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Cortical folding correlates to aging 
and Alzheimer’s Disease’s cognitive 
and CSF biomarkers
Fernanda Hansen P. de Moraes 1,2, Felipe Sudo 3, Marina Carneiro Monteiro 1, 
Bruno R. P. de Melo 1, Paulo Mattos 3, Bruno Mota 2,4 & Fernanda Tovar‑Moll 1,4*

This manuscript presents the quantification and correlation of three aspects of Alzheimer’s Disease 
evolution, including structural, biochemical, and cognitive assessments. We aimed to test a novel 
structural biomarker for neurodegeneration based on a cortical folding model for mammals. Our 
central hypothesis is that the cortical folding variable, representative of axonal tension in white 
matter, is an optimal discriminator of pathological aging and correlates with altered loadings in 
Cerebrospinal Fluid samples and a decline in cognition and memory. We extracted morphological 
features from T1w 3T MRI acquisitions using FreeSurfer from 77 Healthy Controls (age = 66 ± 8.4, 69% 
females), 31 Mild Cognitive Impairment (age = 72 ± 4.8, 61% females), and 13 Alzheimer’s Disease 
patients (age = 77 ± 6.1, 62% females) of recruited volunteers in Brazil to test its discriminative power 
using optimal cut‑point analysis. Cortical folding distinguishes the groups with reasonable accuracy 
(Healthy Control‑Alzheimer’s Disease, accuracy = 0.82; Healthy Control‑Mild Cognitive Impairment, 
accuracy = 0.56). Moreover, Cerebrospinal Fluid biomarkers (total Tau, A β1‑40, A β1‑42, and Lipoxin) 
and cognitive scores (Cognitive Index, Rey’s Auditory Verbal Learning Test, Trail Making Test, Digit 
Span Backward) were correlated with the global neurodegeneration in MRI aiming to describe health, 
disease, and the transition between the two states using morphology.

Alzheimer’s Disease is the most common dementia worldwide. The clinical diagnosis of Alzheimer’s Disease 
is not based on morphometric variables: it relies on episodic memory impairment, neuropsychological assess-
ment, at least one abnormal biomarker among Cerebrospinal fluid (CSF) analysis, and neuroimaging (PET and 
MRI)1. During its prodromal stage, Mild Cognitive Impairment, some cognitive dysfunction is present but to 
a lesser extent than in dementia. The Mild Cognitive Impairment condition is, therefore, non-determinant of 
future conversion to dementia and can be heterogeneous depending on which symptoms are present and if the 
patient ever  converts2. Alzheimer’s Disease is also characterized by altered concentration of Amyloid β (Aβ ) 
1-40, A β1-42, and total Tau (t-Tau) protein on the CSF, which is correlated with findings of amyloid plaques 
and Tau tangles on histopathological  examinations3,4. In addition, new biomarkers for Alzheimer’s Disease have 
been suggested based on the pathology’s inflammation, such as Lipoxin, which regulates chronic inflammatory 
process  resolution5. In structural images, Alzheimer’s Disease is characterized by brain atrophy, which includes 
volume reductions in the medial temporal lobe and hippocampus, grey matter loss with consequent reduced 
cortical  thickness6–8.

In recent years, cortical folding quantification has been proposed as a promising new approach to correlate 
morphological measurements to healthy  aging9–12 and alterations in brain structure due to neurological patholo-
gies, including Alzheimer’s  Disease13–15. Cortical folding can be measured from a structural T1-weighted MRI: 
(i) by using the primary parameter of cortical folding, Gyrification Index (GI), the ratio of the grey matter’s Total 
and its Exposed  Areas16, (ii) by calculating the fractal  dimension17 of the cortical surface, and (iii) by calculating 
an index (k) derived from a power-law relationship of Total Area ( AT ), Exposed Areas ( AE ), and Cortical Thick-
ness (T). The latter was proposed as a physics-based model for cortical folding by Mota & Herculano-Houzel 
and validated for 55  mammals18. The model provides two indexes of cortical folding: its linear coefficient (k), a 
natural variable to describe brain morphology, which by theory represents the axonal tension, and the angular 
coefficient ( α ), a constant with self-similarity properties and theoretical value of 1.25.
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Wang and colleagues further described the cortical folding universal rule from Mota & Herculano-Houzel for 
the human brain across gender, age, and  pathology19,20. The model evolved to a vector base space that describes 
the mammals’ cortex in three dimensions: axonal tension, K (Eq. 1), cortical shape complexity S (Eq. 2), and 
the brain isometric volume I (Eq. 3). The original work proposes those three perpendicular, independent, and 
dimensionless variables combined could help distinguish pathological events similar to age effects, such as 
Alzheimer’s  Disease21.

We propose improving the differential diagnosis of Alzheimer’s Disease, Mild Cognitive Impairment, and Healthy 
Controls by using the least variant component of the proposed new vector base and representative of axonal 
tension,  K22. Lastly, we correlate K, representing pathological structural changes, with neuropsychological tests 
used to diagnose dementia (cognitive function, working and episodic memory, and memory estimation), typical 
CSF biomarkers related to Alzheimer’s Disease (t-Tau, A β1-40, A β1-42), and Lipoxin.

