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Predicting the subjective 
intensity of imagined experiences 
from electrophysiological measures 
of oscillatory brain activity
Derek H. Arnold 1*, Blake W. Saurels 1, Natasha Anderson 1, Isabella Andresen 1 & 
Dietrich S. Schwarzkopf 2,3

Most people can conjure images and sounds that they experience in their minds. There are, however, 
marked individual differences. Some people report that they cannot generate imagined sensory 
experiences at all (aphantasics) and others report that they have unusually intense imagined 
experiences (hyper-phantasics). These individual differences have been linked to activity in sensory 
brain regions, driven by feedback. We would therefore expect imagined experiences to be associated 
with specific frequencies of oscillatory brain activity, as these can be a hallmark of neural interactions 
within and across regions of the brain. Replicating a number of other studies, relative to a Resting-
State we find that the act of engaging in auditory or in visual imagery is linked to reductions in the 
power of oscillatory brain activity across a broad range of frequencies, with prominent peaks in the 
alpha band (8–12 Hz). This oscillatory activity, however, did not predict individual differences in 
the subjective intensity of imagined experiences. For audio imagery, these were rather predicted 
by reductions within the theta (6–9 Hz) and gamma (33–38 Hz) bands, and by increases in beta 
(15–17 Hz) band activity. For visual imagery these were predicted by reductions in lower (14–16 Hz) 
and upper (29–32 Hz) beta band activity, and by an increase in mid-beta band (24–26 Hz) activity. Our 
data suggest that there is sufficient ground truth in the subjective reports people use to describe the 
intensity of their imagined sensory experiences to allow these to be linked to the power of distinct 
rhythms of brain activity. In future, we hope to combine this approach with better measures of 
the subjective intensity of imagined sensory experiences to provide a clearer picture of individual 
differences in the subjective intensity of imagined experiences, and of why these eventuate.

Most people can conjure images and sounds that they experience within their  minds1, such that we can refer to 
the mind’s eye and to the mind’s ear. This capacity is so general that you might be surprised that some people 
have no such capacity. People who are unable to voluntarily form mental images are known as  aphantasics2. These 
people often report also being unable to voluntarily generate and experience a mental soundscape, other than 
internal  speech3,4. To an aphantasic, like the first author, the capacity of others to voluntarily generate images 
and sounds that they then experience within their minds can seem mysterious, leading them to ponder if most 
people have frequent hallucinations during their waking lives. People who can engage in voluntary visual imagery 
can be similarly perplexed that others cannot. We can each struggle to understand that the lived experiences of 
others might be unlike our own.

Aphantasics may be positioned at one end of a continuum, with people who are prone to have intense imag-
ined sensory experiences at the other  extremity5.  Schizophrenics6,7 and people with  PTSD8, for instance, tend to 
report having vivid imagined visual experiences.

We no longer need to rely entirely on self-report measures for evidence of individual differences in the inten-
sity of imagined sensory experiences. The existence of subjective differences seems to have been substantiated by 
studies that have shown that the subjective intensity of imagined sensory experiences can modulate performance 
in an objective test of visual sensitivity [e.g.9; also  see10,11]. Moreover, differences in the degree to which imagery 
modulates performance in a measure of visual processing has been linked to morphological differences between 
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different human brains. Specifically, the degree of modulation has been found to be inversely scaled with the 
surface sizes of V1 (primary visual cortex) and  V212. So, people with smaller V1s tend to report having more 
intense imagined experiences, and this predicts the degree to which imagery will modulate performance in an 
objective test of visual  sensitivity9.

Evidence linking imagined experiences to activity in sensory brain regions [e.g.12] is consistent with the 
hypothesis that endogenously driven imagined sensory experiences are driven by a reversed processing hierarchy, 
relative to exogenously driven  experiences1,13. Specifically, the theory is that imagined experiences are driven 
by a cascade of neural events, with processes originating in frontal brain regions triggering activity in medial 
and temporal brain regions, which enacts the retrieval of memories, which in turn triggers activity in primary 
sensory brain regions. Hypothetically, it is the activity in primary sensory brain regions, ultimately triggered by 
processes in frontal brain regions, that is causally involved in the generation of imagined sensory  experiences13,14. 
According to this view, we would additionally expect imagined experiences to be associated with the power of 
specific frequencies of oscillatory brain activity, as these can serve as a hallmark of different cognitive operations 
and the interactions that they set in train between populations of neurons both  within15 and across different 
regions of the  brain15.

There are well established links between oscillatory brain activity and the generation of imagined sensory 
experiences. For instance, internally directed cognitive operations tend to be associated with reductions in the 
power of alpha band (8–12 Hz) oscillatory brain  activity16–18, and there is good evidence that alpha-band power 
reductions are associated with the generation of imagined visual experiences [e.g.19–21], but for contrary evidence 
 see22. Indeed, recent evidence suggests that alpha-band oscillations can serve as a signature of shared visual 
mental imagery and perceptual  representations21. This evidence, however, leaves open the question of whether 
alpha-band oscillatory brain activity in particular, or oscillatory brain activity in general, might also predict the 
subjective intensity of different peoples’ imagined sensory experiences.

