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Exact soliton solutions 
and the significance 
of time‑dependent coefficients 
in the Boussinesq equation: theory 
and application in mathematical 
physics
M. Abul Kawser 1, M. Ali Akbar 2*, M. Ashrafuzzaman Khan 2 & Hassan Ali Ghazwani 3*

This article effectively establishes the exact soliton solutions for the Boussinesq model, 
characterized by time-dependent coefficients, employing the advanced modified simple equation, 
generalized Kudryashov and modified sine–Gordon expansion methods. The adaptive  applicability 
of the Boussinesq system  to coastal dynamics, fluid behavior, and wave propagation enriches 
interdisciplinary research across hydrodynamics and oceanography. The solutions of the system 
obtained through these significant techniques make  a path to understanding  nonlinear phenomena 
in various fields, surpassing traditional barriers and further motivating research and application. 
Significant impacts of the coefficients of the equation,  wave velocity, and related parameters are 
evident in the profiles of soliton-shaped waves in both 3D and 2D configurations when all these 
factors are treated as variables, which are not seen in the case for constant coefficients. This study 
enhances the understanding of the significant role played by nonlinear evolution equations with time-
dependent coefficients through careful dynamic explanations and detailed analyses. This revelation 
opens up an interesting  and challenging field of study, with promising insights that resonate across 
diverse scientific disciplines.

The variable coefficient nonlinear evolution equations (NLEEs) have become a pivotal and intricate realm of 
mathematical investigation, which forms a dynamic bridge between theoretical exploration and the intricacies of 
real-world phenomena1,2. These equations with variable coefficients play a vital role in modeling a wide array of 
natural systems, as they encapsulate the nuances that constant coefficients fail to capture3,4. By embodying spatial 
variability, NLEEs provide a richer understanding of complicated phenomena such as heat conduction, quantum 
mechanical interactions and fluid flow5–7. Also the equations underpin advancements in climate modeling, mate-
rial science and medical imaging, guiding technological innovations by enhancing predictive capabilities and 
system understanding8–10. The implications of variable coefficient NLEEs extend beyond theoretical curiosity, 
permeating numerous scientific and engineering domains. In essence, the study of variable coefficient NLEEs 
reflects a harmonious combination between mathematical ingenuity and real-world complexity, accelerating our 
quest to decipher the fabric of the universe. In recent years, the search of numerical and exact solutions for non-
linear equations has gained particular prominence as a popular and captivating domain both in mathematics and 
physics. Various numerical methods contribute to the solution, such as Runge–Kutta method11–13, the Bayesian 
regularization technique (BRT)14–17, Levenberg–Marquardt approach (LMA)18,19, the shooting method20–22, the 
bvp4c technique23–25, the Keller box method26–28, the Lobatto IIIA method29, etc. Also researchers have developed 
several effective, powerful and efficient exact methods for uncovering the solutions of these equations. Notable 
techniques encompass the Jacobi elliptic function expansion scheme30, the Hirota bilinear method31, the exp-
function method32, the new extended algebraic method33, the unified method34, the F-expansion technique35, 
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the auxiliary equation outline36, the Darboux transformation technique37, the Bäcklund transformation38, the 
modified extended tanh technique with Riccati equation39, the generalized (G′/G)-expansion approach40, the 
modified Kudryashov method41–43, the sine–Gordon expansion method44, the modified sine–cosine method45, 
the consistent Riccati expansion solvability technique46, the modified sine–Gordon expansion approach47, the 
modified simple equation method48–50, the generalized Kudryashov method51–53, among others.

The Boussinesq system is named after the French physicist Joseph Valentin Boussinesq involves a set of 
simplified equations derived from the Navier–Stokes equations in the nineteenth century, focusing on shallow 
water conditions and ignoring specific terms of less significance where the wavelength of waves is significantly 
larger than the water depth. This system finds applications in various fields such as tsunami modeling54, coastal 
engineering55, river/flood forecasting56, oceanography57, wave energy technology design58 and geophysical fluid 
dynamics59. It is utilized to predict wave effects, optimize energy devices, interpret internal wave behavior, fore-
cast flows, simulate wave propagation and conduct studies in related areas60–62.

In this article, we deal with the Boussinesq equation, with a specific emphasis on its variable coefficients. A 
discussion of previous studies is necessary to gain a solid understanding of the nuances of this system. Wazwaz63 
artfully applied the tanh method and the sine–cosine method, and Shakeel64 skillfully harnessed the novel (G′/G)
-expansion method to tackle the Boussinesq model with constant coefficients. Recently Chu et al.65 applied the 
Adomian decomposition method to handle this equation characterized by constant coefficients for fractional 
order. Notably, the present study endeavors to extend this understanding to the realm of variable coefficients, 
unveiling exact solutions through the adept employment of three specific techniques: the modified simple equa-
tion method, the generalized Kudryashov method and the modified sine–Gordon expansion method. The objec-
tive of the article is highlighted: to extend the understanding of the Boussinesq equations in the case of variable 
coefficients. The study uncovers the exact solutions using three specific techniques: the modified simple equation 
method, the generalized Kudryashov method, and the modified sine–Gordon expansion method. This exten-
sion builds upon previous works that primarily addressed the Boussinesq equation with constant coefficients, 
demonstrating the innovative approach of the present study in tackling the complexities of variable coefficients. 
The explanations of the obtained solutions show how the variable coefficients influence the system behavior 
and offering a detailed direction for comprehending the intricate interplay of nonlinear effects in a controlled 
manner. In this case, the behavior of wave shapes, amplitudes, wavelengths and propagation directions emerge 
as a dynamic interplay that continuously evolves across both space and time.

The rest of the article is organized in the following way: section "Analysis of the methods" provides a detailed 
description of the selected methods of research. In section "Extraction of solutions", solutions of the selected 
model are presented. section "Results and discussion" presents a graphical analysis of the obtained solutions. 
Finally, section “Conclusion” concludes the article, summarizing key insights and suggesting for future directions.