Results
Firstly, we verified if the IDOR dataset fit the universal cortical folding model proposed by Mota and Hercu-
lano-Houzel18 by estimating the linear coefficient α and quantifying the model’s linearity. The IDOR data fits 
the proposed linear model with α = 1.14±0.03 [1.07, 1.20]  (R2 = 0.83, P < 0.001) statistically different from the 
theoretical value, 1.25 (Student’s t = 3.38, P = 0.00084). Further, we verified if the proposed cortical folding vari-
ables from the Mota & Herculano-Houzel  model18 and the derived variable  K21 correlates with aging. Healthy 
aging reduces brain gyrification in terms of self-similarity α (Pearson’s r = -0.79, DF = 5, P = 0.0345, d = -2.58 
[-6.62, 1.47]) (Supplementary Note 2) and axonal tension K (Pearson’s r = -0.32, DF = 152, P < 0.0001, d = -0.68 
[-1.15, -0.2]) (Fig. 1).

Diagnostic discrimination
In terms of Diagnostic groups discrimination using cortical folding variable K related to axonal tension, K is 
different for the diagnostic groups in the hemisphere (ANOVA F = 28.51, DF = 2, P < 0.0001, P < 0.01 for all 
pairwise comparisons), meaning a global structural change with the pathology. The decrease of K with disease 
presents a similar pattern of the decline with healthy aging, in which Cortical Thickness, Exposed, and Total 
Areas are reduced, promoting a reduction in cortical folding.

Considering specific lobes, Alzheimer’s Disease, Mild Cognitive Impairment, and Healthy Controls presented 
differences in gyrification in all lobes (Frontal lobe, F = 15.04, DF = 2, P < 0.0001; Occipital lobe, F = 10.1, DF = 2, 
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Figure 1.  Age and diagnostic effects in cortical gyrification. (A) Linear fitting with 95% Confidence Interval 
(CI) for the model variables in each Diagnostic group, Healthy Controls (CTL, in blue, adjusted  R2 = 0.85, 
P < 0.0001), Mild Cognitive Impairment (MCI, in yellow, adjusted  R2 = 0.88, P < 0.0001), and Alzheimer’s 
Disease (AD, in red, adjusted  R2 = 0.86, P < 0.0001). As the severity of the disease increases, the linear tendency 
is downshifted, with smaller linear intercepts (K). (B) K linear tendency across age with 95% CI for the three 
diagnostics groups: Alzheimer’s Disease (in red, adjusted  R2 = 0.026, P = 0.21), Mild Cognitive Impairment (in 
yellow, adjusted  R2 = 0.044, P = 0.0051), and Healthy Controls (in blue, adjusted  R2 = 0.097, P < 0.0001).
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P < 0.0001; Parietal lobe, F = 16.82, DF = 2, P < 0.0001 and Temporal lobe, F = 27.61, DF = 2, P < 0.0001). Sub-
sequent pairwise comparisons showed significant differences between Healthy Controls-Alzheimer’s Disease 
and Mild Cognitive Impairment-Alzheimer’s Disease for all lobes and a significant difference between Healthy 
Controls and Mild Cognitive Impairment for the Temporal lobe (Supplementary Information, Fig. S2). There is 
no statistical power to infer if the difference in K between Alzheimer’s Disease and Healthy Controls increases 
with age (Supplementary Information, Fig. S3).

We evaluated K and Cortical Thickness ( log10T ) optimal cut-points in raw data and after removing the age 
effect to compare their discriminating power (Fig. 2). K optimal cut-point for discriminating Alzheimer’s Disease 
and Cognitive Unimpaired Controls is -0.54, and for discriminating Mild Cognitive Impairment and Controls, 
-0.53. K has excellent accuracy and reasonable specificity in distinguishing Alzheimer’s Disease from Healthy 
Controls (AUC = 0.84, accuracy = 0.82, specificity = 0.86, ROC curve in Supplementary Information Fig. S4), 
and low sensitivity (0.58), while log10T (cut-point = 0.39, AUC = 0.85, accuracy = 0.73) has a balanced trade-off 
with specificity and sensitivity (0.77 and 0.73 respectively). Discriminating Mild Cognitive Impairment from 
Healthy Controls is challenging for both K (AUC = 0.63, accuracy = 0.56, specificity = 0.83, sensitivity = 0.54, 
ROC curve in Supplementary Information Fig. S4) and log10T (AUC = 0.64, accuracy = 0.57, specificity = 0.44, 
sensitivity = 0.58).

K (after age correction) cut-points for lobes are described in Table 1 (expanded results in Supplementary 
Information Table S1). It is possible to verify that local cortical regions are less prone to diagnostic discrimination 
than the whole cortex. However, we highlight the discrimination of Healthy Controls and Alzheimer’s Disease 
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Figure 2.  Optimal cut-point (maximum sensitivity and specificity) for K and Cortical Thickness, including 
results with removed age effect (“age correction”). The dashed line represents the optimal cut-point to 
discriminate Alzheimer’s Disease (AD, in red) and Healthy Controls (CTL, in blue), and the dotted line 
represents the optimal cut-point for Mild Cognitive Impairment (MCI, in yellow) and Healthy Controls. (A) 
For K, the optimal cut-point for the CTL-AD is -0.54, and for CTL-MCI, -0.53. (B) For log10T , the optimal 
cut-point for CTL-AD = 0.39 mm and CTL-MCI = 0.40 mm. (C) For K, after age correction, the optimal cut-
point for CTL-AD = -0.52 and CTL-MCI = -0.51. (D) For log10T , after age correction, the optimal cut-point for 
CTL-AD = 0.43 mm and Healthy Controls-Mild Cognitive Impairment = 0.44 mm.

