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Optical coupling control of isolated 
mechanical resonators
F. E. Onah 1,2, B. R. Jaramillo‑Ávila 3*, F. H. Maldonado‑Villamizar 4 & B. M. Rodríguez‑Lara 5

We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard 
optomechanical interaction. The vibrational modes are mechanically isolated from each other and the 
optical modes couple evanescently. We recover the ranges for variables of interest, such as mechanical 
and optical resonant frequencies and naked coupling strengths, using a finite element model for a 
standard experimental realization. We show that the quantum model, under this parameter range 
and external optical driving, may be approximated into parametric interaction models for all involved 
modes. As an example, we study the effect of detuning in the optical resonant frequencies modes and 
optical driving resolved to mechanical sidebands and show an optical beam splitter with interaction 
strength dressed by the mechanical excitation number, a mechanical bidirectional coupler, and a two‑
mode mechanical squeezer where the optical state mediates the interaction strength between the 
mechanical modes.

Optomechanical systems provide a versatile platform for quantum optics experiments and applications, includ-
ing optical bi-stability1,2, damping and anti-damping of mechanical motion in microwave-coupled mechani-
cal  resonators3,4, optically-assisted cooling of mechanical  oscillations5–9, and optomechanically induced 
 transparency10,11, for example. Additionally, optomechanical devices in various configurations provide an excel-
lent platform to study optically mediated interactions between mechanical  resonators12–14. This lead to several 
phenomenon such as P and PT symmetry in mechanical  resonators15–17, and dark mode  control9. Optomechanical 
systems are a promising  platform18–23 to build  sensors19,24 and quantum information  transducers25,26 relying on 
the effect of electromagnetic radiation pressure on the vibrational modes of mechanical  objects27,28; for example, 
suspended micromirrors, membranes, microtoroids, microsphere resonators, micromembranes in superconduct-
ing circuits, 2D photonic crystals, photonic crystal nanobeams, and cold atoms in optical  cavities4. Additionally, 
some of these platforms allow for further coupling between two or more optomechanical cavities, increasing the 
number of plausible applications for these  systems29.

Recent advances in optomechanical cooling provide access to both mechanical and optical ground states 
and open the door to a wider range of low excitation number  experiments30. Optomechanical systems in the 
quantum regime may find use in quantum technologies. For example, in quantum sensing and metrology, con-
trolling the interaction of mechanical oscillators may lead to the engineering of two-mode squeezed  states31–37, 
or the development of mechanical  couplers38,39 needed for mechanical interferometers. In quantum information 
platforms, they may serve as transducers from microwave to optical  spectrum40,41 or mechanical  memories42,43.

We are interested in the quantum dynamical description of two mechanically isolated vibrational modes, 
each one interacting with its own optical mode under standard optomechanical coupling. We introduce eva-
nescent coupling between optical modes that allows for optical control of mechanical coupling under optical 
sideband driving. We present a finite element modeling analysis of plausible physical realizations for our model 
in order to recover parameter ranges that may inform our analysis of the dynamics. Next, we introduce the 
quantum mechanical model and show that it is possible to define a reference frame where it takes the form of a 
parametric Hamiltonian where all mechanical and optical modes interact. In this reference frame, it becomes 
straightforward to realize that it is possible to induce and control the interaction of the mechanical modes by 
external optical sideband driving. Then, we explore on-resonance driving of identically fabricated optical cavities 
and show that the effective model is that of an optical beam splitter where the coupling strength is modified by 
the state of the vibrational modes. We show that red sideband driving of the optical cavities with detuning equal 
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to the mechanical frequency produces different effects depending on the detuning between the optical cavities. 
If the resonant frequency detuning between the optical cavities is equal to the difference between the mechani-
cal resonant frequencies, optically mediated mechanical mode coupling appears. If it is equal to the sum of the 
mechanical resonant frequencies, optical mediated parametric mechanical coupling appears. In both cases, the 
optical state affects the coupling strength between the mechanical vibrational modes, we numerically explore 
these dynamics.