Here, we test the hypothesis that the power of oscillatory brain activity can predict individual differences in 
the subjective intensity of imagined audio and visual experiences. To preface our results, we first demonstrate 
likely compliance with task instructions (that participants should conjure different types of imagined sensory 
experience—audio or visual, or that they should rest). This is achieved by showing that each of these operations 
is characterised by distinct patterns of oscillatory brain activity, that are both reliable across participants, and 
are consistent with patterns of brain activity identified in previous studies. Moreover, we can decode what type 
of cognitive operation a given participant was engaged in on a trial-by-trial basis, and we establish that this 
capacity does not correlate with the subjective intensities of different people’s imagined experiences. This is 
important, as it implies that people who described their imagined experiences as relatively weak or strong were 
likely equally engaged in our tasks, as we could equally discern what cognitive operation they had engaged in 
from analyses of their brain activity. Finally, we find that we can predict the subjective intensity of a person’s 
imagined visual experiences from analyses of the oscillatory power of their brain activity. In our sample, intense 
imagined audio experiences were predicted by reductions in the theta (6–9 Hz) and gamma (33–38 Hz) bands, 
and by increases in beta (15–17 Hz) band activity. For visual imagery intense imagined visual experiences were 
predicted by reductions in lower (14–16 Hz) and upper (29–32 Hz) beta band activity, and by an increase in 
mid-beta band (24–26 Hz) activity.

Methods
Ethics
Ethical approval was obtained from the University of Queensland’s (UQ) Ethics Committee, and the experiment 
was performed in accordance with UQ guidelines and regulations for research involving human participants. 
Each participant provided informed consent to participate in the study and were made aware that they could 
withdraw from the study at any moment without prejudice or penalty.

Participants
Forty nine people volunteered to participate in the study. These included one of the authors (IA), and 48 under-
graduate students and staff at The University of Queensland (40 female,  Mage = 22.2). This should be regarded 
as a convenience sample. Testing took place during a period marked by intermittent disruptions of face-to-face 
testing, so we were unable to obtain our desired sample size (of 100), which would have delivered ~ 0.97 power 
to detect medium sized (~ 0.39) linear relationships between behavioural and neural measures. Our obtained 
sample size delivers an equivalent power to detect strong sized (~ 0.59) effects. While this research was carefully 
planned, study procedures and analyses were not pre-registered.

Equipment failure (event triggers failed to register) resulted in data for 5 participants being unusable. The 
final group of participants, who contributed data that was analysed, therefore consisted of 44 people, including 
one author and 43 undergraduate students and staff (35 female,  Mage = 22.2). We included an author in data 
collection as our hypotheses relate to the power of oscillatory brain activity, distributed across the brain and 
frequency spectrum, and we felt it was improbable that foreknowledge of this interest could favour a particular 
outcome—especially as no neuro-feedback was provided during recordings of brain activity.

Apparatus and stimuli
Testing took place in a darkened room. A chinrest was used to ensure a constant distance (50 cm) from the moni-
tor, and to stabilize the head during EEG recordings. Trial instructions were presented on an ASUS VG248QE 
3D Monitor (1920 × 1080 pixels, refresh rate: 60 Hz), driven by a Cambridge Research Systems ViSaGe stimulus 
generator and custom MATLAB R2015b software. A Tucker-Davis Technologies (TDT) Audio Workstation 
was used to produce auditory white noise, which was emitted diotically at a clearly supra-threshold intensity 
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(~ 50 dB SPL) by speakers positioned to either side of the testing display. EEG data were recorded using a Biosemi 
International ActiveTwo system. Electrodes (64 Ag/AgCl) were placed according to the extended international 
10–20 system and digitised at a 1024 Hz sample rate with 24-bit analog–digital conversion. The standard BioSemi 
reference and ground electrodes were used during recordings.

All data and analysis scripts underlying the results on which study conclusions are based are available to via 
UQ eSpace (analysis scripts: https:// doi. org/https:// doi. org/ 10. 48610/ b09a8 67 Imagination Power Spectral Den-
sity (PSD) files: https:// doi. org/https:// doi. org/ 10. 48610/ a1b33 95 Resting-State PSD files: https:// doi. org/https:// 
doi. org/ 10. 48610/ 59e57 57).

Procedure
Trial sequences are depicted in Fig. 1. Before all trials, there were written instructions on the test display stating 
“On this trial, you should close your eyes before you left click to begin the trial. This will trigger an audio white 
noise presentation. Please keep your eyes closed until the noise stops”. On Resting-State trials, participants were 
additionally instructed to “try to empty your mind, relax, and concentrate on your breathing. Try to ignore any 
visual or auditory experiences until the noise stops”. On Audio Imagination trials, participants were then asked 
“While you have your eyes closed, please try to create a mental soundtrack”. Five instructed scenarios were 
selected at random, including asking people to imagine hearing a favourite piece of music, the sounds of a busy 
street, the sound of their childhood caregiver, the sound of birds singing, or the sounds of a summer thunder-
storm (which are common in Brisbane, Australia—the site of research). On Visual trials, people were asked to 
try and create a mental image, of either their childhood caregivers face, of themselves waiting to cross a road, a 
sunrise over water, a duck landing on a lake, or of their loungeroom. Before all trials, instructions finished with 
the directive “When you are ready to start the trial, close your eyes and click the left mouse button”.

