaluation. The Mini-DDSM dataset contains 679 CC and MLO scanned breast 
mammography views belonging to 679 unique cancer cases. The dataset also contains 2408 images of 602 unique 
patients with normal mammography readings.

To ensure the reliability of the local dataset, annotations were independently performed by two different 
radiologists. In cases where minor disputes arose, a jury was involved to resolve them. The dataset encompasses 
annotations for seven types of common breast abnormalities typically reported in mammography screening. 
These abnormalities include masses, calcification, architectural distortion, lymph nodes, skin thickening, nipple 
retraction, and asymmetry Fig. 1. We have not used asymmetry since we should consider all four views, which 
will diminish the size of the dataset though the data has an annotation for breast asymmetry. Additionally, the 
dataset includes breast-wise BI-RADS level classification.

For training our object detection algorithms to support the decision-making process of the classifier, we 
filtered scans that contained annotations for lymph nodes, masses, architectural distortions, calcification (specifi-
cally Birads 3 and above, as it tends to produce false positives), skin thickening, and nipple retraction.

Figure 1.  Dataset distribution.
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Due to the limited availability of annotations for abnormalities in our local dataset, we combined annotations 
from the VinDr-mammo dataset, which specifically covered masses with BI-RADS 3 and higher. By merging 
these datasets, we generated a suspicious mass dataset comprising 3800 annotations for masses with BI-RADS 3 
and above. This focus on the masses is justified as they are the most likely indicators of breast  cancer44.

During our examination of the VinDr-mammo  Dataset42 annotations, we identified certain inconsistencies 
compared to our local dataset. Some abnormalities like calcifications and lymph nodes were labeled as normal in 
the VinDr-mammo dataset but were identified as abnormalities in our collected dataset. As a result, we decided 
to rely solely on the suspicious mass detection model to reinforce the decision-making process for abnormality 
classification. Hence, we utilized the abnormality detection model to offer further insight into the model’s deci-
sion (refer to section “Methodology”) and prioritize patient admission.

This exclusive approach was necessary because including the abnormality detection model for determining 
abnormality led to a significant number of false positives. The main reason for this issue lies in the differences 
in data annotation between the two datasets.

Methodology
All research methods described in this study were performed in strict accordance with the ethical principles set 
forth by the National Ethical Review Committee (NERB). The study protocol was approved by the Addis Ababa 
Health Bureau institutional review board Committee (Reference Number: AAHB/16591/227). Informed consent 
was obtained from all adult female patients who underwent breast imaging, and their confidentiality and privacy 
were rigorously maintained throughout the study.

We propose a system that utilizes an ensemble of different YOLO models for object detection, along with 
an EfficientNetB3-based classifier (Fig. 3). This system aims to detect breast abnormalities by considering both 
CC and MLO views. The first YOLOv5 model is trained specifically to detect suspicious masses from a single 
mammography image, while the second YOLOv5 model is designed to detect a wide range of abnormalities 
requiring further screening, ranging from BI-RADS2 to BI-RADS 5. Our third model is an EfficientNetB3-based 
abnormality classifier, which predicts the probability of abnormality in a breast by simultaneously considering 
both the CC and MLO views.

We employ object detection models for two main purposes. Firstly, they help explain the decisions made by 
the classifier, providing insights into the reasoning behind its predictions. Additionally, they assist the classifier 
in not overlooking any suspicious masses, thereby reducing false positives and improving the overall screening 
process. The abnormality detection model is utilized to aid radiologists in decision-making and to prioritize 
examinations, particularly when screening a large number of normal cases.

The overall methodology we adopted for this paper can be generalized in Fig. 2. To determine which exami-
nations should proceed for further screening, we follow the steps outlined below:

• Step 1: Acquire the CC and MLO views of the breast, either left or right.
• Step 2: Perform breast mass object detection on both breast views.
• Step 3: Perform object detection of common breast abnormalities on both breast views.
• Step 4: Estimate the probability of breast abnormality by considering both views.
• Step 5: If the estimated breast-wise abnormality probability exceeds a threshold of 0.5 and the objectness 

score for suspicious mass detection is 0.25 or higher, proceed to the next step.
• Step 6: Sort patients based on the decision, with those having detected suspicious masses screened first by the 

radiologist, followed by patients identified as abnormal by the classifier, patients with detected abnormalities 
by the abnormality detector, and lastly, patients identified as normal by the system.