Finite element model
We are interested in a standard experimental optomechanical setup; a silica nanobeam with an engraved one-
dimensional photonic defect  cavity44–46. For the sake of simplicity, we consider a periodic array composed by 
75 rectangular cells where a quadratic reduction in size for the middle 15 cells introduces a  defect44. We take 
each regular cell with length 360 nm (x-axis), width 1400 nm (y-axis), and thickness 220 nm (z-axis) and use 
finite element modeling (FEM) to find the principal optical and mechanical modes at (2π) 204× 1012 rad/s 
and (2π) 2.23× 109 rad/s , in that order, in good agreement with experimental  results44. Radiation pressure 
may induce a mechanical deformation that modifies the geometry of each optical cavity and, in consequence, its 
characteristic frequency, leading to optomechanical coupling. Photonic crystal nanobeams of these scales lead 
to bare optomechanical couplings of the order of g ∼ (2π) 106 rad/s46. These devices need to be pumped with 
an external laser whose power may vary from a few to hundreds of thousands of nanowatts, see supplementary 
material in Ref.46, leading to laser-to-cavity coupling rates of the order of tens of 106 rad/s46 and to pump rates 
between �min ∼ (2π) 109 rad/s and �max ∼ (2π) 1011 rad/s.

In order to explore theoretically the optical coupling between two of these structures, we place two identical 
nanobeams parallel to each other and vary their separation. We use two possible configurations, one nanobeam 
on top of the other, Fig. 1a and two nanobeams side-by-side, Fig. 1b. In both configurations, we consider the 
mechanical modes of each nanobeam isolated. The optical modes localized in each photonic defect cavity have 
evanescent fields outside its structure. These fields may overlap with the cavity in the neighboring nanobeam, 
producing optical coupling. The optical coupling has a roughly decaying exponential behavior as a function of 
the separation between the nanobeams. We quantify the coupling strength between the two fundamental optical 
modes by looking at their odd and even combinations in the two nanobeam structures. Let us define the fre-
quency of the odd (even) mode as �+ ( �− ). Its value is above (below) the frequency of a single beam fundamental 
mode �0 and we approximate it as �+ = �0 + γ ( �− = �0 − γ ), where the parameter γ is the optical coupling 
strength. Our finite element model provides us with numerical values for the even and odd frequencies at various 
nanobeam separation values s and, in consequence, allows us to extract an optical coupling strength γ (s) as a 
function of the separation, Fig. 2. As expected, we find an exponential decay of the optical coupling strength as 
the separation between the beams s increases. For the on-top configuration, we find simple exponential decay, 
Fig. 2a , for the optical coupling as a function of s and, in contrast, the side-by-side configuration follows fourth-
order exponential decay in s, Fig. 2b. Additionally, the on-top configuration provides stronger optical coupling 
than the side-by-side configuration but might be experimentally difficult to fabricate. The latter provides a much 
weaker optical coupling but its fabrication is more  feasible47.

Quantum mechanical model
The quantum mechanical description for our optomechanical system, composed by two isolated mechanical 
resonators, each supporting an optical mode with evanescent coupling between them,

is given in terms of the creation (annihilation) operators for the optical â†j  ( ̂aj ) and mechanical b̂†j  ( ̂bj ) modes, 
the optical and mechanical mode frequencies are ωj and νj , in that order, the optomechanical coupling, optical 
driving, and optical coupling strengths are gj , �j , and γ , respectively, the driving fields frequencies are ωdj with 
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Ĥ

�
=

2
∑

j=1

[

ωj â
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â†1â2 + â1â
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Figure 1.  (a) On-top and (b) side-by-side configurations coupling optical modes in two isolated 
optomechanical photonic crystal nanobeams.
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j = 1, 2 . Moving into the reference frame defined by free optical fields, |ψ0� = e
−i

∑

j ωj â
†
j âj t |ψ1� , allows us to 

apply a rotating wave approximation to disregard terms moving at fast optical frequencies, ωj + ωdj , and consider 
an effective Hamiltonian,

where the optical driving term depends on the detuning between the resonant and driving frequencies, 
�j = ωj − ωdj , and the coupling terms by the detuning between resonant frequencies, δ = ω1 − ω2 . Now, a 
displacement of the mechanical modes proportional to the excitation number in the optical modes followed 

by moving to the frame defined by the free mechanical term, |ψ1� = e
−
∑

j αj â
†
j âj

(

b̂†j −b̂j

)

e
−i

∑

j νj b̂
†
j b̂j t |ψ2� with 

αj = −gj/νj , yields an effective Hamiltonian,

with three components, an effective Kerr term,

for the optical modes dependent on the ratio between the optomechanical coupling squared to the mechani-
cal resonant frequency. The optomechanical detuning term converts into parametric coupling between each 
mechanical resonator mode and its corresponding inscribed optical cavity mode,

feasible of control by the detuning between the external driving and the optical cavity. The optical coupling term 
converts into parametric coupling between optical and mechanical modes,

feasible of control by the detuning between the optical cavities resonant frequencies, δ = ω1 − ω2 . Thus, we may 
control the parametric processes between each mechanical resonator and its inscribed optical mode via external 
driving fields, aiming for �j + (p− q)νj = 0 , but the parametric processes between isolated mechanical modes, 
mediated by the coupled optical modes, is controlled by the detuning between the optical cavities resonant fre-
quencies, aiming for δ + (r − s)ν1 + (u− v)ν2 = 0 , which is provided by the fabrication itself.
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)2
,