After Imagination Condition trials, participants were asked to indicate how vivid their imagined sensory 
experiences had been, using a 5-point scale (from “No image/mental soundtrack at all. I only know that I was 
thinking of images/sounds”, to “Perfectly realistic, as vivid as real seeing/as if I was listening to my mental sound-
scape”). These responses were adopted from the vividness of visual imagery questionnaire (VVIQ2)23. A full 
experimental session involved 54 individual trials, 18 for each of the 3 experimental conditions, all interleaved 
in a random order. This number of trials may seem small, but the reader should be mindful that the individual 
trials were protracted (each taking ~ 20 s to complete, and encompassing 10 s of sustained sensory imagination, 
or resting), and they therefore generated a considerable amount of brain imagining data per individual trial.

EEG data pre-processing and analyses
All analyses of data were conducted using custom MATLAB scripts using the FieldTrip  toolbox24, and MAT-
LAB’s in-built commands Fast-Fourier transform (fft) and Fit Regression Support Vector Machine (fitsvrm). 

Trial sequence….
close eyes…

imagine rest

reopen eyes…

imagination rating
(when appropriate) 

Figure 1.  Graphic depicting a trial sequence. Each trial began with participants reading trial task instructions. 
They would then close their eyes before pressing a mouse button to begin the trial. After a short delay (0.62–
1.62 s), this initiated a 10 s period wherein soft white noise was presented via speakers. On Audio and Visual 
Imagination trials, during these periods participants tried to imagine having a sensory experience in the 
specified sensory modality. On Resting-State trials, participants tried to empty their minds and concentrate 
on their breathing. In each case, participants were prompted to re-open their eyes by the white audio noise 
stopping. On Audio and Visual Imagination trials, they would then rate the vividness of their imagined 
experience.

https://doi.org/
https://doi.org/10.48610/b09a867
https://doi.org/
https://doi.org/10.48610/a1b3395
https://doi.org/
https://doi.org/10.48610/59e5757
https://doi.org/10.48610/59e5757
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FieldTrip routines were used to high- (1 Hz), low- (100 Hz), and notch (45–55 Hz) filtered EEG data using a 6th 
order Butterworth filter with a two-pass direction. Data for each sensor were then re-referenced to the volume 
average voltage (from across all 64 channels). An independent-components analysis (ICA) was conducted, 
using the FieldTrip ft_componentanalysis routine to produce topoplots that were visually inspected to identify 
components relating to Eye and muscle artifacts. These were then removed [as  per25]. Data was then epoched 
into 9 s segments, centred on a 10 s trial sequence (see Fig. 1). This epoch selection avoids periods contaminated 
by transients relating to people closing or reopening the eyes. Data were then sorted into Audio Imagination, 
Visual Imagination and into Resting-State epochs.

For all epochs, PSDs were calculated for data for all 64 channels using the Matlab fft command. The range of 
amplitudes recorded by each sensor during an epoch was first checked, and if this exceeded 250 mV trial data 
for that sensor was excluded from analyses (by setting the power estimate to NaN). This is a precaution, taken 
in addition to our ICAs, to remove the possibility of analyses being contaminated by eye and muscle related 
artifacts. Otherwise, the matlab fft command was used to calculate an estimate of oscillatory power for each 
frequency. These were averaged across 1 Hz bins, providing rounded estimates of oscillatory power from 1 to 
40 Hz, for each sensor on each trial for each participant.

Trial-by-trial decoding of experimental condition for individual participants
For these analyses, estimates of oscillatory power (from 1 to 40 Hz) for each sensor (1–64) were used as features 
in a decoding process, so the feature space for each participant was a 64 sensor X 40 Hz spectrum of oscillatory 
power estimates X 3 conditions (Imagine Audio, Imagine Visual, and Resting-State). The individual classification 
process was a leave-one-trial-out cross validation scheme [e.g.16,26], which is essentially a test for reliably distinct 
PSDs prevailing on trials for each of our experimental conditions. For each trial training sets consisted of data 
from all other trials. Conditional signatures were calculated by averaging training set data across all trials from 
the same condition, and the left out trial data was decoded as having belonged to the condition with which the 
sum of absolute conditional residuals (a sum of unsigned difference scores) was smallest. Note that circularity 
is avoided by excluding the to-be-decoded trial data from the training set. Decoding was successful when the 
to-be-decoded trial data was matched to the experimental condition to which it belonged—due to having the 
smallest sum of unsigned residuals with that conditional signature. Note that simple absolute difference scores 
were used for this determination, as opposed to calculating a Euclidean distance, and no rescaling of data was 
conducted. Decoding success rates are calculated as the proportion of correctly classified trials. Chance decoding 
success rates are ~ 0.333, as there were three conditions.