Analysis of the methods
This section provides a broad overview of the employed methods to tackle the problem of variable coefficient 
Boussinesq system. In the investigation of wave solutions for the system, we used the power of three distinct 
yet complementary methods. Generally these techniques provide closed-form wave solutions with further free 
parameters than the other methods. Therefore, the obtained solutions can accurately explain the phenomenon of 
the system. Moreover, the chosen methods are able to provide all types of soliton solutions such as kink, periodic, 
bell-shape, spike type, and other solitons; which are not feasible in many techniques. So each of these approaches 
has been strategically chosen and meticulously executed to offer unique insights and solutions. Elaborations on 
the distinctive approaches of the three techniques in finding exact solutions are presented below.

Common starting for the first two methods
Let us consider the evolution equation in the following nonlinear form:

wherein F is a polynomial function of u(x, t) and its partial derivatives, incorporating both the highest order 
derivatives and nonlinear terms.

Consider the form below for the traveling wave transformation.

where both p(t) and q(t) are functions that possess differentiability with respect to t .
Through the application of this wave transformation, Eq. (1) can be transformed into the following nonlinear 

ordinary differential equation:

In here, the prime and dot marks signify the derivatives with respect to ξ and t  , respectively, 
i.e.U ′ = dU

dξ , ṗ = dp
dt andq̇ = dq

dt .

The modified simple equation method
Presented below are the major steps of the MSE method48–50:

Step 1: In accordance with the method, the solution U(ξ) of Eq. (3) is regarded as:

(1)F(u, ut , ux , utt , uxt , uxx , . . . ) = 0,

(2)u(x, t) = U(ξ), ξ = p(t)x + q(t),

(3)F
(

U ,
(

ṗx, q̇
)

U ′, pU ′, p2U ′′, p
(

ṗx, q̇
)

U ′′, ṗU ′, . . .
)

= 0,
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Each of the time-varying functions ai(t) , i = 0, 1, 2, . . . , n , where an(t)  = 0 , and the unidentified function 
ϕ(ξ) must be determined, while ϕ(ξ) satisfies both the conditions ϕ(ξ)  = 0 and ϕ′(ξ) �= 0.

Step 2: By utilizing the balance homogeneity principle between the leading nonlinear terms and the maxi-
mum order derivatives present in Eq. (3), we determine the value of the positive integer n appearing in Eq. (4).

Step 3: Inserting the sequential derivatives of U(ξ) into Eq. (3) leads to the creation of a polynomial equation 
representing ϕ−1 . In the ensuing stages, a system of equations arises through the process of setting the coeffi-
cients of xkϕ−i to zero for k = 0, 1, 2, . . . and i = 0, 1, 2, . . . , n in the polynomial. This system of equations yields 
a collection of algebraic equations for the parameters ai(t), p(t), q(t) and differential equations involving the 
derivatives of p(t), q(t) with regard to t .

Step 4: Subsequently, the solution of Eq. (3) can be found by first solving the system derived in step 3 to 
determine ϕ(ξ), ai(t), p(t) and q(t) , and then substituting these values into Eq. (4), ultimately leading to the 
solutions of Eq. (1).

The Generalized Kudryashov method
Following are the key steps that describe the methodology of the generalized Kudryashov51–53:

Step 1: The approach proposes that the precise solution for Eq. (1) be represented in the subsequent rational 
structure:

where ai(t)(i = 0, 1, 2, . . . , n) and bj(t)(j = 0, 1, 2, . . . ,m) are functions dependent on t, to be solved at a later 
juncture, under the conditions an(t)  = 0 and bm(t)  = 0 . Furthermore, the following ODE is satisfied by Q(ξ):

It is clear that Eq. (6) possesses a solution in the following form:

Here, the symbol A stands as an integrating constant.
Step 2: The principle of homogeneous balance will guide us to identify the choices of positive integer for n and 

m within Eq. (5). To illustrate, we achieve balance by equating the highest order derivative with the corresponding 
highest order nonlinear term presented in Eq. (3).

Step 3: Substituting Eq. (5) into Eq. (3) along with Eq. (6), we acquire a polynomial of Q(ξ) . By setting all of 
the coefficients of the like powers of Q(ξ) , which are multiplied by xk for k = 0, 1, 2, . . . to zero, we attain both 
algebraic and differential systems of equations of parameters ai , bj , p , q and p , q respectively. Through the utili-
zation of the Mathematica or Maple software package program, these systems of equations can be solved. This 
process enables us to compute the values of the unknown parameters ai , bj , p and q . Subsequently, we find the 
exact solutions for the reduced Eq. (3).

The modified sine–Gordon expansion method
The sine–Gordon equation is given by

Herein, u denotes a function of both x and t  . By introducing the wave variable ξ = px + qt , we can rewrite 
the preceding equation as the subsequent nonlinear expression.

Here, the variable U(ξ) = u(x, t) , where ξ and q/p stand for the amplitude and velocity of the traveling wave, 
respectively. Now Eq. (9) can be expressed as a first order differential equation as follows:

The K appears in the above equation as an integrating constant. Substituting U(ξ)/2 = w(ξ) , a2 = 1/(p2 + q2) 
and K = 0 into Eq. (10) yields:

taking w = w(ξ) and a = 1.
By solving Eq. (11) through separation of variables and simplification, we can confirm the validity of the 

following two interesting relations:

(4)U(ξ) =
∑n

i=0
ai(t)

(

ϕ′(ξ)

ϕ(ξ)

)i

.

(5)U(ξ) =
∑n

i=0 ai(t)(Q(ξ))
i

∑m
j=0 bj(t)(Q(ξ))

j
,

(6)Q′(ξ) = Q(ξ)(Q(ξ)− 1).