Table 1.  Optimal cut-points (maximum sensitivity + specificity) for K (age-corrected) at each lobe (Frontal, F; 
Occipital, O; Parietal, P, and Temporal, T). Cut-points, accuracy, sensibility, and specificity for discriminating 
pairwise diagnostic groups. AUC  area under the curve, ACC  accuracy, SENS sensibility, and SPEC Specificity. 
ROI codes: F, frontal; O, occipital; P, parietal, and T, temporal lobes.

Lobes

CTL-AD CTL-MCI

Cut-point AUC ACC SENS SPEC Cut-point AUC ACC SENS SPEC

F − 0.46 0.70 0.73 0.46 0.78 − 0.45 0.55 0.5 0.54 0.48

O − 0.35 0.67 0.73 0.5 0.77 − 0.33 0.56 0.45 0.79 0.32

P − 0.34 0.79 0.72 0.77 0.72 − 0.34 0.47 0.64 0.30 0.77

T − 0.34 0.75 0.67 0.61 0.68 − 0.34 0.59 0.69 0.41 0.80
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(AD) patients in the parietal lobe (AUC = 0.82, accuracy = 0.75) and in the temporal lobe for the Healthy Con-
trols (CTL) and Mild Cognitive Impairment (MCI) group contrast (AUC = 0.67, accuracy = 0.59).

Potential confounders to account for with the available data in the diagnostic discrimination analyses are age, 
sex, and years of Education. Age, as demonstrated, has significative effects on K and is corrected by removing 
the age effect. Gender and Education have significant but small effects on K and therefore were not treated as 
confounders in these results. Gender accounts for 2.6% of K variance and 3.9% of K (age corrected) variance. 
Education accounts for 0.70% and 0.42% of K and K (age corrected) variances. Extended results and a brief 
discussion are in Supplementary Note 4.

The validation of these results with a subsample of the ADNI dataset (Supplementary Note 5) presented 
lower AUC and accuracy for K and log10T . The cut-point values cannot be compared directly due to inherent 
systematic variance in acquisition and processing.

Morphological correlation between neurodegeneration and Behavioral and CSF assessments
Further, we aimed to verify if the Alzheimer’s Disease-related morphological brain changes would be correlated 
to clinical and behavioral variables and CSF biomarkers of the disease. We found significant correlations between 
a) executive function, either measured by Digit Span Backwards (working memory) or TMT B-A (cognitive flex-
ibility), b) memory measured by RAVLT A7/A5, and c) global cognition measured by the Cognitive Index with 
K and Cortical Thickness (Table 2 and extended results in Supplementary Information Table S2). The severity of 
cognitive symptoms was associated with decreased cortical folding and decreased Cortical Thickness.

We found significant correlations between K and the concentration of t-Tau, A β1-42, and ratios of Tau and 
A β concentrations. Decreased cortical folding (lower K) was associated with elevated concentrations of t-Tau 
and its ratios with A β and reduced concentrations of A β1-42 in CSF.

Discussion
Structural MRI imaging biomarkers have been extensively studied, including cortical folding aspects of Alzhei-
mer’s  Disease23 and Mild Cognitive  Impairment24. However, investigating cortical morphological measurements 
(or their combinations) is not straightforward since only a few parameters will lead to biological interpretations 
and adequate characterizations of the event in the study. Inspired by the cortical folding model proposed by Mota 
& Herculano-Houzel18, we have investigated an improved and well-motivated structural biomarker to better 
discriminate between diseased and healthy aged brains. The biomarker derived from the cortical folding model is 
the variable K, characterized by a biomechanical interpretation with very low variance across species and healthy 
adult  humans19. We have shown that K discriminates patients with Alzheimer’s Disease from Mild Cognitive 
Impairment and age-matched controls. Further, we have demonstrated that structural damages described by K 
correlate with cognitive decline and biochemical CSF changes related to Alzheimer’s Disease.

From the chosen independent parameters, K (or log10k ) is a natural descriptor of cortical folding and global 
brain morphology as it is: i) almost invariant across mammals, including lissencephalic species and cetaceans; ii) 
derived from physical principles, iii) aggregate structural information from Areas and Cortical Thickness, and iv) 
is based on empirical evidence. With the development of this cortical folding model, there was an addition of the 

Table 2.  Pearson Correlations (r) and Effect Size (d) for behavioral and biochemical assessments and 
morphological parameters, K and Cortical Thickness ( log10T). The P value was corrected (Bonferroni) 
for multiple comparisons within Clinical Assessment and morphological measurement. ROI codes: H, 
Hemisphere; F, Frontal Lobe, and T, Temporal Lobe.

