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NMGMDA: a computational 
model for predicting potential 
microbe–drug associations based 
on minimize matrix nuclear norm 
and graph attention network
Mingmin Liang 1, Xianzhi Liu 1, Qijia Chen 1*, Bin Zeng 1* & Lei Wang 1,2*

The prediction of potential microbe–drug associations is of great value for drug research and 
development, especially, methods, based on deep learning, have been achieved significant 
improvement in bio-medicine. In this manuscript, we proposed a novel computational model named 
NMGMDA based on the nuclear norm minimization and graph attention network to infer latent 
microbe–drug associations. Firstly, we created a heterogeneous microbe–drug network in NMGMDA 
by fusing the drug and microbe similarities with the established drug–microbe associations. After this, 
by using GAT and NNM to calculate the predict scores. Lastly, we created a fivefold cross validation 
framework to assess the new model NMGMDA’s progressiveness. According to the simulation results, 
NMGMDA outperforms some of the most advanced methods, with a reliable AUC of 0.9946 on both 
MDAD and aBioflm databases. Furthermore, case studies on Ciprofloxacin, Moxifoxacin, HIV-1 and 
Mycobacterium tuberculosis were carried out in order to assess the effectiveness of NMGMDA even 
more. The experimental results demonstrated that, following the removal of known correlations from 
the database, 16 and 14 medications as well as 19 and 17 microbes in the top 20 predictions were 
validated by pertinent literature. This demonstrates the potential of our new model, NMGMDA, to 
reach acceptable prediction performance.

Microorganisms are a class of widely dispersed germs that include bacteria, viruses, fungus, and other species 
that are both helpful and hazardous to humans1,2. Numerous human organs contain and are covered in human 
microbes3. In addition to promoting food absorption and maintaining intestinal health by managing the balance 
of the gut microbiota, they can control the host’s mucosal and systemic immune systems4,5. In the intestinal envi-
ronment, these bacteria depend on one another and benefit one another. When the microbiota is out of balance, 
several diseases, include obesity6, inflammatory bowel disease7, and cancer8 can result. Additionally, numerous 
studies have demonstrated that while utilizing pharmaceuticals to cure diseases, there is a definite influence 
between bacteria and drugs1,9,10. Therefore, understanding the relationship between microbes and medications 
becomes essential for the treatment of disease.

Humans have discovered certain relationships between drugs and microbes through investigations into biol-
ogy, but because biological experiments demand a substantial amount of human, material, and time resources, 
their further advancement may be constrained. To address the limitations of biological studies, an increasing 
number of computational methods have been presented during the past few years due to the rapid development 
of relevant research tools. These methods aim to anticipate the relationship between drugs and microbes11. In 
parallel, databases of microbe–drug associations that have undergone experimental validation, such as MDAD12 
and aBioflm13, have also been established. For instance, Zhu et al.14 presented HMDAKATZ, which uses the 
KATZ measure to identify microbe–drug associations. By integrating a network embedding approach with 
microbe–drug association prediction, Long et al.15 introduced the HNERMDA method. To predict probable 
microbe–drug associations, Ma et al.16 introduced the generalized Matrix decomposition method WHGMF 
based on weighted hypergraph learning. To infer new microbe–drug relationships, Yang et al.17 suggested the 
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multi-core fusion model MKGNN based on Graph Convolutional Network(GCN). A deep neural network-based 
prediction model for microbe–drug associations called NNAN was created by Zhu et al.18 A contrastive learning 
model called SCSMDA was created by Tian et al.19 to forecast the connection between microbes and drugs. In 
order to anticipate probable microbe–drug correlations, Tan et al.20 developed a computation technique termed 
GSAMDA based on the graph attention network and the sparse autoencoder. Yang et al.21 suggest a model, called 
MKGCN, for inferring microbe–drug associations based on Multiple Kernel Fusion on Graph Convolutional 
Network. Ma et al.22 designed a microbe–drug prediction model based on graph attention network (GAT) and 
convolutional neural networks (CNN).