(5)ĤOM =
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Figure 2.  Coupling between the fundamental optical modes in two identical optomechanical photonic 
crystal nanobeams as a function of the gap between the nanobeams s for the (a) on-top and (b) side-by-side 
configurations. Dots show results from FEM and solid curves fit a simple exponential decay for the on-top 
configuration and fourth-order polynomial exponential decay for the side-by-side configuration.
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Mechanically controlled optical beam splitter
Let us drive the optical cavities on-resonance, �j = 0 , such that the optomechanical coupling terms satisfy 
the optical pumping control condition �+ (p− q)νj = 0 with p = q . In addition, if we consider the opti-
cal cavities identical, δ = 0 , such that the optical coupling terms with r = s and u = v satisfy the condition 
δ + (r − s)ν1 + (u− v)ν2 = 0 , we end up with a driven nonlinear optical beam splitter Hamiltonian,

where the driving strength and the optical coupling strength depend on the auxiliary Hermitian operator 
function,

given in terms of the optomechanical coupling strength gj , the resonant mechanical frequency νj , the mechanical 
excitation number b̂†j b̂j , and the confluent hypergeometric function 1F1[a; b; z].

For the typical optomechanical coupling strength to resonant frequency ratio in nanobeams, gj/νj ≪ 1 , the 
auxiliary Hermitian operator function may be approximated to a form,

whose leading order depends on the mechanical excitation number b̂†j b̂j ; for example,

a sufficiently small mechanical excitation number, F̂
[

j, 1, 0
]

≈ 1 , provides us with an effective driven nonlinear 
optical beam splitter,

with constant parameters in the so-called Rabi regime, g2j /νj ≪ γ , where the spectrum of the system without 
driving, � = 0 , is linear. As a result, we may approximate the system,

and recover a standard optical beam splitter with driving. In the future, it may be possible to have larger optom-
echanical coupling strength that allows exploring the nonlinear regimes available in the model. Our mechanically 
isolated configuration may explore these nonlinear regimes in the case where the nanobeams are sufficiently 
apart from each other, such that the optical coupling is minimal, making it a trivial scenario.

Figure 3 shows the Lindblad evolution of the mean value of the optical mode excitation number, �â†j âj� with 
j = 1, 2 using the full master equation in the simplified reference frame provided by our Hamiltonian in Eq. (7) 
under the leading order approximation for the auxiliary Hermitian operator function F̂[j, p, q] in Eq. (9). We must 
emphasize that optical excitation numbers remain unchanged by the reference frame transformations. While 
mechanical excitation numbers are affected by these reference frame transformations, the numerical difference 
between the simplified and laboratory reference frames remains numerically small of the order of � 10−7 . In this 
numerical simulation we introduce the following optomechanical parameters, ν1 = ν2 = ν , �1/ν = �2/ν = 10 , 
�1/ν = �2/ν = 0 , γ /ν = 400 , δ/ν = 0 , γo,j/ν = 0.09 and γm,j/ν = 1.5× 10−5 . The optical and mechanical 
loss rates γo,j and γm,j , in that order, are consistent with experimental  results45 for devices similar to our Finite 
Element Model. The interplay between experimental bare optomechanical couplings and loss rates in current 
experimental systems make it impossible to observe this phenomenon in the laboratory at the time. In order to 
do so, the bare optomechanical couplings must increase and the loss rates decrease. Considering current loss 
rates, the optomechanical couplings need increase five hundred times in order to see the effects described in 
this section, g1/ν = g2/ν = 0.2 . Here, we opted for this approach rather than user smaller loss rates aiming 
for small evolution times that allow a full master equation treatment using Linblad formalism. For the optical 
component of the initial state, we use initial states with one excitation entangled between the two optical modes, 
to produce oscillations between them. For the mechanical component of the initial state, we use two distinct 
states to compare the effect of mechanical excitation numbers. One initial state has zero mechanical excitation 
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[
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)