Clinical Assessment ROI K [r; d] log10T [r; d]

Behavioral

 Cognitive Index H 0.41*; 0.9 0.409*; 0.87

 RAVLT A7/A5
H 0.36*; 0.77 0.39*; 0.85

T 0.31*; 0.65 0.44*; 0.98

 TMT B-A
H − 0.30*; − 0.63 − 0.22*; − 0.45

F − 0.21*; − 0.43 − 0.21*; − 0.43

 Digit Span Backward
H 0.25*; 0.52 0.20*; 0.41

F 0.21*; 0.43 0.21*; 0.43

Biochemical (CSF)

 Aβ1-40 [pg/mL] H − 0.073; − 0.15 − 0.22*; − 0.45

 Aβ1-42 [pg/mL] H 0.26*; 0.54 0.086; 0.17

 t-Tau [pg/mL] H − 0.26*; − 0.54 − 0.41*; − 0.9

 Aβ1-42/ A β1-40 H 0.18; 0.37 0.20; 0.41

 t-Tau/Aβ1-42 H − 0.32*; − 0.68 − 0.34*; − 0.72

 t-Tau/(Aβ1-42/ A β1-40) H − 0.28*; − 0.58 − 0.34*; − 0.72

 Lipoxin [pg/mL] H 0.11; 0.22 − 0.052; − 0.10
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auxiliary, but not as invariant within Healthy Controls as K, variables S and I that are defined to be independent 
of K and can carry information about either shape complexity or size  exclusively21.

It is important to note, however, that the model proposed in Mota & Herculano-Houzel18, from which both the 
theoretical scaling law and the new morphometric variables were derived, is not the only proposed mechanism 
for cortical gyrification. This is a simple model that addresses important aspects but does not explain all the 
features known to affect gyrified cortices, such as systematic variations in cortical thickness, buckling induced by 
differential rates of lateral  expansion25, the prevalence of U-shaped fiber between gyri, the presence of cortical-
thalamic connections or any role for other sub-cortical structures. This simplicity is, at the same time, the model’s 
greatest strength and weakness. On one hand, this means it cannot provide a complete description of cortical 
gyrification; on the other hand, it is general enough to predict the existence of a universal scaling law that was 
empirically verified across species, individuals, cortical regions, and length  scales18–21. Indeed, this scaling law 
can be regarded as a strict and non-trivial test for any other proposed mechanism of cortical gyrification. To our 
knowledge, so far, no other proposed gyrification model has been shown to conform to it. More specifically, in 
this present work, the theoretical model plays the role of providing the scaling law to test new datasets against, 
enabling us to characterize normal and abnormal gyrification.

Corroborating the primary hypothesis in this study, our results suggest that K is a sensitive variable for dif-
ferentiating between Alzheimer’s Disease, Mild Cognitive Impairment, and healthy aging while aggregating 
information about complex biological and theoretical processes. Specifically, for Alzheimer’s Disease applica-
tions, cortical folding variables, such as K, could become alternative candidate neurodegeneration biomarker in 
the NIA-AA AT(N)  framework26 and its updated version, the ATX(N) framework if a more extensive cut-point 
analysis is made to ensure its flexibility across multiple datasets and its diagnostic prediction  power27. In this 
study, the subject’s assessment covered multiple clinical and behavioral domains and investigated biochemical 
CSF biomarkers of neurodegeneration, confirming that alteration in cortical gyrification (in K) correlates to 
changes in cognitive function and biochemical markers in Alzheimer’s Disease pathology. To investigate the 
hypothesis properly, we first verified if the model proposed by Mota & Herculano-Houzel18 was adequately fit-
ted to our dataset. We verified the linear trend and compared α for each group with the theoretical value of 1.25 
to confirm that our data fit the proposed model for gyrification. Then, K values were calculated to study how 
cortical gyrification changes in dementia, allowing comparisons with previous investigations.

The presented data fit the universal cortical folding power-law model with a lower value of α than the theoreti-
cal value and has a slope comparable to previous  findings19,20. However, there are limitations in comparing our 
results to prior publications due to the differences in acquisition parameters, equipment, and FreeSurfer versions 
that could imply confounding  components28,29. When comparing our data with a subset of the Amsterdam Open 
MRI Collection, AOMIC  PIOP0130, acquired with the same scanner of IDOR data, the results suggest that the 
slope’s variation is mainly related to age. Thus, our supposed abnormal reported smaller α is probably due to the 
elder and diseased subjects present in the data, indicating a continuous loss in the brain self-similarity aspect. As 
an extrapolation of this result in concern to the folding theory proposed in the original  report18 and considering 
α as a self-similarity index, we hypothesize the nonhomogeneity in the cerebral cortex (gray matter) due to aging 
and Alzheimer’s Disease leads to a non-fractal shape, here seen as a deviation from the theoretical constant with 
self-similarity properties (slope smaller than the theoretical value of 1.25). We expect expansions of this study to 
include the non-homogeneity in cortical structure in the theoretical model. We cross-validated these results with 
the Amsterdam Ultra-high field adult lifespan database (AHEAD), a 7T MRI structural  images31 (Supplementary 
Note 3). These results confirm the previously reported dependency of gyrification with age globally and  locally32.