Figure 2.  Overall approach.
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Breast-wise abnormality classification
To classify breast images as either normal or abnormal, we use an architecture that accepts both CC and MLO 
views, passes each view through an EfficientNet-B3 feature extractor separately, and then transforms and con-
catenates the output feature vectors linearly to produce the input feature vector for the classification head. 
Our approach utilizes both cranio-caudal (CC) and mediolateral oblique (MLO) views, employing separate 
instances of the EfficientNet-B3 feature extractor. By applying linear transformations and concatenating the 
resultant feature vectors, we achieve a consistent input representation for the classification head. To ensure 
uniformity, we horizontally mirror breast views exhibiting right laterality. Our architecture comprises three key 
components: the feature extraction block, the linear transformation block, and the classification head Fig. 3. 
Specifically, the feature extraction block leverages two pre-trained EfficientNet-B3 networks, renowned for their 
superior accuracy, reduced parameters, and computational efficiency compared to alternative convolutional 
neural networks (CNNs) like ResNet and Inception. EfficientNet-B3 adopts a compound scaling approach, scal-
ing depth, width, and resolution simultaneously. With 26 layers and approximately 12.2 million parameters, it is 
designed to optimize efficiency while maintaining accuracy. Notably, the architecture of EfficientNet-B3 encom-
passes a stem convolutional layer, a series of repeating blocks integrating depthwise and pointwise convolutions, 

EfficientNetB3 EfficientNetB3

vcc

GA Pool

vmlo

GA Pool

*vmlo

Linear

MLP

Abnormality Probablity

Sigmoid

x-CC x-MLO

Classification Head

Linear Transformation Block

Feature Extractor Block

Figure 3.  Breast-wise abnormality detection architecture.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3839  | https://doi.org/10.1038/s41598-023-50797-8

www.nature.com/scientificreports/

squeeze-and-excitation (SE) blocks, and skip connections. For our framework, we employ the ImageNet weights 
for the top CNN blocks of EfficientNet-B3 and fine-tune the weights on the upper layers using our dataset. 
Additionally, the linear transformation block, comprising a single linear block, receives the MLO view feature 
vectors obtained from the EfficientNet-B3 feature extraction block as input. The primary objective of the linear 
transformation block is to learn a linear mapping from the MLO view to the CC view, as expressed in Eq. (1).

where v∗mlo is the transformed feature vector vmlo with learnable parameters w.
The classification head is the concatenation of the feature extractor output for the CC view and the linear 

transformation block output of the MLO view. The architecture was trained to optimize a loss function L Eq. (2), 
which is formulated from the combination of the cross-entropy loss of the classification head Eq. (3), and cosine 
similarity loss of the linear transformation block Eq. (4).

Where,

where v1 and v2 are two non-zero feature vectors of the two breast views. For, 0 ≤ α,β ≤ 1 To train the breast-
wise abnormality detection model, we used a total of 26,056 mammography images belonging to 6514 studies. 
The datasets are divided into groups of studies, where each unique study contains four mammography images 
and two images for each breast laterality. We reserved 20% of the data as a test set for the cross validation. We 
performed a 5-fold group cross-validation, where samples are grouped based on their study IDs. We used AUC-
ROC, f1-score, precision, recall, and accuracy metrics for model evaluation. To fortify the robustness of our 
prediction models, we meticulously conducted cross-validation with a comprehensive approach. The dataset was 
initially partitioned into training and testing sets using a fixed random seed, ensuring the reproducibility of our 
results. Subsequently, a rigorous 5-fold cross-validation procedure was employed on the training set, wherein the 
entire model development pipeline was iteratively executed during each fold. It is crucial to underscore that at 
the culmination of each fold, the model underwent evaluation on the designated test set, which had been care-
fully excluded from any aspect of the model development process. For abnormality detection, we grouped each 
study according to their BI-RADS category. BI-RADS is a standardized system used by radiologists to describe 
the results of breast imaging tests. The BI-RADS system assigns a category to each breast imaging study, ranging 
from 1 (negative) to 6 (known biopsy-proven malignancy) Table 1.