+ γ

(
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observe decay due to optical losses, Fig. 3a and c. For short evolution times, Fig. 3b and d, we observe optical 
excitation exchange with temporal period,

that depends on the mechanical excitation number, �b̂†j b̂j� with j = 1, 2 . We find good agreement between our 
closed-form expression and the temporal periods obtained from numerical experiments, vertical lines in Fig. 3b 
and d. Figure 4 displays the effective coupling governing the optical excitation exchange in our mechanically 
controlled optical beam splitter, where 2π/τ is the effective coupling corresponding to an excitation exchange 
with temporal period τ . The effective coupling depends both on the bare optomechanical couplings, gj = g1 = g2 , 
and the mechanical occupation numbers, �b̂†j b̂j� . A larger mechanical occupation number produces a smaller 
value for the effective coupling. This numerical simulation uses the same numerical parameters as those in Fig. 3, 
except that the bare optomechanical coupling is variable and the losses are neglected, their effect on the effective 
coupling is very small.
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Figure 3.  Time evolution of the optical mode excitation number, �â†j âj� with j = 1, 2 , 
for initial states (a,b) |ψ(0)� =

[
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]

|0, 0�mec and (c,d) 
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times. The exchange period between optical modes is indicated by vertical gray lines.

Figure 4.  Effective coupling for optical excitation exchange as a function of the bare optomechanical couplings 
gj = g1 = g2 . Blue (red) curves correspond to systems with zero (one) total mechanical excitation. Dots 
correspond to the effective coupling obtained from numerical experiments and solid curves to our closed-form 
expressions.
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Optically controlled mechanical coupler
Let us drive the red sideband of the optical cavities, �j = νj , such that the optomechanical coupling terms with 
q = p+ 1 satisfy the optical pumping control condition �j + (p− q)νj = 0 . In addition, we consider the opti-
cal cavities with a detunning equivalent to δ = −ν1 + ν2 , such that the optical coupling terms with r = s + 1 
and v = u+ 1 satisfy the condition δ + (r − s)ν1 + (u− v)ν2 = 0 . Under these considerations, the effective 
Hamiltonian describing the system,

becomes a nonlinear coupler of mechanical and optical modes where the excitation transfer between optical 
modes is accompanied by the transfer of mechanical excitation. Here, we used the auxiliary Hermitian operator 
function F̂[j, p, q] defined before.

A first-order approximation using the coupling and pump rates ranges available in the experimental setups 
discussed in our finite element model leads to the following effective model,

with the effective linear optomechanical coupling strength �effj = �gj/(2νj) and the parametric coupling strength 
Ŵeff = γ g1g2/(ν1ν2) mixing all optical and mechanical modes. For the nanobeams under consideration and 
using the maximum feasible pump rate of 105 nW , �effj becomes the leading coupling, which is of the order 
of tens of megahertz. The second leading rate is Ŵeff  , which is of the order of a few megahertz or fractions of a 
megahertz. Finally, the coupling g2j /νj is the smallest of the three, of the order of a few kilohertz. Such that we 
may approximate,

the dynamics with a linear parametric model that associates the exchange of optical excitation with that of 
mechanical excitation.

Figure 5 (Fig. 6) show the Schrödinger equation time evolution with a non Hermitian Hamiltonian of the opto-
mechanical excitation numbers in both nanobeams under the effective nonlinear coupled Hamiltonian in Eq. (14). 
Where, again, we use the leading order approximation for the auxiliary Hermitian operator function F̂[j, p, q] in 
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Figure 5.  Time evolution of the optical, �â†j âj� , and mechanical, �b̂†j b̂j� , modes excitation number at each 
nanobeam, (a,b) j = 1 and (b,c) j = 2 , for (a) and (c) long, and (b) and (d) short evolution times. The initial 
state is |ψ(0)� = |0, 0�opt
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optomechanical modes in both nanobeams and (b) and (d) optomechanical modes in each nanobeam is 
indicated by vertical gray lines.
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Eq. (9). As in the previous section, the numerical effect of frame changes on the mean value of excitation numbers 
is negligible. For short, Fig. 5a and c (Fig. 6a and c), and long, Fig. 5b and d (Fig. 6b and d), evolution times with 
an initial state with no excitation in the optical modes, |ψ(0)� = |0, 0�opt

[

cos
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π
3

)

|1, 0�opt + sin
(

π
3

)

|0, 1�mec

]

 
(

|ψ(0)� = |0, 1�opt
[

cos
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π
3

)

|1, 0�opt + sin
(

π
3

)

|0, 1�mec

])