As mentioned above, it is easy to know that these neural network-based methods are frequently used in hiding 
random association prediction works, and among them, CNN-based approaches adopt the method of parameter 
sharing to effectively prevent overfitting, however, the pooling layer will lose a significant amount of important 
data during processing. As for the GCN-based approaches, although the non-matrix organized data will be 
more applicable, however, the scalability and flexibility are still quite limited. As for the GAT-based methods, 
although the clustering performance of graph neural networks can be significantly improved, but the clustering 
of higher-order neighborhoods is still a challenging task. Hence, it is clear that better prediction results can be 
obtained by combining these above prediction methods organically.

In this study, we introduced a novel calculating approach called NMGMDA to predict latent associations 
between microbes and drugs, which is based on the nuclear norm minimization23 and the graph attention 
network24. Figure 1 depicts the NMGMDA structure. These are our primary contributions, in brief:

•	 A novel heterogeneous network made up of microbes and drugs has been created by combining the microbe 
similarity network, drug similarity network, and existing microbe–drug relationships.

•	 To get projected scores for potential microbe–drug associations, we used both the nuclear norm minimiza-
tion (NNM) approach and the GAT-based auto-encoder. And then weighted averaged these two predicted 
scores to get the final results.

•	 Experimental results and case studies demonstrated the significant prediction performance of NMGMDA 
on both the MDAD and the aBioflm Databases.

Materials and methods
Data sources
In this study, we assessed NMGMDA on the following two databases in order to show its efficacy.

MDAD database is a database of microbe–drug associations that was assembled and arranged by Sun et al.12 in 
2018 from a variety of drug-related databases, including TTD and DrugBank, as well as a substantial body of liter-
ature. After superfluous data is eliminated, 1373 drugs and 173 microbes were found to have 2470 microbe–drug 
associations.

Figure 1.   The overall architecture of NMGMDA.
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ABiofilm database was created by Rajput et al.13, which includes 5027 antifungal drugs that target 140 microbes 
that were identified between 1988 and 2017. Following the removal of redundant data, 140 microbes and 1720 
drugs were included in 2884 microbe–drug associations.

Table 1 provides specific statistics of microbes-drugs associations in the MDAD and aBioflm.

Methods
Microbe–drug adjacency matrix
We initially create an adjacency matrix A ∈ Rnd×nm , where nd and nm represent the number of drugs and 
microbes, respectively, based on these microbe–drug associations. Aij equals 1 if there is a known relationship 
between the drug di and microbe mj , else it equals 0.

Drug/microbe Gaussian kernel similarity
The following formula will be used to determine the Gaussian kernel similarity DGIP

(

di , dj
)

∈ Rnd×nd between 
di and dj , assuming that di and dj are two drugs.

where �A(di)− A
(

dj
)

� is the Euclidean distance between two drugs. Since γd is a regular parameter, it is easier 
to group together similar feature points the greater γd . And the definition of γd is as follows:

Similarly, we would calculate the Gaussian kernel similarity MGIP

(

mi ,mj

)

∈ Rnm×nm between two microbes:

Microbe/Drug functional similarity
In the STRING25 database, we can find many gene functional networks connected to microbes. A matrix  
MF ∈ Rnm×nm can be produced by the Kamneva26 tool, which determines microbe functional similarity based 
on microbial gene families.

The SIMCOMP2 tool27 uses the chemical and molecular formula structures of drugs to determine how similar 
their structures are. To create a drug functional similarity matrix DF ∈ Rnd×nd , we adopt the similarity scores.

Drug/microbe integrated similarities
It is important to note that not every drug can determine functional similarity. As a result, using the drug struc-
tural similarity and the drug Gaussian kernel similarity, we were able to construct a new matrix D ∈ Rnd×nd of 
integrated drug similarities.

where DGIP is the drug Gaussian kernel similarity, and DF is the drug functional similarity.
Similarly, the microbe integrated similarities matrix M ∈ Rnm×nm was calculated as follows:

where MGIP is the drug Gaussian kernel similarity, and MF is the drug functional similarity.