• Category 1: Negative No abnormal findings
• Category 2: Benign There is a very low probability of cancer.
• Category 3: Probably benign There is a slightly increased probability of cancer.
• Category 4: Suspicious for malignancy There is a moderate to high probability of cancer.
• Category 5: Highly suggestive of malignancy There is a very high probability of cancer.
• Category 6: Known biopsy-proven malignancy. Cancer has been confirmed by biopsy.

For the task of abnormality detection, we classified studies with BI-RADS of category 2 and above as ’Abnor-
mal’ and studies with BI-RADS category 1 as ’Normal’. Overall we trained the architecture on Nvidia Tesla T4 
GPU for a maximum of 100 epochs with early stopping. We used the Adam optimizer and we experimented with 
various learning rates of 1× 10−1 , 1× 10−2 , 1× 10−3 , and 3× 10−4 . We found that a learning rate of 3× 10−4 
is the best learning rate in terms of mean classification accuracy.

(1)v∗mlo = wTvmlo

(2)L = α[CEloss] + β[cos(θ)loss]

(3)CEloss = −
1

N

N∑

i=1

[yi log ȳi + (1− yi) log(1− ȳi)]

(4)cos(θ)loss = 1−
vTccv

∗
mlo

||vcc||||v
∗
mlo||

Table 1.  BI-RADS distribution of the used dataset.

Category Number of studies

BI-RADS 1 15,773

BI-RADS 2 7039

BI-RADS 3 1574

BI-RADS 4 1304

BI-RADS 5 366
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Object detection
We trained YOLOv5 models of various sizes (small, medium, normal, large, and extra large) to detect breast 
abnormalities in mammographic images. YOLOv5 is a state-of-the-art object detection algorithm based on 
the You Only Look Once (YOLO)  architecture45. Introduced in  202046, YOLOv5 is an improved version of its 
predecessors, YOLOv4 and YOLOv3.

The YOLOv5 architecture consists of three main components: a backbone network, a neck network, and a 
head network. The backbone network, a convolutional neural network (CNN), extracts features from the input 
image. The neck network combines features from different scales, while the head network predicts bounding 
boxes and class probabilities for objects in the image. YOLOv5 employs an anchor-based approach for object 
detection, where each anchor box is associated with a specific aspect ratio and scale. The anchor boxes are used 
to predict object bounding boxes and class probabilities are determined using a softmax function.

One notable feature of YOLOv5 is its use of a Siamese network, enabling parallel image processing. This 
allows YOLOv5 to maintain high accuracy while processing images faster than its predecessors. YOLOv5 has 
demonstrated state-of-the-art performance on various benchmarks, including the COCO  dataset47.

In addition to its object detection capabilities, the YOLOv5 models contribute to the explainability and 
interpretability of the classifier system. By detecting and localizing breast abnormalities, the models provide 
visual evidence for the classification decisions. This interpretable nature of the system enhances transparency 
and allows medical professionals to understand the basis of the classifier’s predictions. Consequently, the object 
detection algorithms not only improve the sensitivity of the overall system but also provide insights into the 
diagnostic process through explainable results.

To ensure accurate object detection, we ensemble the predictions of the trained models and apply Non-
Maximum Suppression (NMS). Utilizing object detection models with explain-ability/interpret-ability features 
enhances the sensitivity and transparency of the overall system, particularly for screening purposes in breast 
cancer detection.

We have trained the Yolov5 models for two sets of tasks, Suspicious mass detection and Other Abnormality 
detection. We used the suspicious mass detection model to assist the normal abnormal classifier in the abnormal-
ity detection. We also trained the other abnormalities classifier for the detection of abnormalities, not only mass 
but also lymph nodes, calcifications, architectural distortions, ductal dilation, and nipple retraction.