Cluster tests for consistent conditional PSD differences across participants
We also conducted non-parametric cluster-based permutation tests, based on differences in the PSD in dif-
ferent experimental conditions. For these tests oscillatory power estimates were first averaged across trials for 
each participant, separately for each experimental condition. So, the feature space informing these tests was a 
44 participant X 64 sensor X 40 Hz spectrum of oscillatory power estimates X 3 experimental conditions. For 
each sensor X frequency X condition combination, outlier features were identified (i.e. features >   ± 3 S.D.s from 
the conditional mean). When an outlier was detected, when it was possible the individual’s feature estimate was 
replaced by a value interpolated across oscillatory power estimates from neighbouring sensors for that partici-
pant. Otherwise, the outlier was excluded from analyses by settings its value to NaN.

We conducted three cluster tests, to detect differences between PSD calculated from brain activity recorded for 
each combination of our experimental conditions. These tests were based on paired t-tests, comparing individual 
conditional estimates of the oscillatory power of brain activity (on average, for each combination of sensor and 
frequency). Tests with an uncorrected p-value < 0.05 are clustered, based on spatio-frequency proximity, and 
cluster-level statistics are obtained by summing test statistics and taking the maximum to test significance against 
a random distribution, obtained via 1000 permutations of the original  data24.

Linear support vector regression analyses
Initial treatment of data for these analyses was as described for cluster tests, including the exclusion of feature 
outliers. To isolate features of brain activity that were involved in generating imagined sensory experiences, from 
oscillatory activity that is generic for an individual, we then created conditional difference PSDs, by subtract-
ing individual PSDs calculated from Resting-State trials from individual PSDs calculated from trials involving 
imagined audio and imagined visual experiences.

In addition to isolating the features of brain activity that were involved in generating imagined sensory 
experiences, the calculation of conditional difference scores has the advantage of subtracting out features of 
brain activity that might be specific to a recording session (i.e. greater overall estimates of oscillatory power, 
due to less noise from a better EEG cap fit), as opposed to the brain activity that is set in train by the cognitive 
operations we wish to investigate. To further simplify these analyses, we averaged difference scores across all 
sensors for each individual. So, these analyses are a test for predictive relationships between global measures of 
oscillatory power differences (i.e. difference scores averaged across all sensors) and measures of the subjective 
intensity of imagined experiences.

The feature space for SVRs was a 44 (participants) X 1 (conditional difference scores) space, used to predict 
subjective imagined intensity ratings. Each SVR involved 125 iterations of a fourfold cross validation process. 
For each iteration, individual participants were randomly assigned to one of four evenly sized (N = 11) groups. 
For each fold, the features and subjective intensity ratings for 3 of the groups (N = 33) were used to train a linear 
regression model, using the Matlab fitsvm command. The resulting model was then used to predict subjective 
intensity ratings of the test group (N = 11), based on test group EEG features, and a correlation coefficient is 
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calculated between these predicted and the actual test group subjective intensity ratings. Resulting R-values 
are stored for analyses. A matching set of shuffled analyses is also undertaken, wherein all participant intensity 
ratings are randomly reassigned prior to the formation of groups—to create a distribution of chance R-values 
(where there can be no correspondence between EEG features and subjective intensity ratings other than chance). 
Shuffled chance R-values are also stored for comparison with actual R-values.

The 125 iterations of the fourfold process generates 500 actual and 500 shuffled chance R-values for each 
frequency (1–40 Hz). Bayes Factor t-tests are then conducted for each frequency, to determine if there is evi-
dence of a difference between actual and chance R-values, or if there is evidence for these being interchangeable.

Results
Correlations between the intensities of imagined audio and visual experiences
We examined relationships between average individual ratings of the intensity of imagined audio and visual 
experiences. A Pearson’s correlation revealed a robust positive correlation (r = 0.70, p < 0.001, see Fig. 2). These 
data are consistent with datasets demonstrating similarly strong positive correlations between the subjective 
intensity of imagined audio and visual experiences [e.g.4].

Conditional PSD
As all recordings of brain activity were taken while people had their eyes closed, across all conditions there were 
prominent peaks in estimates of the power of alpha-band (~ 10 Hz) oscillatory brain activity (see Fig. 3). This 
was true whether oscillatory power was averaged across all sensors (see Fig. 3, top row) or was only estimated 
from a subset of occipital / parietal sensors (sensors PO7, PO3, O1, PO8, PO4 and 02; see Fig. 3, bottom row).

Trial-by-trial decoding of experimental condition for individual participants
A reasonable concern would be that our participants might not have followed task instructions, to imagine 
having audio or visual experiences, or to rest on designated trials. To confirm that our participants were likely 
following task instructions, we conducted a trial-by-trial decoding process for each participant, based on a near-
est neighbour classification process with jack-knifed cross validation [e.g.16,26]. In these analyses trial data were 
only ever compared to other trials from the same participant.