(7)Q(ξ) =
1

1+ Aeξ
.

(8)uxx − utt = sin(u).

(9)U ′′ =
{

1/(p2 + q2)
}

sin(U).

(10)(U ′/2)2 =
{

1/(p2 + q2)
}

sin2(U/2)+ K .

(11)w′ =
dw

dξ
= sin(w),



4

Vol:.(1234567890)

Scientific Reports |          (2024) 14:762  | https://doi.org/10.1038/s41598-023-50782-1

www.nature.com/scientificreports/

The value of the integrating constant, r  = 0.
In light of the assumption, the solution for the polynomial nonlinear wave equation having variable coef-

ficients of the form F(u, ut , ux , utt , uxt , uxx , . . . ) = 0 can be regarded as:

The transformation U(ξ) = u(x, t) , ξ = p(t)x + q(t) is utilized to reformulate the nonlinear wave equa-
tion with time-dependent coefficients, leading to an equivalent nonlinear equation, with p, q, a0, ai and bi 
(i = 1, 2, 3, . . . , n) as functions of time.

Through the application of the results indicated in Eqs. (12) and (13), we can represent Eq. (14) in an alterna-
tive form as follows:

which represents a polynomial of degree n.
The parameter n can be determined using the balance procedure, which is the comparison of the highest 

order derivative with the highest nonlinear term. Subsequent to finding the parameter n , simplifying by insert-
ing solution (15) into the transformed nonlinear equation yields a trigonometric series in the form of xksin(jw) 
and xkcos(jw) , where j = 0, 1, 2, . . . , n and k = 0, 1, 2, . . .47. By equating to zero all the relevant harmonic terms 
sin(jw) and cos(jw) in multiplicative form with xk , we establish a set of equations that relate to the unknowns 
p, q, a0, ai and bi . As a result, the problem converts into algebraic equations for p, q, a0, ai , bi and differential equa-
tions of p and q in relation to time. Computerized calculations are used to ascertain the values of p, q, a0, ai , bi 
and subsequently, the solutions proposed in Eqs. (12), (13) and (15) are applied.

Extraction of solutions
Consider the Boussinesq model subject to the variable coefficients of the following form:

with α(t) and β(t) being differentiable functions throughout all t .
The system of equations stated above is utilized to model the bidirectional movement of particular water 

waves in a smooth, horizontal channel saturated with a liquid that is both inviscid and irrotational66. The time-
dependent coefficients in the model indicate that the properties of the medium or fluid are changing with time. 
These coefficients can significantly influence the transmission of waves through the medium, leading to multi-
faceted wave interactions and phenomena.

By implementing the transformations U(ξ) = u(x, t) and V(ξ) = v(x, t) , with ξ representing the wave variable 
defined as ξ = p(t)x + q(t) , and substituting them into Eqs. (16) and (17), the equations transform as follows:

Integrating once Eqs. (18) and (19) with regard to ξ , we obtain

By replacing V  from Eq. (20) into Eq. (21) and simplifying thereafter, we derive

The utilization of the homogeneous balance principle for the highest order linear term U ′′ and the nonlinear 
term U2 in (22) results in

(12)sin(w) = sin(w(ξ)) =
2reξ

r2e2ξ + 1

]

r=1

= sech(ξ),

(13)and cos(w) = cos(w(ξ)) =
r2e2ξ − 1

r2e2ξ + 1

]

r=1

= tanh(ξ).

(14)U(ξ) =
n

∑

i=1

tanhi−1(ξ){bi(t)sech(ξ)+ ai(t)tanh(ξ)} + a0(t).

(15)U(w) =
n

∑

i=1

cosi−1(w){bi(t)sin(w)+ ai(t)cos(w)} + a0(t),

(16)ut + vx = 0,

(17)vt + α(t)
(

u2
)

x
− β(t)uxxx = 0,

(18)
(

xṗ+ q̇
)

U ′ + pV ′ = 0,

(19)
(

xṗ+ q̇
)

V ′ + 2αpUU ′ − βp3U ′′′ = 0,

(20)V =
(

xṗ+ q̇
)

U

p
.

(21)
(

xṗ+ q̇
)

V + pU2α − p3βU ′′ = 0,

(22)p4βU ′′ +
(

xṗ+ q̇
)2
U − p2αU2 = 0,
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Solutions through the modified simple equation method
Since the balance number is n = 2 , so we will explore the solution for Eq. (22) in accordance with the following 
prescribed structure of the method:

As the method dictates, substituting (23) into (22) yields the following nonlinear algebraic and differential 
equations:

Solving the above set of algebraic and differential equations by using Mathematica software package program, 
we acquire solutions which are representing below:

Thus, the variable coefficient Boussinesq system yields the following exact traveling wave solutions:

The above mentioned solutions can be transformed into hyperbolic functions, represented as:

As A and B are arbitrary functions of time. So it is possible to select their values arbitrarily, which are produc-
ing a variety of potential outcomes:

Case I: Assuming A = − αa1
�2β

 and B = 6 , then solution (27) and (28) takes the form:

Case II: The choice A = 1
�2β

 and B = 1
αa1

 convert the solutions (27) and (28) into the form:

n+ 2 = 2n, implies n = 2.

(23)U(ξ) = a0(t)+ a1(t)

(

ϕ′(ξ)

ϕ(ξ)

)

+ a2(t)

(

ϕ′(ξ)

ϕ(ξ)

)2

.