To compare K with a known structural biomarker, Cortical Thickness (T), we estimated their optimal cut-
points and relative Area Under the Curve (AUC), accuracy, specificity, and sensibility. Lobes’ cut-points were also 
determined. Our results suggest that an independent cortical morphology component, K, is of great potential 
utility, even when applied to smaller ROI, in agreement with previously reported  results33. After removing the 
age effect to isolate the pathological effects on brain structure, we evaluated the optimal cut-point for Cortical 
Thickness and K. K still had higher accuracy than Cortical Thickness in discriminating between Healthy Controls 
and Alzheimer’s Disease and Healthy Controls and Mild Cognitive Impairment. We expanded this analysis by 
applying the same methodology to a subsample of the ADNI dataset processed and shared by Wang et al.19. We 
found different cut-points, which was expected due to the differences in socio-economic-demographics stats, 
selection bias, and image acquisition and processing methodology between the two samples (IDOR and ADNI) 
that could imply differences in morphological measurements, though the model accuracy is comparable.

Considering K is a neurodegeneration biomarker in Alzheimer’s Disease, the bi-modal shape of the curve 
indicates two influential groups with different levels of structural injuries, a distinction not detected by Cortical 
Thickness (bimodal distribution discussed in more detail in Supplementary Note 6). It is possible to affirm with 
a visual inspection of Fig. 2 that K is more sensitive to discriminate subjects with a less folded brain, probably 
due to Alzheimer’s Disease, more aggressive or distributed spatially pathological injuries. Future works should 
quantify the relation between global K and spatial distribution of brain atrophy, which is also an indicator of 
the disease’s later stages, confirming this  interpretation34. The reduced number of subjects limits the statistical 
power of including subgroups in the cut-point analysis.

The accuracy is smaller when comparing Healthy Controls and Mild Cognitive Impairment, which is expected 
since the diagnostic includes a broad range of pathological involvement and outcome, not accounted for in this 
study due to the cross-sectional design. Mild Cognitive Impairment does not necessarily lead to a transition to 
any dementia in all cases, let alone to Alzheimer’s Disease. Besides, memory loss and reduced cognitive abilities 
are also present in healthy aging. The morphological characteristics of the Amnestic Mild Cognitive Impairment 
sample suggest that, as in the clinical aspects, the diagnostic works as an intermediate step. However, longitudinal 
expanded studies will be necessary to address this specific aspect.
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Local analysis in lobes indicates K (after age correction) has better accuracy in discriminating between 
Healthy Controls and Alzheimer’s Disease in the Frontal and Parietal lobes, despite its very low sensibility. 
Higher sensibility is found in the Parietal lobe and higher specificity in the Frontal lobe. This finding confirms 
that the parietal lobes are affected by extended brain atrophy after the temporal  lobes20. The higher accuracy and 
AUC in discriminating Mild Cognitive Impairment subjects from the Healthy Controls in the Temporal lobe 
further confirm that this region is the earlier spatial stage of brain atrophy. The significant difference between 
the discriminative power of K’s values with and without the age effect suggests that the parietal lobe is more 
affected by disease than aging.

It is not possible to confirm with this sample the results from Wang and  colleagues20, if K is better at discrimi-
nating Alzheimer’s Disease from healthy aging in younger individuals (Supplementary Information, Fig. S3). 
An extension of this work would benefit from an increase in the number of subjects to further investigate this 
hypothesis.

As previous publications report, Alzheimer’s Disease and healthy aging have different biological bases and 
onset locations of degeneration that construct both cognitive degeneration processes, from hippocampal neu-
ronal  loss35 to the degradation of cognitive  networks36. However, in morphological terms, Alzheimer’s Disease 
degeneration is similar to a premature and accelerated aging process. Our global and local analysis corroborates 
this indication as K is depreciated with aging for all diagnostics. In Wang et al.,  202121, it is proposed that includ-
ing S and I would improve our knowledge about brain morphology and our capability to remove aging effects. 
Alzheimer’s Disease visually mimics K, S, and I aging in our sample and at ADNI (Supplementary Note 5).

Besides Cortical Thickness being one of the most studied morphological parameters for Alzheimer’s Disease, 
further studies should consider that K represents a natural variable that translates global and local changes in 
brain structure and is more sensitive to changes in the disease severity. In advancing past the present work, one 
might consider increasing the complexity in the discrimination model since none of the included morphological 
parameters in this analysis, cortical folding and cortical thickness delivered results that could be used in a clini-
cal approach due to its low sensitivity and specificity in the smaller regions of interest. Further, the short- and 
medium-term variation in cortical folding and cortical thickness during the continuum of dementia should be 
deeply verified by a longitudinal study. Regarding specific brain locations affected by dementia, another challenge 
found by this study was to relate the global structural findings to alterations in subcortical structures such as the 
hippocampus, which is highly impacted by Alzheimer’s Disease in its later  stages37.

Previous studies suggested the morphological alterations in a brain with Alzheimer’s Disease are not concur-
rent with biochemical and behavioral alterations in the pathological  course38, which indicates abnormalities in 
A β and t-Tau concentrations and brain morphology alterations precede the clinical symptoms. Moreover, one 
limitation of behavioral assessments is that they can include multiple cognitive domains and most complex tasks 
are not mapped in a single region of the human brain. For example, episodic memory decline can be related to 
the reduced number of neurons, synaptic efficiency, and the concentration of neurotransmitters, affecting the 
prefrontal cortex, medial temporal lobe, parietal cortex, and cerebellum  successively39.