Figure 2.  Scatter plot of average Visual (Y-axis) and Auditory (X-axis) imagination intensities reported by each 
participant. Shaded grey mark regions where scores might be taken as evidence for aphantasia (i.e. these scores 
indicate that participants always rated imagined sensory experiences as “No image/mental soundtrack at all. I 
only know that I was thinking of images / sounds” or as “Vague and not at all clear”.



6

Vol:.(1234567890)

Scientific Reports |          (2024) 14:836  | https://doi.org/10.1038/s41598-023-50760-7

www.nature.com/scientificreports/

In Fig. 4a we have plotted individual decoding success rates as a function of the average ratings used by par-
ticipants to describe the subjective intensities of their imagined visual experiences. Note that overall, decoding 
success rates were well above chance (the bold horizontal black line marks the chance decoding success rate; 
single sample  t42 = 10.13, p < 0.001), with a Bayes Factor analysis (BF10 > 10,000) revealing extreme evidence for 
the alternative hypothesis, that individual trial-by-trial decoding success rates would be above chance. All Bayes 
Factor analyses were conducted using the BayesFactor toolbox for  Matlab27.

There was no robust relationship between decoding success rates and the subjective intensities of imagined 
visual experiences (Pearson’s  r42 = 0.25, p = 0.11). We take this as evidence that people who had reported having 
relatively strong or weak imagined visual experiences were equally likely to have been following task instruc-
tions, as overall we could decode the experimental condition on a trial-by-trial basis with equal success from 
all participants, regardless of the ratings they used to describe the subjective intensities of their imagined visual 
experiences. Similar data are plotted in Fig. 4b, for analyses relating to the subjective intensities of imagined 
audio experiences (Pearson’s  r42 = − 0.06, p = 0.72).

Our decoding process delivered a P-value relating to each participants’ decoding success rate, calculated via 
a non-parametric shuffle test. A P-value < 0.05 indicates that when decoded trial experimental conditions were 
randomly reassigned to experimental conditions 1000 times, less than 5% of the shuffled decodings resulted in 
a greater or in a matched success rate relative to our actual decoding process. As depicted in Fig. 4c, we achieved 
decoding P-values of < 0.05 for 67% of our participants.

Cluster tests for consistent conditional PSD differences across participants
We also conducted non-parametric cluster-based permutation tests, based on differences in the PSD of brain 
activity across different experimental conditions. As depicted in Figs. 5 and 6, each of these tests was significant 
(p-values < 0.001), establishing that the PSD which describes the brain activity that prevailed during trials for 
each experimental condition was different (was not interchangeable) with the PSD that prevailed during trials 
for each of the other two experimental conditions.

For the test for PSD differences, while people attempted to have imagined audio as opposed to visual experi-
ences, differences were detected across a broad range of frequencies (~ 0–24 Hz) with a prominent alpha band 
peak (~ 9 Hz, see Fig. 5a). In terms of topography, all sensors contributed to the significant cluster test, but dif-
ferences were maximal at occipital sensors (see Fig. 6a, pink dots mark sensors that contributed to the significant 
cluster test).

The test for PSD differences, while people attempted to rest as opposed to having visual experiences, also 
detected differences across a broad range of frequencies (~ 0–10 Hz), with a similarly prominent alpha band 

a b c

d e f

Figure 3.  Plots of estimates of oscillatory power (Y-axes) as a function of frequency (X-axes). These data are 
averaged across all participants, separately for each condition. In top panels (a–c) data are averaged across all 
sensors. In bottom panels (d–f) data are averaged across occipital/parietal sensors (sensors 24:26 and 62:64). 
Data recorded while people imagined having audio experiences are depicted in panels (a) and (d). Data 
recorded while people imagined having visual experiences are depicted in panels (b) and (e). Data recorded 
while people rested are depicted in panels (c) and (f).
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peak (~ 9 Hz, see Fig. 5b). In terms of topography, again all sensors contributed to the significant cluster, but 
differences were again maximal at occipital sensors (see Fig. 6b).

The test for PSD differences, while people tried to rest as opposed to having audio experiences, also detected 
differences across a broad range of frequencies (~ 5–14 Hz), with a prominent alpha band peak (~ 9 Hz, see 
Fig. 5c). In terms of topography, differences were again detected across all sensors, but were maximal at occipital 
sensors (see Fig. 6c).

In sum, our cluster tests show that all experimental conditions were associated with distinct PSDs, which 
were reliable across participants. This, however, does not speak to the issue of whether the PSDs that describe 
brain activity as people attempt to imagine having different types of sensory experience can also predict the 
subjective intensities of different peoples’ imagined experiences. We address this issue via a set of linear support 
vector regression (SVR)  analyses28.

Linear support vector regression analyses
The first set of SVR analyses involved subjective intensity ratings relating to imagined audio experiences. These 
analyses involve Bayes Factor t-tests being conducted for each frequency, to determine if there is evidence for a 
difference between actual and chance R-values, or if there is evidence that these are interchangeable. These are 
plotted in Fig. 7a.