(24)

p2αa20 − a0q̇
2 = 0, a0ṗq̇ = 0, a0ṗ

2 = 0,
(

2p2αa0a1 − a1q̇
2
)

ϕ′ − p4βa1ϕ
′′′ = 0,

a1ṗq̇ϕ
′ = 0, a1ṗ

2ϕ′ = 0, a2ṗq̇ϕ
′2 = 0a2ṗ

2ϕ′2 = 0,
(

p2α
(

a21 + 2a0a2
)

− a2q̇
2
)

ϕ′2 + p4β
(

3a1ϕ
′ϕ′′ − 2a2

(

ϕ
′′2 + ϕ′ϕ′′′

))

= 0,

(

p4βa1 − p2αa1a2
)

ϕ′3 − 5p4βa2ϕ
′2ϕ′′ = 0,

(

6p4βa2 − p2αa22
)

ϕ′4 = 0,

a0 =
αa21
36�2β

, a1 = a1, a2 =
6�2β

α
, p = �, q = µ±

1

6

∫

αa1√
β
dt and ϕ = B−

(

6�2Aβ

αa1

)

e
−
(

αa1
6�2β

)

ξ
.

(25)U(ξ) =
αa21
36�2β

+
ABα2a31e

(

αa1
6�2β

)

ξ

(

−6A�2β + Bαa1e

(

αa1
6�2β

)

ξ
)2

,

(26)V(ξ) = −
αa21q̇

36�3β
−

ABα2a31q̇e

(

αa1
6�2β

)

ξ

�

(

−6A�2β + Bαa1e

(

αa1
6�2β

)

ξ
)2

.

(27)U(ξ) =
αa21
36�2β

+
ABα2a31

(

(

Bαa1 − 6A�2β
)

cosh
(

αa1ξ
12�2β

)

+
(

Bαa1 + 6A�2β
)

sinh
(

αa1ξ
12�2β

))2
,

(28)V(ξ) = −
αa21q̇

36�3β
−

ABα2a31q̇

�

(

(

Bαa1 − 6A�2β
)

cosh
(

αa1ξ
12�2β

)

+
(

Bαa1 + 6A�2β
)

sinh
(

αa1ξ
12�2β

))2
.

(29)U(ξ) =
αa21
12�2β

(

1

3
−

1

2
sech2

(

αa1ξ

12�2β

))

,

(30)V(ξ) = −
αa21q̇

12�3β

(

1

3
−

1

2
sech2

(

αa1ξ

12�2β

))

.

(31)U(ξ) =
αa21
36�2β

+
αa21

�2β

(

5cosh
(

αa1ξ
12�2β

)

− 7sinh
(

αa1ξ
12�2β

))2
,
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Case III: If we consider A = 1

6�2
 and B = 1

a1
 then solution (28) and (28) becomes

Case IV: Setting A = αa1
�2β

 and B = 6 in solutions (27) and (28), then

wherein ξ = p(t)x + q(t) with p(t) = � and q = µ± 1
6

∫

αa1√
β
dt.

In the same process, for other considerations of the integral constants A and B , more important and logical 
wave solutions can be obtained but the solutions are not shown in order to keep the size of this article to an 
elegant volume.

Solutions through the generalized Kudryashov method
Applying the homogeneous balance principle to the leading linear term U ′′ and the non-linear term U2 in 
Eq. (22) yields:

If we choose m = 1 , which gives n = 3.
Thus according to the method, the exact solution of (22) takes the following form:

Substituting (37) into (22) and using relation Q′(ξ) = Q(ξ)(Q(ξ)− 1) , we derive the subsequent nonlinear 
algebraic and differential equations following the method

Solving the above set of algebraic and differentials presented in Eqs. (38), using Mathematica software, we 
found solutions that are presented below:

(32)V(ξ) = −
αa21q̇

36�3β
−

αa21q̇

�3β

(

5cosh
(

αa1ξ
12�2β

)

− 7sinh
(

αa1ξ
12�2β

))2
.

(33)U(ξ) =
αa21
36�2β

+
α2a21

6�2
(

(α − β)cosh
(

αa1ξ
12�2β

)

+ (α + β)sinh
(

αa1ξ
12�2β

))2
,

(34)V(ξ) = −
αa21q̇

36�3β
−

α2a21q̇

6�3
(

(α − β)cosh
(

αa1ξ
12�2β

)

+ (α + β)sinh
(

αa1ξ
12�2β

))2
.

(35)U(ξ) =
αa21
12�2β

(

1

3
+

1

2
csch2

(

αa1ξ

12�2β

))

,

(36)V(ξ) = −
αa21q̇

12�3β

(

1

3
+

1

2
csch2

(

αa1ξ

12�2β

))

.

n−m+ 2 = 2n− 2m, impliesn = m+ 2.

(37)U(ξ) =
a0(t)+ a1(t)Q(ξ)+ a2(t)(Q(ξ))

2 + a3(t)(Q(ξ))
3

b0(t)+ b1(t)Q(ξ)
.

(38)

p2αa20b0 − a0b
2
0q̇

2 = 0, a0b
2
0ṗq̇ = 0, a0b

2
0ṗ

2 = 0,
(

a1b
2
0 + 2a0b0b1

)

ṗq̇ = 0,

p2α
(

2a0a1b0 + a20b1
)

− p4β
(

a1b
2
0 − a0b0b1

)

−
(

a1b
2
0 + 2a0b0b1

)

q̇2 = 0,
(

a1b
2
0 + 2a0b0b1

)

ṗ2 = 0,
(

a2b
2
0 + 2a1b0b1 + a0b

2
1

)

ṗq̇ = 0,

p2α(a21b0 + 2a0a2b0 + 2a0a1b1)+ p4β(3a1b
2
0 − 4a2b

2
0

− 3a0b0b1 + a1b0b1 − a0b
2
1)−

(

a2b
2
0 + 2a1b0b1 + a0b

2
1

)

q̇2 = 0,
(

a2b
2
0 + 2a1b0b1 + a0b

2
1

)

ṗ2 = 0,

p2α
(

2b0(a1a2 + a0a3)+ b1(a
2
1 + 2a0a2

)

)− p4β(b20(2a1 − 10a2 + 9a3)