(1)Aij =

{

1, if di associats with mj

0, otherwise

(2)DGIP = exp
(

−γd�A(di)− A
(

dj
)

�
2
)

(3)γd = 1/

(

1

nd

nd
∑

i=1

�A(di)�
2

)

(4)MGIP = exp
(

−γm�A(mi)− A
(

mj

)

�
2
)

(5)γm = 1/

(

1

nm

nm
∑

i=1

�A(mi)�
2

)

(6)D =

{

(DGIP + DF)/2, ifDF �= 0

DGIP , ifDF = 0

(7)M =

{

(MGIP +MF)/2, ifMF �= 0

MGIP , ifMF = 0

Table 1.   The specific statistics of microbes-drugs associations in the MDAD and aBioflm.

Database Microbes Drugs Associations

MDAD 173 1373 2470

aBioflm 140 1720 2884
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Constructing the heterogeneous network N
The microbe–drug adjacency matrix, drug integrated similarities matrix and microbe integrated similarities 
matrix can be joined together to form a whole matrix N ∈ R(nd+nm)×(nd+nm):

where AT represents A′ s transposition.

Predicting microbe–drug associations by NNM
Currently, the convex optimization model includes nuclear norms, which are applied in many fields28. It has a 
globally optimal solution11. Therefore, the nuclear norm minimization of the heterogeneous network N can be 
expressed as:

where �N�∗ represents the nuclear norm of N , � is a set of known positions of elements.
We need to add restrictions to the model to make sure that the unknown elements fall within the range [0,1] 

since predicted scores for microbe–drug associations should be between [0,1]. This forecasting method is:

They are ε , which stands for measurement noise, � · �F , which stands for the Frobenius norm, and p� , which 
stands for the orthogonal mapping acting on � . Then substituting regularized models for inequality constrained 
models:

where α is a variable that is learnable. The model can be optimized in the manner shown below by introducing 
the auxiliary matrix X, which was inspired by literature29:

Then, minimize the enhanced Lagrange function to solve the problem:

where Y  is the Lagrange multiplier and β > 0 is the penalty factor.
Following that, implement iterative solution. The matrix Xk+1 must first be calculated:

The best answer to the Eq. (15) for arg min
0≤X≤1

ζ (X,Nk ,Yk ,α,β) is X∗ . Think of restrictions for the interval [0,1] 
that:

Update the matrix Nk+1 and correct other variables:

(8)N =

[

D A
AT M

]

(9)min
N

�N�∗ s.t.Nij = Aij ,
(

i, j
)

∈ �

(10)min
N

�N�∗s.t.�p�(N)− p�(A)�F ≤ ε

(11)
(

p�(N)
)

ij
=

{

Nij , if
(

i, j
)

∈ �

0, otherwise

(12)min
N

�N�∗ +
α

2
�P�(N)− p�(A)�

2
F s.t.0 < Nij < 1

(13)min
N

�N�∗ +
α

2
�P�(X)− p�(A)�

2
F s.t.N = X, 0 < Xij < 1

(14)ζ (X,N ,Y ,α,β) = �N�∗ +
α

2
�P�(X)− p�(A)�

2
F + Tγ

(

YT (N − X)
)

+
β

2
�N − X�2F

Xk+1 = arg min
0≤X≤1

ζ (X,Nk ,Yk ,α,β)

(15)= arg min
0≤X≤1

α

2
�P�(X)− p�(A)�

2
F + Tγ

(

YT (N − X)
)

+
β

2
�N − X�2F

(16)
�
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�

ij
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
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X∗
ij , 0 ≤ X∗

ij ≤ 1
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
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
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N

ζ
(
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)
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(
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β
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�
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(θi − τ)µiν
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where ϑτ (x) is singular value contraction operator, θi is the singular values of X which is larger than τ , while 
µi and νi are the left and right singular vectors corresponding to θi.

We can update the Lagrange multiplier Yk+1 as follows by adjusting other variables:

Finally, the following information can be found in the prediction matrix A1 for microbe–drug associations:

Predicting latent microbe–drug associations by GAT​
With the introduction of an attention-based design, the graph spatial network GAT performs node categorization 
for graph-structured data24. To determine the matrix N ’s structure, we created a GAT model. First determines 
the attention score between any two nodes in the matrix N:

where Ni stands for the total number of nodes,a is an attention coefficient, W is a learnable linear transformation, 
and hi represents the feature vector of the node i , µ is the hypermeter and || denotes the concatenation.