Figure 4.  (a) Scatterplot of trial-by-trial decoding success rates, calculated for each participant (Y-axis), and the 
average subjective ratings given to imagined experiences on visual imagination trials (X-axis). Blue text relates 
to statistical tests for a correlation between trial-by-trial decoding success rates and the subjective intensity of 
imagined experiences, whereas red text relates to statistical tests comparing actual decoding success rates to 
a chance decoding success rate (33.3%, marked by the black horizontal line). (b) Details are as for Fig. 4a, but 
analyses relate to average subjective ratings given to imagined experiences on audio imagination trials. (c) Pie 
chart showing the proportion of participants for whom the experimental condition (imagined Visual, Audio or 
Resting-State trials) could be decoded on a trial-by-trial basis, from analyses of the PSD of their brain activity, at 
a rate that was statistically above chance (established via a non-parametric shuffle test, see main text for further 
details). (d) Decoding Confusion Matrix, depicting proportions of decoded trials averaged across participants as 
a colour map, X-axis denotes actual experimental conditions and Y-axis the decoded conditions.
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While the non-parametric treatment of these data provide protection against detecting false positive rela-
tionships, further evidence against spurious relationships is provided by clusters of predictive relationships (i.e. 
in this context, when there are similar predictive relationships across successive oscillation frequencies). For 
our first set of SVR analyses, there were three such predictive clusters. Actual (red data) and shuffled chance 
R-values are plotted in Fig. 7b. Here we highlight three clusters of predictive frequencies (6–9 Hz, 15–17 Hz, 
and 33–38 Hz), where evidence for predictive relationships is overwhelming (6–9 Hz minimum  BF10 > 4000; 
15–17 Hz minimum  BF10 > 217 Million; 33–38 Hz minimum  BF10 > 1300). Respectively, these clusters of predic-
tive relationships reside within the theta, beta and gamma bands of oscillatory frequencies. Overall, these data 
show that in this sample of participants estimates of the power of oscillatory activity can be used to predict the 
subjective intensity of imagined audio experiences.

A second set of visual SVR analyses was informed by subjective intensity ratings for imagined visual experi-
ences. Details of these analyses are as described for audio SVRs. Visual imagination bayes factors are plotted 
as a function of test oscillation frequency (1–40 Hz) in Fig. 8a. To highlight clusters of predictive relationships, 
actual (red data) and shuffled chance R-values are plotted in Fig. 8b. Here, three clusters of predictive frequencies 
(6–9 Hz, 15–17 Hz, and 33–38 Hz) are highlighted, where evidence for predictive relationships is overwhelming 
(14–16 Hz minimum  BF10 > 4.7 Billion; 24–26 Hz minimum  BF10 > 3.8 Sextillion; 29–32 Hz minimum  BF10 > 28.5 
Million). Respectively, these clusters of predictive relationships reside within the lower, mid and upper beta bands 
of oscillatory frequencies. These data show that, in our sample of participants, estimates of the global power of 
oscillatory activity can be used to predict the subjective intensity of imagined visual experiences.

Figure 5.  Plots depicting the results of significant non-parametric cluster tests, for differences in Power of 
Spectral Density in different experimental conditions (Y-axes) as a function of frequency (Hz, X-axes). Red 
shaded regions of each plot depict ± 1 SEM from the average difference between conditions. The frequency 
limits (Hz) of each significant cluster are indicated by the horizontal extent of grey shaded regions. Results are 
depicted for (a) a test for differences in oscillatory power when people were instructed to imagine having audio 
as opposed to visual experiences, (b) a test for differences in oscillatory power when people were instructed to 
rest as opposed to having imagined audio experiences, and (c) a test for differences in oscillatory power when 
people were instructed to rest as opposed to having imagined audio experiences.
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Discussion
We have found that the subjective intensity of different peoples imagined visual and auditory experiences can 
be predicted from conditional differences in the power of oscillatory brain activity. For imagined audio experi-
ences, there were clusters of predictive frequencies in the theta, beta and gamma oscillation frequency bands 
(see Fig. 7). For imagined visual experiences, there were clusters of predictive frequencies in the lower, mid and 
upper beta frequency bands (see Fig. 8).

The validity of subjective ratings of the intensity of imagined sensory experiences
Here, we have primarily been interested in determining if measures of the power of oscillatory brain activity can 
be used to predict the subjective intensity of different peoples imagined sensory experiences. Our data provide 
strong support for this notion (see Figs. 7 and 8). The relationships we have identified should be examined in 
further studies, to determine if they generalise to other samples of people. However, the fact that we have been 
able to detect predictive relationships suggests there is at least some ground truth to the subjective ratings people 
use to describe the intensity of their imagined experiences, as these ratings could be predicted by the distinct 
PSDs that described different people’s brain activity as they try to imagine having audio and visual experiences.