− b1(2a0b0 − a1b0 − 3a2b0 + a0b1))−
(

a3b
2
0 + 2a2b0b1 + a1b

2
1

)

q̇2 = 0,
(

a3b
2
0 + 2a2b0b1 + a1b

2
1

)

ṗq̇ = 0,
(

a3b
2
0 + 2a2b0b1 + a1b

2
1

)

ṗ2 = 0,

p2α
(

a22b0 + 2a1a3b0 + 2a1a2b1 + 2a0a3b1
)

− p4β(6a2b
2
0

− 21a3b
2
0 − 9a2b0b1 + 11a3b0b1 + a2b

2
1)−

(

2a3b0b1 + a2b
2
1

)

q̇2 = 0,
(

2a3b0b1 + a2b
2
1

)

ṗq̇ = 0,
(

2a3b0b1 + a2b
2
1

)

ṗ2 = 0,

p2α(2a2a3b0 + a22b1 + 2a1a3b1)− p4β(12a3b
2
0 + 6a2b0b1

− 27a3b0b1 − 3a2b
2
1 + 4a3b

2
1)− a3b

2
1q̇

2 = 0, a3b
2
1ṗq̇ = 0, a3b

2
1ṗ

2 = 0,

p2α
(

a23b0 + 2a2a3b1
)

− 2p4β
(

8a3b0b1 + a2b
2
1 − 5a3b

2
1

)

= 0,

p2αa23b1 − 6p4βa3b
2
1 = 0,
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Hence by employing the generalized Kudryashov method, we obtain the solutions for the Boussinesq system 
with variable coefficients (14) as follows:

where A stands as an arbitrary constant.
The solutions described above can be expressed in terms of hyperbolic functions as follows:

Case I: If we choose A = 1 in the solutions (41) and (42), then

Case II: The consideration A = 2 converts the solution (41) and (42) into the form:

Case III: If we set A = −2 , then the solution (41) and (42) becomes

Case IV: Suppose A = −1 , then the solution (41) and (42) takes the form:

Here ξ = p(t)x + q(t) , where p(t) = � and q = µ± �
2
∫ √

βdt.
By similar process, it is possible to derive numerous other indispensable and consistent wave solutions 

through variations in the integral constants A . Nonetheless, in order to maintain elegant brevity of the paper we 
have chosen not to include these solutions.

Solutions through the modified sine–Gordon expansion method
As the balance number, n = 2 . So based on the method, consider the solution for Eq. (22):

a0 =
�
2βb0

α
, a1 =

�
2β(−6b0 + b1)

α
, a2 =

6�2β(b0 − b1)

α
, a3 =

6�2βb1

α
,

b0 = b0, b1 = b1, p = �andq = µ± �
2

∫

√

βdt.

(39)U(ξ) =
(1− 4Aeξ + A2e2ξ )�2β

(1+ Aeξ )
2
α

,

(40)V(ξ) = −
(

1− 4Aeξ + A2e2ξ
)

�βq̇
(

1+ Aeξ
)2
α

,

(41)U(ξ) =
�
2β

(

−4A+
(

A2 + 1
)

coshξ +
(

A2 − 1
)

sinhξ
)

α

(

(A+ 1)cosh
(

ξ
2

)

+ (A− 1)sinh
(

ξ
2

))2
,

(42)V(ξ) = −
�βq̇

(

−4A+
(

A2 + 1
)

coshξ +
(

A2 − 1
)

sinhξ
)

α

(

(A+ 1)cosh
(

ξ
2

)

+ (A− 1)sinh
(

ξ
2

))2
.

(43)U(ξ) =
�
2β(coshξ − 2)

α(coshξ + 1)
,

(44)V(ξ) = −
�βq̇(coshξ − 2)

α(coshξ + 1)
.

(45)U(ξ) =
�
2β(−8+ 5coshξ + 3sinhξ)

α(4+ 5coshξ + 3sinhξ)
,

(46)V(ξ) = −
�βq̇(−8+ 5coshξ + 3sinhξ)

α(4+ 5coshξ + 3sinhξ)
.

(47)U(ξ) =
�
2β(8+ 5coshξ + 3sinhξ)

α(−4+ 5coshξ + 3sinhξ)
,

(48)V(ξ) = −
�βq̇(8+ 5coshξ + 3sinhξ)

α(−4+ 5coshξ + 3sinhξ)
.

(49)U(ξ) =
�
2β(coshξ + 2)

α(coshξ − 1)
,

(50)V(ξ) = −
�βq̇(coshξ + 2)

α(coshξ − 1)
.
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By substituting (51) into (22) together with w′(ξ) = sin(w) , then as per the method we can derive the fol-
lowing nonlinear algebraic and differential equations:

By using the Mathematica software package program to solve the system of algebraic and differential Eqs. 
(52) presented above, we obtain different sets of solutions that are presented below:

Set 1: a0 = − 6�2β
α

 , a1 = 0 , a2 = 6�2β
α

 , b1 = 0 , b2 = 0 , p = � , q = µ± 2i�2
∫ √

βdt.
By using these results, the modified sine–Gordon expansion approach provides the solutions of the time-

varying coefficient Boussinesq model as follows:

Set 2: a0 = − 2�2β
α

 , a1 = 0 , a2 = 6�2β
α

 , b1 = 0 , b2 = 0 , p = � , q = µ± 2�2
∫ √

βdt.
The technique, with the aid of these results, offers the solutions to the time-varying coefficient Boussinesq 

system as follows:

Set 3: a0 = − 3�2β
α

 , a1 = 0 , a2 = 3�2β
α

 , b1 = 0 , b2 = ± 3i�2β
α

 , p = � , q = µ± i�2
∫ √

βdt.
These results enable the modified sine–Gordon expansion method to present the solutions of the time-varying 

coefficient Boussinesq equations as follows:

Set 4: a0 = − 2�2β
α

 , a1 = 0 , a2 = 3�2β
α

 , b1 = 0 , b2 = ± 3i�2β
α

 , p = � , q = µ± �
2
∫ √

βdt.
Utilizing these findings, the method yields the solutions to the time-varying coefficient Boussinesq model 

as follows:

In the above sets of solutions, ξ = p(t)x + q(t).