Consequently, each node’s ultimate output feature is:

The activation function, relu , is defined as follows:

A low dimensional structural matrix X =

[

Xd

Xm

]

∈ R(nd+nm)×l is produced by substituting N into the previ-

ously mentioned GAT model, where Xd and Xm , respectively, stand in for the drug nodes and microbial nodes 
in N . After a number of testing, we ultimately decided on MSE loss as the loss function for optimizing our model.

An improved random walk with restart (RWR) is implemented on D in response to literature20, allowing us 
to obtain a new matrix. Below is how the RWR was described:

where εi is the initial probability vector, X is the matrix of transition probabilities, and � is the restart prob-
ability. Similar to that, we might produce a novel matrix MZ by using the enhanced RWR on M.

As a result, by combining the drug matrix Xd , DF , DZ and adjacency matrix A , influenced by literature22, we 
could create a new drug feature matrix Zd that looked like this:

Similarly, we could create the following new microbe feature matrix:

Finally, we employ dot product to derive a microbe–drug association predictive score A2:

(19)Yk+1 = Yk + β
(

Nk+1 − Xk+1

)

(20)Xk →

[

D1 A1

AT
1 M1

]

→ A1

(21)αij =
exp

(

eij
)

∑

k∈Ni
exp(eik)

(22)eij = LeakyRelu
(

a
[

Whi||Whj
])

(23)LeakyRelu(x) =

{

x, x > 0

µx, otherwise

(24)hi = relu





�

j∈Ni

αijWhj





(25)relu(x) =

{

x, x > 0

0, otherwise

(26)sl+1
i = �Xsli + (1− �)εi

(27)εij =

{

1, if i = j
0, otherwise

(28)Zd = [Xd ,DF ,A,DZ ,A]

(29)Zm =

[

Xm,A
T ,MF ,A

T ,MZ

]

(30)A2 = swich
(

Zd(di) · Zm
(

mj

)T
)

(31)swich = xSigmoid(βx)
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where swich is an activation function, β , a learnable parameter, which is typically set it to 1, Zd(di) indicates 
the ith row of Zd and Zm

(

mj

)

 represents the jth row of Zm.

Final predicted score of microbe–drug associations
The weighted arithmetic mean approach can be used to combine the prediction matrix A1 acquired through 
NNM and the prediction matrix A2 generated through GAT, resulting in the following final forecast matrix A∗ 
of microbe–drug associations:

where � is the weight value.

Experiments and results
In this section, we first carried out sensitive parameter analysis to get the optimum performance out of the model. 
Then, six state-of-the-art methods would be picked to contrast with NMGMDA. Finally, in order to confirm the 
validity of our model, we have chosen two typical microbes and drugs, respectively.

Parameter sensitivity analysis
Three pieces make up the NMGMDA model. α and β in formula (14) are two crucial parameters in NNM. 
Dimension l  and learning rate lr are the two most important factors in GAT.The weight value � is an important 
parameter in the final prediction formula (32). In this section, to find the appropriate settings and ensure the 
independence of the training sets and test sets, we initially Randomly picked 20% of the associations are known 
and 20% are unknown for the training sets, with the remaining sets being test sets. Next, we utilized fivefold CV 
experiments with the MDAD database and ensure each of the experiments is independent.

In NNM, we decided to conduct joint tests and altered α and β from {0.1, 1, 10, 100, 1000} and conduct joint 
experiments.Then, using a fivefold CV experiment, we determined the area under curve (AUC) and the area 
under the precision-recall curve (AUPR) of these parameter combinations. The findings are displayed in Table 2. 
Table 2 shows that the AUC and AUPR outcomes obtained by NMGMDA are both at their best when α and β 
have values of 100 and 1, respectively.

In GAT, we decided to adjust the dimension l  changed from {16, 32, 64, 128} and the learning rate lr changed 
from {0.1, 0.05, 0.01, 0.005, 0.001}.

Figure 2 makes it clear that no substantial changes to the outcome were caused by changing any particular 
factors. We choose 32 as the dimension of node topological representation l  since it has a little better AUPR value 
than 64 or 128 dimensions. In line with typical learning models, the learning rate lr was set at 0.01.