Subjective ratings are, however, undoubtedly a noisy and imprecise measure of the intensity of imagined sen-
sory experiences. Highlighting this issue, a research student who works in our lab is a profound aphantasic—who 
not only reports being unable to conjure imagined visual images, but also reports having no inner voice, and an 
absence of visual or auditory experiences while dreaming. Nonetheless, when this student first completed the 
VVIQ2  questionnaire23 her responses were stereotypical, as she was not then aware that other people could have 
imagined sensory experiences, and so misconstrued the questions as relating to the effort expended and success 

Figure 6.  Details are as for Fig. 5, with the following exceptions. Panel graphics depict heatmaps of differences 
in PSD, recorded by each sensor and averaged across cluster frequencies (as depicted in Fig. 5). In each case data 
recorded by all sensors contributed to these significant cluster tests, as indicated by the distributions of pink 
dots.
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in remembering facts about sensory experiences. Such issues could perhaps be mitigated by educating partici-
pants about the possibility of variable outcomes when different people try to have imagined sensory experiences 
before they engage in experiments. However, more reliable metrics of the intensity of imagined experiences are 
desirable in this context (for a related discussion,  see29).

Attempts to identify tasks where performance is contingent on the subjective intensity of imagined sensory 
experiences have not always been successful [e.g.30]. There are, however, some reported exceptions. The prob-
ability of detecting visual targets that are subject to binocular suppression can reportedly be enhanced by having 
people pre-imagine inputs prior to stimulus  presentations9. Pupil dilations are also reportedly responsive to the 
brightness of imagined content, in a manner that scales with the subjective intensity of imagined  experiences10. 
Finally, people who have vivid imagined visual experiences reportedly experience greater interference when 

Figure 7.  Results of non-parametric support vector regression (SVR) analyses. Analyses were conducted to 
detect relationships between estimates of PSD averaged across all sensors and individual subjective ratings of 
imagined audio intensities. (a) Bayes Factors (Y-axis) as a function of oscillatory frequency (Hz, X-axis). The 
bold horizontal line marks a  BF10 = 100, which constitutes extreme evidence for the alternative hypothesis, that 
there is a predictive relationship between PSD differences and the intensity of imagined audio experiences. (b) 
R-values (Y-axis) as a function of oscillatory frequency (Hz, X-axis). The red line marks the average R value of 
regressions informing the audio SVR analysis, and the blue line marks the average R value of shuffled chance 
regressions. In each case shaded regions mark ± 2SEM. Insert heatmaps depict the distribution of R-values across 
individual sensors, averaged across cluster frequencies. The frequency limits of clusters are depicted by bold 
vertical black lines. Note that individual sensor difference scores were averaged into a global measure for SVR 
analyses. See main text for further details.
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trying to read a briefly presented (and backwardly masked) word when the meaning of that word is incongruent 
with a background  colour11. It is possible that one or all of these behavioural measures might provide a more 
accurate index of the vividness of imagined experiences than subjective questionnaires—but how would we 
know?

Until now, studies that have strived to identify a behavioural task, where performance is contingent on the 
intensity of imagined sensory experiences, have only been able to attempt validation by comparing task per-
formance to subjective responses on  questionnaires9,11, 29, 30. Our results suggest future studies could attempt 
validation by comparing task performances with measures of brain activity, and in particular to measures of the 
power of oscillatory brain activity. The data we have presented might serve as an important guide, as to what 
PSD of brain activity might be fruitfully targeted by these investigations.

Could our findings be explained via eye movements?
We don’t think so, but we would not be at all upset if they were.

While all recordings of brain activity were taken while people had closed eyes, it is nonetheless possible that 
people might have moved their eyes while they engaged in imagining experiences, and that this could have 
contaminated our measures and predicted the subjective intensity of imagined experiences. It has been thought 
that people with vivid imaginations are more likely to gaze about their imagined  vistas31, and some people 
report that they feel that this can assist them to have vivid imagined visual  experiences32. However, evidence 

Figure 8.  Results of non-parametric support vector regression (SVR) analyses, to detect predictive relationships 
between estimates of oscillatory power and subjective ratings of imagined visual intensities. All other details are 
as for Fig. 7.
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for this relationship is tenuous, with multiple reports of there being no such relationship [e.g.33,34] and at least 
one instance of evidence for an opposite relationship (i.e. when imagining static scenes, eye muscle activity was 
negatively correlated with the subjective intensity of imagined images,  see34).

In our study we used ICA analyses, implemented in  FieldTrip24, to detect and remove eye and muscle arti-
facts in pre-processing before data analyses. This approach has been shown to be effective in removing ocular 
 artifacts35. We also took the precaution of excluding any sensor trial data that exceeded a range of 250 mV from 
analyses, and neither the PSD or the topography of the predictive relationships we have identified (see Figs. 7 
and 8) are reminiscent of ocular artifacts  [see35]. In short, we do not believe there is any evidence in our data to 
suggest the predictive relationships we have identified can be explained by eye movements.

We would further note, however, that we would welcome such a simple predictive relationship. If people with 
vivid imaginations were more likely to look about their imagined vistas as they engage in sensory imagination, 
this could serve as an easily recorded biomarker to predict the subjective intensity of a persons’ imagined experi-
ences. Alas, there is no evidence for that relationship in our data. We would recommend, however, that future 
studies record electrooculogram (EOG) in addition to EEG—to provide further insight into any interrelation-
ships that might exist between eye movements and the subjective intensity of imagined sensory experiences.