(51)U(w) = b2sin(w)cos(w)+ b1sin(w)+ a2cos
2(w)+ a1cos(w)+ a0.

(52)

p2α(4a0b1 + a2b1 + a1b2)+ p4βb1 − 2b1q̇
2 = 0, b1ṗq̇ = 0, b1ṗ

2 = 0,

p2α(4a0a1 + 3a1a2 + b1b2)+ p4βa1 − 2a1q̇
2 = 0,

a1ṗq̇ = 0, a1ṗ
2 = 0, p2α(2a1b1 + 2a0b2 + a2b2)+ 2p4βb2 − b2q̇

2 = 0,

b2ṗq̇ = 0, b2ṗ
2 = 0, p2α

(

a21 + 2a0a2 + a22 − b21
)

+ 2p4βa2 − a2q̇
2 = 0,

a2ṗq̇ = 0, a2ṗ
2 = 0, p2α(a2b1 + a1b2)− p4βb1 = 0,

p2α(a1a2 − b1b2)− p4βa1 = 0, 3p4βb2 − p2αa2b2 = 0,

p2α
(

a22 − b22
)

− 6p4βa2 = 0,

p2α
(

8a20 + 4a21 + 8a0a2 + 3a22 + 4b21 + b22
)

− 2p4βa2 − 4(2a0 + a2)q̇
2 = 0,

(2a0 + a2)ṗq̇ = 0,

(2a0 + a2)ṗ
2 = 0,

(53)U(ξ) = −
6�2βsech2ξ

α
,

(54)V(ξ) =
6�βq̇sech2ξ

α
.

(55)U(ξ) =
2�2β(−1+ 3tanh2ξ)

α
,

(56)V(ξ) =
2�βq̇(1− 3tanh2ξ)

α
.

(57)U(ξ) =
3�2β

α

(

−1− isechξ tanhξ + tanh2ξ
)

,

(58)V(ξ) =
3�βq̇

α

(

1+ isechξ tanhξ − tanh2ξ
)

.

(59)U(ξ) =
�
2β

α

(

−2− 3isechξ tanhξ + 3tanh2ξ
)

,

(60)V(ξ) =
�βq̇

α

(

2+ 3isechξ tanhξ − 3tanh2ξ
)

.
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Results and discussion
In this section, we have discussed the exact results obtained by the three methods by considering various param-
eters through diagrams. We have depicted the profile of soliton solutions obtained by successfully applying the 
MSE method, the generalized Kudryashov method and the modified sine–Gordon technique to the Boussinesq 
system with varying coefficients. All the figures provide a remarkable representation of how the soliton solutions 
of an equation are affected by the variable coefficients of the equation. Selection of different types of functions 
for the variable coefficients in the system, soliton solutions exhibit a diverse range of waveforms or variations, 
which are displayed with 3D surfaces and 2D and 3D curves to highlight the variations. It is noticeable from 
the figures that the variable coefficients of the equation and the wave velocity function continuously change the 
shape of the wave surface, i.e. the length, height and direction of the wave. To highlight the authenticity of this 
phenomenon, we have diagrammed the wave velocity solutions (29)–(36), (43)–(50) and (53)–(60) that have 
physical applications in the real world.

Graphical analysis of solutions: modified simple equation method
We have portrayed the results of the Boussinesq system with time-involving coefficients, marked as (29) and 
(30), for two distinct scenarios. In the first case, with � = 1 , µ = 0.6 , a1 = t + 1 , α = e−t , β = 1

t  when 
q = µ− 1

6

∫

αa1√
β
dt  and in the second case, with � = −0.65 , µ = 0.2 , a1 = 2t  , α = cos3t  , β = 2t2 for 

q = µ+ 1
6

∫

αa1√
β
dt , we have presented these outcomes in Figs. 1(i), (ii) and 2 (i), (ii) respectively, spanning the 

intervals of −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 . Additionally, we have included both 2D and 3D solution curves, each 
associated with specific time value. The solution surfaces for both u and v form the anti-lump shaped waves in 
the first case, whereas the second case displays irregular periodic solitons with rising wave-amplitudes and 
wavelengths. On the other hand, the directions of the arrows in the (c) diagrams of all figures reveal how the 2D 
curves change with time.

Furthermore, the results of the Boussinesq equations under changing coefficients, identified as (31) and (32), 
have represented graphically for � = −1 , µ = −26 , a1 = 3 , α = 2 , β = 5sec

(

t
20

)

 , when q = µ− 1
6

∫

αa1√
β
dt and 

� = 0.01 , µ = −0.5 , a1 = cosht , α = 3 , β = 5e2t , when q = µ+ 1
6

∫

αa1√
β
dt , in Figs. 3(i), (ii) and 4(i), (ii) respec-

tively, across the ranges −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 , including both 2D and 3D representations of solution 
curves at various time. The solution surfaces for the first and second cases represent curve-shaped and irregular-
shaped solitons respectively.

Again for � = 0.1 , µ = −1.15 , a1 = 0.5 , α = cost , β = 2 , q = µ− 1
6

∫

αa1√
β
dt and � = 0.1 , µ = −0.6 , 

a1 = 3tanht , α = 1 , β = 2sinht , q = µ+ 1
6

∫

αa1√
β
dt , we have plotted the solutions of the time-varying coefficient 

Figure 1.   (i) Graphical representations of solution (29) for u(x, t) when q = µ− 1
6

∫

αa1√
β
dt . (a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 2, 3 . (ii) Graphical 
representations of solution (30) for v(x, t) when q = µ− 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 1, 2, 3.
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Boussinesq model, denoted as (33) and (34), on Figs. 5(i), (ii) and 6(i), (ii) respectively. These plots encompassed 
the spatial domain −10 ≤ x ≤ 10 and the temporal domain 0 ≤ t ≤ 10 , also presented solution curves for distinct 
time points in both 2D and 3D diagrams. In the first scenario, the solution surfaces represent irregular periodic 
solitons, while they depict bell-shaped waves in the second scenario.