Finally, the results are displayed in Fig. 3 for parameter � in formula (32), where we estimate the impact of 
the � altered from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for the fivefold on MDAD. Which makes it clear that 
NMGMDA, with � set to 0.7, may get the maximum AUC and AUPR values.

After comparing the performance on different hyperparameters by testing, the final parameters we selected 
are α = 100, β = 1, l  = 32, lr = 0.01 and � = 0.7.

Comparison with advanced methods
In this case, taking into account the dearth of microbial drug association prediction methods, we would first 
contrast NMGMDA with a few standard approaches for link prediction issues, such as HMDAKATZ14, HMDA-
Pred30, LAGCN31, MNNMAD32 and GSAMDA20, etc.

Here, considering the limited availability of microbial drug association prediction methods, we would first 
compare NMGMDA with some representative methods for link prediction problems such as HMDAKATZ14, 
HMDA-Pred30, LAGCN31, MNNMAD32 and GSAMDA20, etc. One of them, HMDAKATZ, predicted the 
association between microbes and drugs using the KATZ algorithm as a foundation. For the prediction of 
microbe–disease associations, HMDA-Pred is a novel computer model based on multi-data integration and 
network consistency projection. LAGCN is a complete end-to-end graph based deep learning method, which 
forecast the associations between drugs and diseases. By using a Matrix Nuclear Norm approach on data on 
known microbes and diseases, MNNMAD is a method for predicting microbe–disease relationships. Based on 

(32)A∗ = �A1 + (1− �)A2

Table 2.   The AUC and AUPR values on different α and β on MDAD database.

Average AUC on MDAD Average AUPR on MDAD

β

0.1 0.98245 0.99329 0.99331 0.99331 0.67785 0.88056 0.88726 0.88701

1 0.99331 0.99443 0.99468 0.99467 0.88849 0.89842 0.90734 0.90719

10 0.99259 0.99236 0.99367 0.99302 0.86172 0.87312 0.88416 0.88725

100 0.99308 0.99309 0.99309 0.99309 0.87951 0.87911 0.86045 0.85653

0.1 1 10 100 0.1 1 10 100

α
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a graph attention network and sparse auto-encoder, GSAMDA offered a unique computer model for forecasting 
probable microbe–drug interactions.

We tested these techniques using their default settings and compared them using the fivefold CV experiment. 
AUC and AUPR values are used as indicators to evaluate the performance of NMGMDA, and the database we 
utilize is MDAD and aBioflm. The outcome was displayed in Table 3 and Fig. 4. Our suggested NMGMDA model 
has the greatest prediction performance of all the methods.

Figure 2.   The AUC and AUPR values on different dimension of node topological representation and learning 
rate on MDAD database.

Figure 3.   The AUC and AUPR values on different weight value on MDAD database.

Table 3.   The AUCs and AUPRs of compared methods based on databases MDAD and aBioflm under fivefold 
CV.

Methods

AUC​ AUPR

MADA aBioflm MDAD aBioflm

HMDAKATZ 0.90118 ± 0.00101 0.90023 ± 0.00212 0.23271 ± 0.00685 0.30669 ± 0.00771

LAGCN 0.86883 ± 0.00703 0.86413 ± 0.01091 0.35712 ± 0.00514 0.36715 ± 0.00556

HMDA-Pred 0.91776 ± 0.00297 0.91756 ± 0.00402 0.02361 ± 0.00093 0.02848 ± 0.00069

MNNMDA 0.96306 ± 0.00202 0.93156 ± 0.00223 0.18920 ± 0.00561 0.19621 ± 0.00782

GSAMDA 0.94917 ± 0.00053 0.93073 ± 0.01206 0.44363 ± 0.00072 0.45103 ± 0.00513

NMGMDA 0.99468 ± 0.00016 0.99467 ± 0.00017 0.90734 ± 0.00019 0.90330 ± 0.00018
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Case study
To test the NMGMDA model’s real prediction power, we chose two well-known drugs—Ciprofloxacin and 
Moxifloxaxin—as well as two common microbes—Human immunodeficiency virus type 1 and Mycobacterium 
tuberculosis—for case studies.