K and Cortical Thickness presented correlations for clinical scores, highlighting the Cognitive Index and the 
episodic memory score (RAVLT A7/A5). An expected correlation was also found for t-Tau/Aβ1-42 and t-Tau/
(Aβ1-42/Aβ1-40), commonly used ratios to describe Alzheimer’s Disease effects. Therefore, regardless of the 
Diagnostic, the brain unfolds (measured by the decrease of variable K) with a smaller cognitive index, episodic 
memory score, auditory (Digit Span Backward), and visual working memory (Trail Making Test). In terms of 
the biochemical data analyzed, we can confirm that a less folded brain tends to have a higher concentration in 
CSF of t-Tau, t-Tau/Aβ1-42, and t-Tau/(Aβ1-42/Aβ140) ratios, and a lower concentration of A β1-42, probably, 
at least in part, due to its presence in the  plaques40. These findings are expected as the onset of brain structure 
injuries is later than that of A β plaques and phosphorylated Tau occurrence, leading to neuronal  death38. We 
correlated K and the clinical/biochemical scores independently from the diagnostic, given that these events are 
not simultaneous in the pathological course.

We do not yet fully understand the contributions of deviation from biochemical and clinical typical values 
to the structural changes in dementia and neurodegenerative diseases. However, we can provide a time-point 
analysis and correlate the accumulation of A β plaques and Tau tangles with reduced cortical thickness and a 
less folded brain. Also, previous reports describe gyrification changes in smaller regional ROIs associated with 
one domain tasks and cognitive index as Mini-Mental State Examination (MMSE)41. Núñez investigated the 
association between gyrification and memory scores in Alzheimer’s Disease subjects and reported significant 
associations between a semantic fluency test and the left insular  cortex42. In contrast, we use a global measure 
of gyrification that is theoretically motivated and shown to be correlated to multiple cognitive measurements. 
Concerning the cortical folding variables, future studies must overcome the methodological limitations of com-
paring samples acquired on different sites to focus on the impact of socio-economic-demographic43, cognitive 
 reserve44, and cognitive  protection45 on K, S, and I.

We intended to minimize the limitation due to the restricted sample size used in this study by re-running the 
morphometrical analysis in a subsample of ADNI, included in Wang et al.19. However, in this methodological 
replication, there are limitations regarding the data and methodology to extract morphological variables. In the 
subsample included in Wang et al. work, there are no Mild Cognitive Impairment subjects. Also, most subjects 
do not present information about biospecimen collection and clinical data assessments. Inherent differences 
in acquisition and processing pipelines might lead to differences in morphological measurements which is 
the possible cause for finding different cut-points in the replication; therefore, validating the cut-points found 
from IDOR by applying it to ADNI data would not be effective as comparing the discriminative power of K in 
both situations. Nevertheless, we intended to suggest a clinical application of a novel morphological variable 
for measuring neurodegeneration, demonstrate its usefulness, and increase data diversity by studying a sample 
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with recruited volunteers in a middle-income country and acknowledge the possible limitations of extending 
these results to other datasets.

Lastly, Alzheimer’s Disease is a complex pathology related to multiple lifestyle and social factors and health 
 overcome46. We expect future studies to include other potential confounders that assess the disorder’s inherent 
complexity. Further, extensions of this study could verify the validity of this diagnostic tool in smaller regions 
of interest, such as specific regions, sulci, or gyri, as the proposed method suggested in work by Leiberg et al.47.

This manuscript intended to verify the clinical application of the proposed independent morphological 
components on 123 elder subjects and argues that a variable related to axonal tension and the invariant aspects 
of cortical gyrification should be considered an additional highly discriminating structural marker to describe 
neurodegeneration. As the biological meaning of K and S are confirmed in future studies, we expect to be able 
to infer the biomechanical process occurring in neurodegeneration, especially Alzheimer’s Disease, using inde-
pendent morphological variables that we have proposed recently that better capture the global aspects of cortical 
shape and  size21. We have shown that Alzheimer’s Disease is morphologically similar to accelerated aging and 
distinguishable from the Mild Cognitive Impairment and Healthy Controls groups. Further, we demonstrated 
significant correlations between K and multiple behavioral tests and CSF biomarkers, which are sensitive to age 
correction, reinforcing that non-concomitant processes during Alzheimer’s Disease make it harder to establish 
chains of causality.