Graphical analysis of solutions: generalized Kudryashov method
For � = 0.25 , µ = 0.5 , α = sec2t , β = tanh2t when q = µ− �

2
∫ √

βdt and � = 1 , µ = −15 , α = 10(t + 1) , 

β = (t2−2t+2)
2

15  when q = µ+ �
2
∫ √

βdt , the two results (43) and (44) of the Boussinesq system characterized 
by time-varying coefficients, have depicted in Figs. 7(i), (ii) and 8(i), (ii) over the limitations −10 ≤ x ≤ 10 and 
0 ≤ t ≤ 10 , together with 2D and 3D representations of solution curves across different time. In the both cases, 
the solution surfaces take on distinct forms, with the first case showing double-periodic solitons in both direc-
tions and the second case revealing irregular half-range kink with anti-bell and half-range anti-kink with bell 
shaped solitons along t-axis for u(x, t) and v(x, t) respectively.

Within the Boussinesq equations with time-evolving coefficients, we have displayed the two results identified 
as (45) and (46) in Figs. 9(i), (ii) and 10(i), (ii) throughout the region where −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 for 
two specific conditions. In the first condition, with � = 0.3 , µ = 1.8 , α = 10et , β = (t2 − t + 3)

2 in situation 
where q = µ− �

2
∫ √

βdt and in the second condition, featuring � = −0.35 , µ = 0.95 , α = secet/5 , β = 0.5t/5 
whenever q = µ+ �

2
∫ √

βdt have considered. Additionally these figures show both 2D and 3D solution curves 
for different values of time. Irregular anti-bell shaped solitons characterize the solution surfaces in the first case, 
whereas the second case displays irregular double-periodic solitons with respect to both axes.

In the case of � = 0.05 , µ = 1.5 , α = sect3 , β = 1 when q = µ− �
2
∫ √

βdt and for � = −0.16 , µ = 4.85 , 
α = 10csce3t , β = cos2 t

8 with q = µ+ �
2
∫ √

βdt , we have displayed the two results (47) and (48) of the 
Boussinesq system with time-influenced coefficients in Figs. 11(i), (ii) and 12(i), (ii) within the boundaries of 
−10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 , along with 2D and 3D representations of solution curves at different points of 
time. In both cases the two solution surfaces show irregular periodic solitons, but they exhibit their distinct 
properties.

Graphical analysis of solutions: modified sine–Gordon expansion method
In Fig. 13(i) and (ii), as well as Fig. 14(i) and (ii), we have illustrated the solutions to the Boussinesq model, 
identified as (53) and (54) for the two sets of parameters � = 0.5 , µ = 2.5 , α = ln(t + 1.5) , β = −t , where 
q = µ− 2i�2

∫ √
βdt and � = 0.25 , µ = −2.35 , α = t3coth2t , β = −t2 , when q = µ+ 2i�2

∫ √
βdt . These 

graphical representations span the area −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 , also incorporate the representations of 

Figure 2.   (i): Graphical representations of solution (29) for u(x, t) when q = µ+ 1
6

∫

αa1√
β
dt . (a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 5, 6, 7 . (ii): Graphical 
representations of solution (30) for v(x, t) when q = µ+ 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 5, 6, 7.
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Figure 3.   (i): Graphical representations of solution (31) for u(x, t) when q = µ− 1
6

∫

αa1√
β
dt. a Solution surface, 

b Solution curves in 3D form, b Solution curves in 2D form for t = 0, 5, 10. (ii): Graphical representations of 
solution (32) for v(x, t) when q = µ− 1

6

∫

αa1√
β
dt . a Solution surface, b Solution curves in 3D form, c Solution 

curves in 2D form for t = 0, 5, 10.

Figure 4.   (i): Graphical representations of solution (31) for u(x, t) when q = µ+ 1
6

∫

αa1√
β
dt . (a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t  = 4, 6, 8. (ii): Graphical 
representations of solution (32) for v(x, t) when q = µ+ 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 4, 6, 8.
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Figure 5.   (i): Graphical representations of solution (33) for u(x, t) when q = µ− 1
6

∫

αa1√
β
dt . a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 2, 5, 8 . (ii): Graphical 
representations of solution (34) for v(x, t) when q = µ− 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 2, 5, 8.

Figure 6.   (i): Graphical representations of solution (33) for u(x, t) when q = µ+ 1
6

∫

αa1√
β
dt . (a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 2, 3 . (ii): Graphical 
representations of solution (34) for v(x, t) when q = µ+ 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 1, 2, 3.
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Figure 7.   (i): Graphical representations of solution (43) for u(x, t) when q = µ− �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 5, 9 . (ii): Graphical 
representations of solution (44) for v(x, t) when q = µ− �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 1, 5, 9.

Figure 8.   (i): Graphical representations of solution (43) for u(x, t) when q = µ+ �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 4, 5, 6 . (ii): Graphical 
representations of solution (44) for v(x, t) when q = µ+ �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 4, 5, 6.
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Figure 9.   (i): Graphical representations of solution (45) for u(x, t) when q = µ− �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 3, 6, 9 . (ii): Graphical 
representations of solution (46) for v(x, t) when q = µ− �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 3, 6, 9.