The intensity of imagined experiences is not predicted by peak alpha band oscillations
Each of our experimental conditions was associated with distinct PSD that described the brain activity recorded 
during that condition, and these differences were reliable across participants (see Figs. 4 and 5). So, the act of 
imagining auditory experiences, visual experiences, or resting, each elicited a distinct pattern of brain activ-
ity described by a different PSD. In each case conditional differences had a prominent peak in the alpha band 
(~ 9 Hz, see Fig. 4) and was maximal in recordings taken from occipital sensors (see Fig. 5). These differences, 
however, speak merely to the act of having imagined experiences. As can be seen in Figs. 7 and 8, this frequency 
and distribution of oscillatory activity did not predict individual differences in the subjective intensity of imag-
ined experiences.

Our findings, regarding peak differences in the alpha band (see Fig. 4), are consistent with a number of past 
investigations that have similarly implicated changes in peak alpha-band oscillations as a marker of when peo-
ple are engaged in having imagined sensory experiences [e.g.19–21]. However, when considered in conjunction 
with our SVR analyses, our findings suggest that these largest conditional differences do not predict the subjec-
tive intensity of different people’s imagined experiences. Rather, clusters of frequencies in the theta, beta and 
gamma bands have predicted the subjective intensities of imagined audio experiences (see Fig. 7), and clusters 
of low, mid and high beta band frequencies predicted the subjective intensities of imagined visual experiences 
(see Fig. 8). Past researchers might have failed to detect these predictive relationships if they were focussed on 
larger, more obvious (alpha band) conditional differences that are not predictive of the subjective intensity of 
imagined experiences.

Topography of predictive oscillations
In terms of the topography of predictive sensors, in our study these encompassed all sensors (as the oscillatory 
activity informing our SVRs was a global measure). Topographic maps highlighted contributions from frontal, 
central and posterior sensors (see Figs. 7 and 8). This dispersed distribution is broadly consistent with the notion 
that the oscillatory activity that predicts the subjective intensity of different peoples imagined sensory experiences 
is driven by coordinated responding from across broad networks of distributed brain  regions36, with key processes 
originating in frontal brain  regions14,37. Our data are also broadly consistent with the premise that the subjec-
tive intensity of imagined experiences is governed by the coordinated action of a global neuronal  workspace38.

Predictive oscillations and established links to cognition
In this study, the core goal was to establish if the power of oscillatory brain activity could predict the subjective 
intensity of different peoples imagined sensory experiences. Our data suggest that this can be achieved, as there 
are multiple clusters of predictive oscillatory activity evident in our data. Some of these have established links 
with cognitive processes that are likely triggered by attempts to have imagined sensory experiences. For instance, 
in our study the subjective intensities of both audio and visual imagined experiences were predicted by clusters 
of beta band frequencies, and these have previously been linked with working memory  operations38,39 and with 
endogenous top-down perceptual  processes40,41. Indeed, contemplation of the later findings led to the prediction 
that mental imagery of sensory events would be associated with beta band oscillations  [see42], and that prediction 
has found a level of support in our data (see Figs. 7 and 8).

There are other predictive relationships in or data, and links between these and cognitive operations are less 
clear. Indeed, linking these findings to individual cognitive operations might fundamentally misconstrue the 
true significance of our findings, which might speak to the importance of coordinated responding across broad 
networks of brain  regions36, rather than to modular brain regions or cognitive functions. At this point, we would 
merely note that all the predictive relationships evident in our data should be re-examined in further studies, to 
establish the generality of our findings.

Imagined sensory experiences and mental representations
The conceptual background for our study is an historic debate concerning the nature of mental representa-
tions. One school of thought has maintained that these are stored exclusively in a language-like propositional 
(descriptive) format [e.g.43], whereas another has maintained that sensory representations are characterised by 
pictorial qualia—by consciously experienced images [e.g 44]. Our data highlight individual differences, so it seems 
plausible that for some people (i.e. aphantasics,  see2) mental representations are purely propositional, whereas 
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the majority of people can conjure imagined sensory experiences that manifest as variably intense, consciously 
experienced qualia. This conjecture is consistent with the different descriptions aphantasics use to describe how 
they achieve tasks, as opposed to the majority of people who assert they perform the same tasks by tapping on 
their ability to conjure mental images  [see45].

Conclusions
Our results make two important contributions. (1) They suggest that the PSD of brain activity is a viable metric 
of the subjective intensity of different peoples imagined sensory experiences. (2) They suggest that peak alpha 
band oscillatory brain activity does not predict the subjective intensity of imagined sensory experiences—even 
though these were the largest, most obvious oscillatory differences triggered by attempts to have imagined sen-
sory experiences. Instead, we identified a number of other clusters of predictive oscillatory frequencies. Our data 
are consistent with imagined sensory experiences being driven by coordinated responding from across broad 
networks of distributed brain regions. We believe the predictive oscillatory activity we have identified should 
be re-examined in future targeted investigations, that also incorporate objective measures of the intensity of 
imagined audio and visual experiences.

Data availability
All EEG data and analysis scripts for this project will be made available via UQeSpace https:// espace. libra ry. uq. 
edu. au/.
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