Methods
The Alzheimer’s project sustained by IDOR is a follow-up study about Alzheimer’s Disease’s morphological, 
behavioral, and biochemical aspects. The study enrolled 231 individuals from 2011 to 2018. Eligibility criteria 
for the project were as follows: (i) subjects had no contraindications to undergo MRI, such as presenting metal 
implants in the head; (ii) participants showed no signs or symptoms indicative of large-vessel cerebrovascular 
disease, tumoral changes, or traumatic injury affecting brain structure, as detected in clinical, cognitive and 
neuroimaging assessments; (iii) no severe sensorial deficits which could interfere in the application of neuropsy-
chological tests were identified; (iv) subjects did not present major depressive disorder or any severe lifetime 
psychiatric disorder and (v) MRI analyses showed no significant artifacts, which could preclude the identifica-
tion of brain structures. Also, subjects presenting anxiety or any other condition which interfered with their 
ability to remain still during MRI were excluded. Details on eligibility and exclusion criteria are described by 
Sudo et al.48. The Hospital Copa D’Or Research Ethics Committee approved the present research under protocol 
number CAAE 47163715.0.0000.5249. All the participants provided written informed consent before enrolment 
in the study and all experiments were performed in accordance with relevant guidelines and regulations. All 
images and data were anonymized after acquisition. In this study, we included a convenience sample by select-
ing the MRI first session and clinical assessment of 134 participants who met the inclusion criteria: Healthy 
Unimpaired Controls, or with the exclusive diagnosis of Mild Cognitive Impairment or Alzheimer’s Disease, 
and T1w structural MRI images acquired with the same protocol at the same equipment, a 3 T Philips Achieva, 
and eight years or more of Education (Flowchart at Supplementary Information Fig. S1, which include further 
details of exclusion in the data processing steps). The diagnosis was defined based on the criteria described in 
the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)49.

Data acquisition and processing
The participants’ T1-weighted MRI images (3 T Philips Achieva) were acquired with the following acquisition 
protocol: TR/TE 7.2/3.4 ms; matrix 240x240 mm; FOV 240 mm; slice thickness 1 mm; 170 slices. The structural 
images were processed in FreeSurfer v6.0.0 with the longitudinal pipeline (due to the multiple acquisitions for the 
cohort project, despite selecting only the first session) without manual intervention at the  surfaces50–52 and with 
the localGI pipeline to generate an external  surface16. Morphological measurements from the surfaces generated 
with FreeSurfer were extracted with Cortical Folding Analysis  Tool53. We defined ROI as the whole hemisphere, 
frontal, temporal, occipital, and lateral lobes (based on FreeSurfer definition). The lobes’ area measurements 
were corrected by their integrated Gaussian Curvature, removing the partition size effect and enabling a direct 
comparison between lobes and hemisphere cortical  folding20.

Images’ quality regarding head motion was verified during the acquisition. In cases that were identified 
head motion during acquisition, the team repeated the image series. Further, a senior radiologist confirmed 
the image quality qualitatively, approving the inclusion of the subject. Images that were not possible to process 
with FreeSurfer (due to head motion or other acquisition artifacts) were excluded. Due to processing errors, 
which would need manual intervention to be overcome, eleven subjects were excluded during the FreeSurfer 
processing or data extraction steps. During the visual inspection of the surfaces, images were classified with a 
scale ranging from 0 to 2. Images classified with 0 were rejected, and those classified as 1 and 2 can be included 
in the  study54. Two subjects were classified with 0 in the MCI diagnostic group and removed from the study. One 
subject’s segmentation was classified as 2. Most subjects presented small portions of nonbrain regions (e.g., dura 
mater) included in the brain mask (72%). The final number of subjects included in this report is 121 (77 Healthy 
Controls, 31 with Mild Cognitive Impairment, and 13 with Alzheimer’s Disease) (Table 3).

A team of physicians, psychologists, and speech therapists handled the clinical, behavioral, and biochemical 
assessment described and discussed previously in works by Coutinho et al.55 and Drummond et al.49. The tests 
included Digit Span Backwards (working memory), Rey’s Auditory Verbal Learning Test (RAVLT) A7 and A5 
(memory), and Trail Making Test (TMT) (cognitive flexibility).

The RAVLT consists of five oral presentations of a word list that are repeated by the patient after each pres-
entation (A1 to A5). After a second list is presented (as a distractor), the patient is asked to free recall (A6) the 
first list, which was presented and repeated five times (immediate recall). Then, after a fixed interval, the patient 
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is again asked to repeat that first list (A7) (delayed recall). We have calculated the difference between the delayed 
free recall of the list (A7) and the last repetition of the list after being presented by the examiner (A5). This 
estimate portrays verbal  memory56.

The Cognitive Index is calculated as a global cognitive function (composed of TMT and RAVLT) weighted 
for age intervals of 10 years. It is estimated as the mean value of A5, A7, TMT A, and TMT B z-scores from 
normative values of age and years of schooling, adapting the Cognitive Index applied in previous publications 
as Verburgt et al.57. Because both working memory and cognitive flexibility are executive functions, Digit Span 
Backwards was not part of the Cognitive Index to avoid over-representing executive functions in global cognition.

For a subset of our sample (28 CTL, 13 Mild Cognitive Impairment, and 6 Alzheimer’s Disease for Lipoxin, 
29 CTL, 13 Mild Cognitive Impairment, and 6 Alzheimer’s Disease for A β1-42, A β1-40, and t-Tau), we included 
the following biochemical biomarkers from the Cerebrospinal Fluid (CSF): Lipoxin, A β1-42, A β1-40, and t-Tau. 
CSF biomarkers were measured from CSF samples (15 ml) extracted from lumbar punctures and using Euroim-
mun enzyme immunoassays with single antigen (ELISA)  kits49.