Results
Classification model
We performed testing at the end of each fold and we calculated the AUC-ROC and the Confusion matrix. We 
evaluated the models on two test sets; Hold out test data from the VinDr-mammo dataset and on the Mini-DDMS 
dataset. On the VinDr-mammo dataset, the breast-wise abnormality classifier achieved a mean cross-validation 
precision, recall, f1 score, and AUC of 0.91, 0.82, 0.87 and 0.83 respectively Table 2. On the Mini-DDMS dataset, 
the model achieved a mean precision, recall, f1 score, and AUC of 0.82, 0.82,0.82, and 0.82 respectively. Confu-
sion matrix for each 5-fold validation is given in Figs. 4, 5.

Table 2.  Performance comparison of the breast-wise abnormality detection network and ensemble on five-
fold cross-validation on VinDr-mammo dataset.  Significant value is in bold. 

Breast-wise Ensemble

Precision Recall F1 Precision Recall F1

Mean 0.91 0.82 0.87 0.71 0.89 0.79

Figure 4.  Confusion matrix of the 5-fold cross validation results.
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Object detection models
We trained and evaluated the suspicious mass detection models and the other abnormality detection models 
separately. The addition of VinDr-mammo’s suspicious mass annotations significantly improved mass detection 
performance, as demonstrated in Figs. 6 and 7. When trained solely on the local dataset, the object detection 
algorithm achieved an mAP of 0.57. However, with the inclusion of VinDr-mammo’s annotations, the mAP 
improved to 0.67.

The proposed suspicious mass detection model demonstrated similar performance on the Inbreast dataset. 
The incorporation of VinDr-mammo’s mass annotations enhanced the robustness of the suspicious mass detec-
tion, as evidenced by its performance on the VinDr-mammo dataset.

It is important to note that the performance of the object detection models decreased for most classes, except 
for mass and lymph nodes. This decline in performance can be attributed to the low representation of these classes 
in the training dataset. Although we had sufficient representation for calcifications in the dataset, the detection 
performance was poor due to the small size of these annotations, which makes them more challenging to train 
and detect using YOLO models.

In the confusion matrix plots, it is important to note that there are no true background predictions because 
the model only outputs predictions for the mass class and not for the background class. Therefore, it is more 

Figure 5.  Receiver operating characteristic (ROC) curves and area under the curve (AUC) values for a 5-fold 
cross-validation of the breast-wise abnormality classifier.
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appropriate to consider only the outputs of the positive class when evaluating the model’s performance. In such 
cases, average precision is a suitable metric to assess performance in most object detection algorithms.

The abnormality classifier trained on the local dataset performs well in detecting lymph nodes. This is likely 
because lymph nodes are well-represented in the dataset and are relatively easy to detect. The increased rep-
resentation of lymph nodes in the training data allows the model to learn more effectively and achieve better 
results for this class.

Figure 6 shows that the majority of mislabeling occurs between the mass and lymph node classes. This is 
consistent with the challenges that radiologists face in distinguishing between these two classes in some cases. The 
similarities in appearance and characteristics between masses and lymph nodes can lead to mis-classifications.

The performance of the lymph node class, with an mAP of 0.74, and the observation that increased represen-
tation improves performance, further support the importance of having a sufficient number of samples for each 
class in the dataset. The more representative instances there are during training, the better the model’s ability to 
accurately detect and classify different abnormalities.

Ensemble model
For mass screening of breast cancer cases, the most important factor we need to track is the sensitivity of the 
network, which implies the percentage of actual true cancer cases detected. We can improve the sensitivity(recall) 
of the network by adopting the abnormality detection presented in Fig. 2, where we ensembled the predictions 
of the YOLO mass detection network and the breast-wise abnormality network. To evaluate the ensembled 
network we selected a subset of the VinDr-mammo test set we used for evaluating the breast-wise abnormality 

Figure 6.  Confusion matrix: Yolo models.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3839  | https://doi.org/10.1038/s41598-023-50797-8

www.nature.com/scientificreports/

detection network but excluded studies with no corresponding bounding box information. As we can see from 
Table 2, ensembling the results of the two networks, we can improve the sensitivity by a good margin. This is an 
important factor in designing a mass screening tool, where we need the highest possible detection rate of actual 
suspicious cases.