Ciprofloxacin is an organic molecule with excellent bactericidal effect and broad-spectrum antibacterial 
activity33. It has shown to be a successful treatment for both acute and chronic urinary tract infections, as 
well as a variety of systemic infections34. Staphylococcus aureus35, Haemophilus influenzae36 and Stenotropho-
monas maltophilia37 are all susceptible to its antibacterial properties. Based on the predicted score, ranked the 
Ciprofloxacin-related microbes scores from highest to lowest, and chose the top 20 microbes for validation 
after deleting the 10 associations that are currently on MDAD database. As indicated in Table 4, 19 of the top 20 
anticipated microbes connected to Ciprofloxacin have been verified by published research in PubMed. Moreo-
ver, Moxifloxacin39 belongs to the quinolone drugs class, which mostly used to treat infections of the skin and 
soft tissues in adults as well as upper and lower respiratory tract infections38,39. According to the literature40, 
Moxifloxacin is an effective treatment for Stenotrophomonas maltophilia keratitis. As indicated in Tables 5, after 
removing the 4 known associations on MDAD database, we discovered 17 microbes that had been verified by 
PubMed literature among the top 20 predicted microbes associated with moxifloxacin.

Regarding microbes, the first microbe is Human immunodeficiency virus type 1 (HIV-1), which is a virus 
capable of attacking the immune system in humans, and causes AIDS, an extremely dangerous infectious illness41. 
HIV-1 has been widely studied in relation to various medicines. Saquinavir, for instance, has been shown to be an 
effective treatment for HIV-1-infected individuals who have diarrhea and/or wasting syndrome by Hervé Trout42. 
According to literature43, the first-line protease inhibitor that is generally suggested in the initial treatment regi-
men for people with HIV-1 infection is lopinavir/ritonavir. After removing the 26 known associations on MDAD 

Figure 4.   ROC curves based on the MDAD database for six competitive methods.

Table 4.   The top 20 Ciprofloxacin associated candidate microbes on MDAD. The top 10 microbes are listed in 
the first column, while the top 11–20 microbes are listed in the third column.

Microbe Evidence Microbe Evidence

Enteric bacteria and other eubacteria PMID: 36682905 Acinetobacter baumannii PMID: 34098109

Micrococcus luteus PMID: 3010848 Klebsiella pneumoniae PMID: 29055688

Bacillus anthracis PMID: 23569822 Burkholderia pseudomallei PMID: 35972245

Helicobacter pylori PMID: 24837413 Candida albicans PMID: 35404123

Listeria monocytogenes PMID: 34068252 Vibrio anguillarum PMID: 36735199

Burkholderia cenocepacia PMID: 25267676 Actinomyces oris Unconfrmed

Burkholderia multivorans PMID: 34524889 Bacillus cereus PMID: 26358183

Mycobacterium avium PMID: 30012773 Vibrio vulnificus PMID: 28971862

Vibrio harveyi PMID: 27247095 Streptococcus mutans PMID: 33402618

Klebsiella planticola PMID: 36452290 Streptococcus epidermidis PMID: 34948159
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database, we discovered 16 (see Table 6) drugs that had been validated by PubMed literatures among the top 20 
anticipated microbes associated with Human immunodeficiency virus type 1. Mycobacterium tuberculosis is the 
second microbes used in the case study. Mycobacterium tuberculosis is the pathogen that causes tuberculosis44, 
and many microbes, including ciprofloxacin45 and triclosan46, have been shown to be associated with it. After 
removing the 14 known associations on MDAD database, Table 7 indicates that of the top 20 candidate drugs, 
14 were linked to Mycobacterium tuberculosis.

In conclusion, these two sets of case studies further demonstrate how the NMGMDA model may anticipate 
the association between microbes and drugs.

Table 5.   The top 20 Moxifoxacin associated candidate microbes on MDAD. The top 10 microbes are listed in 
the first column, while the top 11–20 microbes are listed in the third column.