Figure 10.   (i): Graphical representations of solution (45) for u(x, t) when q = µ+ �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 0, 5, 10 . (ii): Graphical 
representations of solution (46) for v(x, t) when q = µ+ �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 0, 5, 10.
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Figure 11.   (i): Graphical representations of solution (47) for u(x, t) when q = µ− �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 5, 9 . (ii): Graphical 
representations of solution (48) for v(x, t) when q = µ− �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 1, 5, 9.

Figure 12.   (i): Graphical representations of solution (47) for u(x, t) when q = µ+ �
2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 2, 4, 6 . (ii): Graphical 
representations of solution (48) for v(x, t) when q = µ+ �

2
∫ √

βdt . (a) Solution surface, (b) Solution curves in 
3D form, (c) Solution curves in 2D form for t = 2, 4, 6.
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Figure 13.   (i): Graphical representations of solution (53) for u(x, t) when q = µ− 2i�2
∫ √

βdt . (a) 
Solution surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 2, 4, 6 . (ii): Graphical 
representations of solution (54) for v(x, t) when q = µ− 2i�2

∫ √
βdt . (a) Solution surface, (b) Solution curves 

in 3D form, (c) Solution curves in 2D form for t = 2, 4, 6.

Figure 14.   (i): Graphical representations of solution (53) for u(x, t) when q = µ+ 2i�2
∫ √

βdt . (a) 
Solution surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 4, 7 . (ii): Graphical 
representations of solution (54) for v(x, t) when q = µ+ 2i�2

∫ √
βdt . (a) Solution surface, (b) Solution curves 

in 3D form, (c) Solution curves in 2D form for t = 1, 4, 7.
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Figure 15.   (i): Graphical representations of solution (55) for u(x, t) when q = µ− 2�2
∫ √

βdt . (a) Solution 
surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 0, 1, 2 . (ii): Graphical 
representations of solution (56) for v(x, t) when q = µ− 2�2

∫ √
βdt . (a) Solution surface, (b) Solution curves 

in 3D form, (c) Solution curves in 2D form for t = 0, 1, 2.

Figure 16.   (i): Graphical representations of solution (55) for u(x, t) when q = µ+ 2�2
∫ √

βdt . (ii): Graphical 
representations of solution (56) for v(x, t) when q = µ+ 2�2

∫ √
βdt . (a) Solution surface, (b) Solution curves 

in 3D form, (c) Solution curves in 2D form for t = 0, 5, 10.
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both solution curves for various time points in 2D and 3D diagrams. In both cases, solitons with bell-shaped and 
anti-bell-shaped profiles, subject to parabolic tapering, represent the respective solution surfaces.

Using � = −0.75 , µ = 0.45 , α = 2sin
(

t+1
15

)

 , β = cos
(

t
10

)

 , for q = µ− 2�2
∫ √

βdt and � = 0.15 , µ = −0.35 , 
α = 3sect , β = ln(t + 3) , for q = µ+ 2�2

∫ √
βdt , we have generated graphical representations in Figs. 15(i), 

(ii) and 16(i), (ii) for the results (55) and (56) of the Boussinesq model, covering the bounded field where 
−10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 , with additional 2D and 3D explanations of solution curves reflecting diverse time 
increments. For the first case, both solution surfaces portray anti-bell and bell-shaped solitons with parabolic 
tapering; and in the second case, they delineate double-periodic solitons for both u(x, t) and v(x, t) , respectively.

Finally, we have refrained from showing figures for singular solutions (35), (36), (49), (50), (57)-(60) of the 
Boussinesq model, which are mathematically correct but have no physical application in the real world. Although 
sometimes considering special functions for variable coefficients, some of these solutions behave like non-sin-
gular solutions. Thus we have shown only the diagrams of solutions (35) and (36) in Fig. 17(i) and (ii) rather 
than illustrating all the graphs of those solutions. We have considered � = 1 , µ = 0.5 , a1 = 4 , α = t , β = 3t and 
taking q = µ− 1

6

∫

αa1√
β
dt to display the figures for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10 , where both images reveal 

singular periodic solitons. Also in these figures the solution curves for different values of time are presented in 
2D and 3D diagrams.

From the above discussion it is clear that the applied methods serve as suitable, applicable and very effective 
tools to find the soliton solutions of the nonlinear evolution models with variable coefficients, which are devel-
oped in engineering, physics and applied sciences.

Conclusion
In this study, we have developed substantial techniques for obtaining exact solutions to the Boussinesq systems 
characterized by the time-varying coefficients. The accessibility of these solutions through the utilization of the 
modified simple equation, the modified sine–Gordon expansion and the Kudryashov methods open up new 
paths for understanding and modeling intricate systems with variable coefficients. The explanations and visual 
presentations of the attained results for different cases increase the accessibility of our findings and enable a 
more intuitive grasp of the dynamics of the system. This research provides theoretical understanding as well as 
opportunities for advanced problem-solving technique by bridging the gap between constant and variable coef-
ficient situations in Boussinesq equations. Although these methods have advantages, they encounter limitations 
when applied to solving equations. These limitations include sensitivity to changes in coefficients, challenges in 
presenting a physically meaningful interpretation, and the generation of impractical solutions. To address these 
constraints, there is a need to refine existing methods and explore hybrid approaches. This study might be used 

Figure 17.   (i): Graphical representations of solution (35) for u(x, t) when q = µ− 1
6

∫

αa1√
β
dt . (a) Solution 

surface, (b) Solution curves in 3D form, (c) Solution curves in 2D form for t = 1, 5, 9 . (ii): Graphical 
representations of solution (36) for v(x, t) when q = µ− 1

6

∫

αa1√
β
dt . (a) Solution surface, (b) Solution curves in 

3D form, (c) Solution curves in 2D form for t = 1, 5, 9.
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both in theory and in practice, which will make a significant contribution to thorough research in mathematical 
physics, which will act as a catalyst in the investigation of other problems in the future.
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