Figure 8 shows that the suspicious mass detection algorithm is effective in identifying the type and location of 
abnormalities. This enhances the interpretability of the classifier model’s decision, making it easier for radiologists 
to understand. Additionally, using the detection of suspicious masses as an indicator of abnormality increases 
the system’s sensitivity. Figure 9 shows that the object detection model can still identify masses, even if the clas-
sifier misses the abnormality. This further increases the system’s sensitivity in detecting potential abnormalities. 
However, it is important to note that this increased sensitivity can also introduce false positives, as shown in 
Fig. 10. This highlights the possibility of the model incorrectly identifying certain instances as masses, resulting 
in false positive predictions. Nonetheless, the all-abnormality detection model is very good at distinguishing 
between masses and lymph nodes, and it correctly classified the instance in Fig. 10 as a lymph node. Hence, the 
radiologist should check all abnormality detection model’s outputs for further investigation before he makes 
his final decision.

These observations highlight the trade-off between sensitivity and specificity in the system. While increased 
sensitivity increases the chances of detecting abnormalities, it can also lead to false positives. Achieving the right 
balance between sensitivity and specificity is crucial for optimizing the performance of the system in clinical 
applications.

We have also conducted real-world testing to validate the performance of the model by involving radiologists. 
In total, we conducted tests on 360 patients. The overall accuracy of the model in identifying abnormalities was 
83.19%. Moreover, the suspicious mass detection model, based on YOLOv5, assisted the abnormality classifier 
in detecting an additional 85 abnormalities that would have otherwise been missed. Figure 11 demonstrates 
the sustained testing performance of the suspicious mass detection model, successfully detecting 82% of the 
masses. However, there were approximately 82 false positives. The best performance was observed in lymph 
node detection, achieving an accuracy of 89% and correctly identifying 90% of them. On the other hand, the 
model performed poorly in detecting the architectural distortion abnormality, missing all instances. This can 
be attributed to insufficient representation in the training dataset and the inherent difficulty of detecting such 

Figure 7.  PR curve: Yolo models.
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abnormalities. Regarding calcification, there were no missed or incorrectly annotated cases, as the radiologists 
only considered calcifications with BI-RADS 3 or above. The performance of other classes was generally very 
good, but their infrequent occurrence may have contributed to their high performance.

Conclusion
This paper introduces a method for the detection of breast abnormality for mass screening programs using 
mammography. Our approach utilizes an ensemble of networks, including an EfficientNet-based breast-wise 
abnormality detection network that predicts the probability of breast abnormality using CC and MLO views, 
along with a YOLO suspicious mass detection network. By combining these networks, our method aims to 
enhance the robustness and sensitivity of the mass screening process, particularly for suspected cancer cases, 
while also improving the explainability of the AI model.

To evaluate the effectiveness of our method, we conducted experiments on the VinDr-mammo dataset using a 
5-fold cross-validation technique. We assessed the performance using precision (specificity), recall (sensitivity), 
and f1-score metrics. The results demonstrate that our ensemble approach significantly improves sensitivity by 
8%. The mean cross-validation precision, recall, and f1-score were found to be 0.71, 0.89, and 0.79, respectively.

Furthermore, the pilot testing results indicate a consistent performance of our approach, similar to what 
was observed in the VinDr-mammo dataset. However, there are some challenges with abnormalities that have a 
smaller representation in the training set. To address this, we recommend enhancing the system’s performance 
by incorporating more data into the training set and improving the classifier model by including different types 
of datasets to increase its robustness. Additionally, it is advisable to separate the detection of calcifications from 
other abnormality detection, as their size warrants separate treatment.

Figure 8.  Object detection model supporting correct classifier decisions for mass detection.
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Figure 9.  Object detection model supporting classifier models to avoid missing masses.
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Data availability
The local data that support the findings of this study are available from the Ethiopian Artificial Intelligence 
Institute. Still, restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of the Ethiopian Artificial Intelligence Institute. Hence, anyone who wants to have access 
to the data can contact the corresponding author or directly via the institute’s email (mailto:contact@aii.et).
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Figure 10.  A lymph node was incorrectly labeled as suspicious mass.

Figure 11.  A pilot test result.
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