Microbe Evidence Microbe Evidence

Staphylococcus aureus PMID: 33936821 Burkholderia multivorans Unconfrmed

Escherichia coli PMID: 34653694 Providencia stuartii Unconfrmed

Pseudomonas aeruginosa PMID: 23662986 Burkholderia cenocepacia PMID: 33120688

Bacillus subtilis PMID: 30036828 Mycobacterium tuberculosis PMID: 33951360

Staphylococcus epidermidis PMID: 15718814 Enterococcus faecalis PMID: 26349832

Streptococcus mutans PMID: 29160117 Vibrio harveyi Unconfrmed

Staphylococcus epidermis PMID: 31516359 Klebsiella planticola PMID: 32577260

Salmonella enterica PMID: 34439014 Listeria monocytogenes PMID: 18299415

Micrococcus luteus PMID: 16152924 Candida glabrata PMID: 20455400

Shigella flexneri PMID: 28483960 Streptococcus pneumoniae PMID: 22407042

Table 6.   The top 20 Human immunodeficiency virus type 1 associated candidate drugs on MDAD. The top 10 
drugs are listed in the first column, while the top 11–20 drugs are listed in the third column.

Drug Evidence Drug Evidence

Delavirdine PMID: 8807058 Ceftazidime PMID: 7979856

Nelfinavir PMID: 10223697 Amikacin PMID: 16371246

LL-37 PMID: 24821067 Tobramycin PMID: 27387258

Farnesol PMID: 22677126 Cefixime PMID: 9677171

Vancomycin PMID: 32328074 Curcumin PMID: 19345695

Epigallocatechin Gallate PMID: 11684313 N-Acetylcysteine PMID: 32796068

Toremifene Unconfrmed IDR-1018 Unconfrmed

Norspermidine Unconfrmed Metronidazole PMID: 18444793

Hamamelitannin PMID: 8693037 Terpinene-4-ol Unconfrmed

Ciprofloxacin PMID: 9566552 Carvacrol PMID: 32461309

Table 7.   The top 20 Mycobacterium tuberculosis associated candidate drugs on MDAD. The top 10 drugs are 
listed in the first column, while the top 11–20 drugs are listed in the third column.

Drug Evidence Drug Evidence

Curcumin PMID:27012592 Norspermidine Unconfrmed

Epigallocatechin gallate PMID:33463343 Moxifloxacin PMID: 33951360

Metronidazole PMID:18491971 Pleurocidin Unconfrmed

BMAP-28 Unconfrmed Esculetin Unconfrmed

Vancomycin PMID:33508482 Gentamicin PMID: 36258995

Ceftazidime PMID:11527042 Amikacin PMID: 34314673

Cefixime Unconfrmed Silver nanoparticles PMID: 32280217

Farnesol PMID:16041726 Carboxymethyl chitosan PMID: 30007629

Azithromycin PMID: 32781595 Toremifene Unconfrmed

LL-37 PMID: 26351280 Indole PMID: 34383995
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Discussion and conclusion
The association between drugs and microbes has enormous significance for the treatment of diseases, according 
to biomedical studies. Consequently, a powerful computational prediction model could help researchers find 
additional microbe–drug associations and improve illness therapy.

By combining the NNM and GAT frameworks, we suggested a unique model in this study called NMGNAD 
to forecast potential microbe–drug associations. In NMGNAD, we first combined the drug similarity network, 
the known microbe–drug associations, and the similarity and association information between nodes to create 
a new microbe–drug heterogeneous network. The correlation scores between microbes and drugs were then 
predicted using the NNM model and the GAT model. In order to get the forecast results, we weighted average 
these two anticipated scores. According to experimental findings, NMGMAD outperformed state-of-the-art 
methods and produced acceptable case study outcomes.

Although NMGMDA can produce good prediction performance, there are still certain restrictions. First off, 
a few drug names in both databases are not accessible now, and the fact that they are no longer being updated 
will reduce the number of known connections that are available and have an impact on how the model is used in 
practice. Thus, we might think about creating a microbe–drug database that is more extensive. Then, to increase 
the precision of model predictions, we can think about adding more biological data to enhance the characteristics 
of drugs and microbes, such as data on drug side effects, data on the relationship between germs and diseases, 
and data on the association between drugs and diseases.

Data availability
The original contributions presented in the study are included in the article, further inquiries can be directed 
to the corresponding authors.
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