 . Figure 5b and d (Fig. 6b and d) show the predicted 
excitation exchange between the optical and mechanical modes in each nanobeam with frequency exchange 
temporal period,

that induces the exchange of mechanical excitation with a period,

that can be observed in Fig. 5a and c. (Fig. 6a and c). As the evolution time in this simulation are relatively large, 
it is unfeasible to perform this simulation using a Lindblad formalism. We perform this simulation using a non 
Hermitian Hamiltonian where the diagonal imaginary parts of the Hamiltonian model optical and mechanical 
loss rates. For the numerical simulations in Figs. 5 and 6 we introduce the following optomechanical param-
eters, ν1 = ν2 = ν , g1/ν = g2/ν = 0.0004 , �1/ν = �2/ν = 10 , �1/ν = �2/ν = 1 , γ /ν = 400 , δ/ν = 0 , 
γo,j/ν = 4.48× 10−6 and γm,j/ν = 1.39× 10−10 . As in the previous section, the interplay between current 
optomechanical parameters, such as the bare coupling rate, and the loss rates reported in such devices makes it 
impossible to observe this phenomenon in current experimental  conditions44–46. To observe this phenomenon 
either the bare optomechanical coupling should increase or the loss rates should decrease. In this numerical 
simulation we chose to decrease the loss rates. We set the optical loss rates to about one order of magnitude 
smaller than those of the record high quality factor in optical  cavities48. We set the mechanical loss rates to the 
record high quality factor for mechanical  resonators49. The rest of the parameters in this numerical simula-
tions are consistent with our Finite Element Model. Figure 7 displays the effective couplings corresponding to 
the exchange of optomechanical modes in each nanobeam, Fig. 7a, and the exchange of mechanical excitation 
between nanobeams, Fig. 7b. The effective optomechanical coupling is independent of the optical occupation, 
producing overlapped data points for the first and second nanobeams, in Fig. 7a. This is the reason why tempo-
ral periods, vertical lines, in the right columns of Figs. 5 and 6 are equal. We find good agreement between our 
closed-form expression and data from numerical experiments. Mechanical excitation exchange, in turn, appears 
for nonzero values in optical occupation numbers, such as that in Fig. 6. We find good agreement between the 
effective coupling from our closed-form expression and results from numerical experiments. For the analyzed 
experimental parameter values, the effective optically controlled mechanical coupling is smaller in value than 
effective optomechanical coupling in each nanobeam. The numerical simulation in Fig. 7 uses the same numerical 
parameters as those in Figs. 5 and 6, except that the bare optomechanical coupling is variable and the losses are 
neglected, their effect on the effective coupling is very small.
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Optically controlled mechanical two‑mode squeezing
Finally, let us drive the red sideband of the optical cavities, �j = νj , such that the optomechanical coupling terms 
with q = p+ 1 satisfy the optical pumping control condition �+ (p− q)νj = 0 . In addition, we consider the 
optical cavities with a detuning equivalent to , δ = −ν1 − ν2 , such that the optical coupling terms with r = s + 1 
and u = v + 1 satisfy the condition δ + (r − s)ν1 + (u− v)ν2 = 0 . Under these considerations, the effective 
Hamiltonian describing the system,

becomes a more complex model where the first term is the standard nonlinear Kerr term, the second term is, 
again, linear optomechanical coupling at each nanobeam, and the third term suggest two-mode parametric 
coupling of the mechanical modes mediated by excitation exchange of the optical modes. Again, we used the 
auxiliary Hermitian operator function F̂[j, p, q] defined before.

Again, a first-order approximation using the coupling and pump rates ranges available for current experi-
mental setups leads to the following effective model,

where the effective linear optomechanical coupling �effj = �gj/(2νj) and the parametric coupling strength 
Ŵeff = γ g1g2/(ν1ν2) are equal to those defined before and follow an identical hierarchy that yields the approxi-
mate effective Hamiltonian,

whose dynamics are that of two linearly coupled optomechanical systems with an extra term that associates the 
exchange of optical excitation with two-mode mechanical squeezing.