Due to the limitation of the size sample for this study, we ran the same diagnostic discrimination analysis and 
optimal cut-point with a subsample of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)58 database (adni.
loni.usc.edu) included in Wang et al.19 for the hemispheres. The subsample included the first MRI session from 
subjects of ADNI 1, ADNI GO, and ADNI 2 cohorts with T1w image acquired in 3 T equipment as selected for 
Wang and colleagues’ study. ADNI provided images preprocessed with FreeSurfer version 5.3. The participant’s 
description is included in Supplementary Note 3, and the acquisition methods are in https:// adni. loni. usc. edu/ 
metho ds/. The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 
Disease (AD).

Data statistical analysis
To evaluate whether the dataset conforms to the universal cortical folding law (Eq. 4) fitting to the dataset 
included in this study, a linear regression of the logarithmic form of the expression was applied, and the  R2 and 
the model slope (the self-similarity index α ) were assessed. The dataset’s slope was compared with a two-tailed 
Student’s t-test against the expected value of 1.25 to assess how closely the cortical folding in the dataset conforms 
to theoretical universal scaling  law18.

We evaluated the correlation of Cortical Folding variables ( α and K = log10 k ) with age using Pearson’s correla-
tion coefficient r and Cohen’s d for the Effect Size of correlation.

(4)T
1
2AT = kAα

E

Table 3.  Summary of each sociodemographic, morphological, behavioral, and biochemical variables. Mean 
values ± standard deviation (number of subjects) and post hoc comparison of means for the demographics 
within groups significant difference (control group as reference). *P < 0.05.

Variable CTL (N=77) MCI (N=31) AD (N=13)

Age [years]* 66 ± 8.4 72 ± 4.8* 77 ± 6.1*

Education [years]* 15 ± 2.2 13 ± 2.4* 13 ± 3*

Female, N (%) 53 (69%) 19 (61%) 8 (62%)

Morphometrical

Cortical Thickness [mm]* 2.5 ± 0.099 2.5 ± 0.088* 2.4 ± 0.079*

Total Area [mm] 98000 ± 7800 97000 ± 8200 95000 ± 9300

Exposed Area [mm2] 37000 ± 2400 37000 ± 2600 37000 ± 3000

k* 0.30 ± 0.0095 0.29 ± 0.0094* 0.28 ± 0.01*

K ( log10k)* − 0.52 ± 0.014 − 0.53 ± 0.014* − 0.55 ± 0.015*

Behavioral

 Cognitive Index* 0.21 ± 0.64 − 1.5 ± 1.3* − 3.4 ± 1.5*

 RAVLT A7/A5* 0.82 ± 0.18 0.53 ± 0.31* 0.24 ± 0.31*

 TMT B-A* 59 ± 48 130 ± 110* 230 ± 130*

 Digit Span Backward* 5.8 ± 1.7 4.6 ± 1.6* 3.8 ± 1.4*

Biochemical (CSF)

 Lipoxin [pg/mL]* 130 ± 62 (28) 120 ± 51 (11) 79 ± 74 (6)*

 Aβ1-40 [pg/mL] 4200 ± 1900 (29) 5000 ± 2600 (11) 5700 ± 1700 (6)

 Aβ1-42 [pg/mL]* 530 ± 240 (29) 450 ± 320 (11) 280 ± 60 (6)*

 t-Tau [pg/mL]* 350 ± 190 (29) 470 ± 200 (11) 630 ± 280 (6)*

https://adni.loni.usc.edu/methods/
https://adni.loni.usc.edu/methods/
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Diagnostic discrimination was assessed in two aspects: the difference of means of K and Cortical Thickness, 
in its logarithmic form log10T , between groups, and an optimal cut-point analysis for those variables. Multiple 
comparisons of means were made with ANOVA and post hoc pairwise evaluations with Tukey multiple com-
parisons of means, which presents the P value corrected for multiple comparisons (Bonferroni). Cut-points 
were determined by selecting the point with the maximum sum of sensitivity and specificity with bootstrapping 
to estimate cut-point variability (bootstrap number = 1000). We further compared the Area Under the Curve 
(AUC) of the Receiver Operating Characteristic (ROC) curve generated for each cut-point analysis, Accuracy, 
Sensibility, and Specificity to verify differences between morphological variables’ performance in discrimination.

Pearson’s correlation r and Cohen’s d Effect Size were calculated for correlations between morphological vari-
ables K and Cortical Thickness within Behavioral and CSF assessments. The correlation’s P value was corrected 
for multiple comparisons (Bonferroni) within the clinical assessment and morphological parameters.

All statistics were analyzed with R v4.3.0 and RStudio v2023.06.0. The statistical significance threshold was 
α = 0.05, and a 95% Confidence Interval is included for effect sizes and when necessary.

Data availibility
The AOMIC and AHEAD datasets generated and/or analysed during the current study are available in the 
Zenodo repository, https:// doi. org/ 10. 5281/ zenodo. 57506 19. The Wang, 2016 datasets generated and/or analysed 
during the current study are available in the Zenodo repository, https:// zenodo. org/ record/ 61348. The IDOR 
datasets generated and/or analysed during the current study are not publicly available due to local Ethics Com-
mittee approval restrictions but are available from the corresponding author on reasonable request. The R code 
generated and/or analysed during the current study is available in the GitHub repository, https:// github. com/ 
metaB IOlab/ Corti calFo lding_ AD_ Aging.
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