Figure 8 shows the Schrödinger time evolution with a non Hermitian Hamiltonian under the effective Ham-
iltonian in Eq. (19) and with the leading order approximation for the auxiliary Hermitian operator function 
F̂[j, p, q] . These results, just like in the two previous sections display negligible differences in the mean excitation 
numbers due to frame changes. Figure 8a and c show short evolution times with an initial state with no excitation 
in the mechanical modes, |ψ(0)� = |0, 0�opt
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 and Fig. 8b and d for an initial 
state with a single excitation in the mechanical modes, |ψ(0)� = |0, 1�opt
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 , All 
figures show the predicted excitation exchange between optical and mechanical modes in each nanobeam with 
temporal period given by Eq. (17). The period related to two-mode squeezing occurs at long evolution times, 
which makes it unsuitable for Lindblad simulation due to the increase in excitation number provided by the 
two-mode squeezing. Instead we perform evolution with a non Hermitian Hamiltonian with non zero imaginary 
parts in the diagonal to model optical and mechanical loss rates. For the numerical simulations in Figs. 8 and 9 we 
introduce the following optomechanical parameters, ν1 = ν2 = ν , g1/ν = g2/ν = 0.0004 , �1/ν = �2/ν = 10−5 , 
�1/ν = �2/ν = 1 , γ /ν = 400 , δ/ν = −2 , γo,j/ν = 4.48× 10−6 and γm,j/ν = 1.39× 10−10 . Given the interplay 
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â†1â2b̂
†
1b̂

†
2 + â1â
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Figure 7.  Effective optically controlled mechanical couplings as a function of the bare optomechanical 
couplings gj = g1 = g2 . (a) Effective optomechanical coupling in each nanobeam; the blue (red) dots are 
obtained from numerical experiments with a value of zero (one) in the optical occupation, and the solid curve 
corresponds to our closed-form expression, Eq. (17), which is independent of the optical occupation number. 
(b) Effective mechanical coupling; dots correspond to numerical experiments and the solid curve corresponds 
to our closed-form expression in Eq. (18).
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of current optomechanical parameters to observe the optically controlled mechanical two-mode squeezing 
either the bare optomechanical coupling needs to increase or the loss rates need to decrease. Like in the previous 
section, we decrease the optical and mechanical loss rates to the same values as before and leave the rest of the 
parameters in this numerical simulations consistent with our Finite Element Model. Figure 9 displays the para-
metric coupling strength Ŵeff in the optically controlled mechanical two-mode squeezing as a function of the bare 
optomechanical coupling gj = g1 = g2 . This coupling describes the exchange of optical and mechanical modes in 
each nanobeam and it also depends on the mechanical occupation numbers. We find good agreement with results 
from numerical experiments with a mechanical occupation value of zero and our closed-form expression. The 
numerical simulation in Fig. 9 uses the same numerical parameters as those in Fig. 8 except that the bare opto-
mechanical coupling is variable and the losses are neglected, their effect on the effective coupling is very small.

Conclusion
We proposed a Hamiltonian model composed of two mechanical vibrational modes and two optical modes. The 
vibrational modes are mechanically isolated and coupled to their corresponding optical mode under standard 
optomechanical interaction. We allow for independent external driving and evanescent coupling of the optical 
modes. We built a finite element model of the classical problem to recover the ranges of values for variables of 

Figure 8.  Time evolution of optical, �â†j âj� , and mechanical, �b̂†j b̂j� , modes excitation number in each nanobeam, 
(a,b) j = 1 and (c,d) j = 2 , for initial states (a) and (c) |ψ(0)� =

[
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3

)
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]

|0, 0�mec 
and (b) and (d) |ψ(0)� =
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(

π
3

)

|1, 0�opt + sin
(
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)

|0, 1�opt
]

|0, 1�mec for short evolution times. The exchange 
period between optomechanical modes in each nanobeam is indicated by vertical gray lines.

Figure 9.  Parametric coupling strength Ŵeff for optically controlled mechanical two-mode squeezing as 
a function of the bare optomechanical coupling gj = g1 = g2 ; blue (red) dots correspond to results from 
numerical experiments with a mechanical occupation value of zero (one), and the solid curve corresponds to 
our closed-form expression.
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interest; that is, mechanical and optical resonant frequencies for the isolated elements, their optical coupled 
modes, and the naked coupling strength corresponding to different configurations and separations.

We showed that our model allows the coupling of the isolated mechanical modes mediated by the optical 
fields. The difference between resonant frequencies of the optical modes, which may be hard to control in experi-
mental setups, and between them and the external optical driving field frequencies control the type of mechanical 
interaction produced. Thanks to the ranges of parameter values, we are able to approximate the models into linear 
models for a small number of excitation in the system that, for example, induces an optical beam splitter where 
the mechanical state dresses the optical coupling, a mechanical bidirectional coupler or a two-mode squeezer 
where the optical state of the system controls the interaction coupling strength.

Data availability
The datasets used or analysed during the current study are available from the corresponding author on reason-
able request.
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