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Physics‑informed neural network 
reconciles Australian displacements 
and tectonic stresses
Thomas Poulet * & Pouria Behnoudfar 

Stress orientation information is invaluable to evaluate active tectonic forces within the Earth’s 
crust. The global dataset provided by the World Stress Map offers a rich resource of stress indicators, 
facilitating the calibration of mechanical models to extract complete stress and displacement fields. 
However, traditional inversion processes are hampered by the manual tuning of geomechanical 
properties and boundary conditions to reconcile simulations with observations. In this study, we 
introduce ML‑SEISMIC (machine learning for stress estimation integrating satellite image and 
computational modelling), a physics‑informed deep neural network approach to autonomously 
align stress orientation data with an elastic model. It nearly completely bypasses the need for 
explicit boundary condition inputs and yields comprehensive distributions of material properties, 
displacements, and stress tensors. Application of this methodology to Australia, coupled with 
precise global navigation satellite systems observations, unveils a robust and scale‑independent 
interpolation framework. Additionally, it pinpoints regions where stress orientation reinterpretation 
is warranted. Our results present a streamlined yet powerful process, offering a substantial leap 
forward in geodynamic investigations. This approach promises to unify velocity and stress orientation 
observations with physical models, ushering in a new era of insights into Earth’s dynamic processes.

The current stress state of the Earth’s crust plays a critical role in numerous geological applications including 
carbon or hydrogen storage, nuclear waste disposal, reservoir engineering, tunnel or mine stability, fault reactiva-
tion, or borehole planning, to name a few. The full stress information must therefore be assessed as accurately as 
possible, yet it is rarely measured directly but instead often inverted exploiting observations from  faults1, seismic 
 data2, or boreholes and rock  cores3 for instance. The largest source of current-day crustal stress information is 
arguably the World Stress Map (WSM)4, which gathers tens of thousands of records globally and provides in 
particular some estimates of the maximum horizontal stress orientation. Overall, Australia is one of the best-
studied areas globally and its latest present-day stress field  estimate5 builds on the regular improvements of the 
WSM information to refine the picture from previous  studies6–9. The WSM database associates quality informa-
tion with each stress orientation data. Still, even the most accurate (A-quality) records carry an estimated error 
of ±15◦ , making some interpretation necessary when selecting which data to consider to build a map. For the 
Australian case, the high concentration of information in localised areas makes it possible to derive relatively 
reliable average stress orientation (Fig. 1a) in the main stress  provinces5, which then allows to derive a stress 
orientation map through geostatistics for instance (Fig. 1b).

Such an approach, however, only provides a subset of the complete stress information, namely the hori-
zontal stress orientation. In particular, it does not ensure the physical consistency of the generated map, as the 
methodology remains purely geostatistical in nature. Independent geomechanical analyses are then required 
to generate models that respect physical laws, but which then reconcile the stress orientation observations with 
various levels of accuracy (see references and assessments  in10). The best-fit geomechanical model to date for 
 Australia10 was obtained by manually fine-tuning the material properties of a three-dimensional elastic model 
to specifically match the stress orientation information as well as possible. Despite the good quality results, that 
trial-and-error methodology cannot be suggested as a template for any selected area globally, principally because 
of the particularly intensive fitting process required and the dependency of the results on the choice of boundary 
conditions, inferred in that study from the Indo-Australian plate tectonic settings as constant displacements on 
the edges of a pentagon model encompassing Australia.

Recently, physics-informed neural networks (PINNs) have been specifically developed to tackle the problem 
of solving multi-physics problems governed by partial differential equations (PDEs), both for forward and inverse 
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 problems11. These problems include solving linear elastic solid-mechanics12—the type commonly used for stress 
inversion, for example, in  Australia5,13. Such models, however, are used mainly in conditions close to those of 
traditional forward simulators, i.e. for well-posed problems with appropriate boundary conditions. The purpose 
of this study is to introduce a machine-learning approach to retrieve the full stress and displacement fields from 
the governing physical equations, satellite data, and limited stress-orientation measurements. Due to the lack of 
boundary conditions associated with the PDEs, the problem is ill-posed and to overcome this issue, our novel 
approach takes into account the eigenvalues of the approximated stress field and optimizes them with respect 
to the stress orientations. We apply the proposed technique to estimate the stress field and displacement in the 
Australian continent and retrieve the corresponding effective material properties.

We use our machine learning approach to approximate a 2D linear elastic problem, by optimising displace-
ment, stress field, and elastic properties through the definition of a loss function that enforces the momentum 
balance, constitutive relationships between the Cauchy stress tensor and the infinitesimal strain tensor, and the 
small strain definition (“Methods” section). Furthermore, we include the match of stress orientation informa-
tion in the loss function.

Geomechanical models with minimal boundary conditions
First, we evaluate our approach to a problem with an analytical solution. The original problem consists of a 2D 
square with displacement and stress boundary conditions shown in Fig. 2a, with a specific body force applied 
everywhere (see Supplementary Information). We solve instead a modified version of the problem, where we 
remove all stress boundary conditions and keep zero displacement boundary conditions at two points only, 
here the bottom-right and top-left corners, to enforce a unique solution since the problem is defined within a 
constant stress or rigid deformation. This modification of the boundary conditions (Fig. 2d) naturally leads to 
a different solution (Fig. 2e,f).

We then add the stress orientation information as constraints on 400 regularly spaced collocation points 
(Fig. 2g). The results show that we retrieve the displacement fields ux and uy (Fig. 2h,i) matching the analytical 
solution (Fig. 2b,c, see Supplementary Information for quantitative comparisons), i.e. that constraints on the 
stress orientation can alleviate the lack of boundary conditions, which can be retrieved automatically.

Retrieving Australian stress tensors, using stress orientation or satellite 
observations?
Building on the findings from the previous section, we now consider an application to the Australian continent 
to recover the displacement and stress distributions, exploiting an effective elastic model, constrained by the 
stress orientation and velocity information available (Fig. 1b). We consider the NASA Global Navigation Satellite 
System (GNSS) time  series14 with 16 stations available in Australia (Fig. 1b). The measured velocity vectors are 
translated by a constant to set the value to zero in Alice Springs (ALIC station), at the centre of the model. They 
are then rescaled for normalisation purposes, without any side-effect to the selected mechanical model. Note 
that those time series record accurate and nearly constant horizontal velocities for all 16 stations over the last 
25 years, with an error below 1% for all observations (0.27% on average). Therefore, we design SEISMIC-ML 
for steady-state conditions.

There is a notable difference between the previous benchmark and its analytical solution, since only the dis-
placement observations are very accurate, while the stress orientations are based on estimates with much larger 

Figure 1.  (a) Maximum horizontal compressional stress SHmax orientation from the World Stress Map 
in Australia and Papua New  Guinea5, coloured by quality, and locations of 30 main stress provinces (grey 
rectangles); (b) average stress orientations per province (red markers) and corresponding stress orientation 
obtained by kriging (grey traces).
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uncertainty ( ±25◦ at best, see Fig. 1a) and some averaging not accounting for local stress variations. Given the 
explicit dependency between stress and displacement from the constitutive model (“Methods”, Fig. 1), all cor-
responding observations must be geomechanically consistent for the numerical optimisation to converge, yet 
this is not assured by default with the observations. This leads us to consider the two end-members scenarios, 
one where the inversion is performed mainly on the stress orientations and the other where only the velocity 
data is used for observations.

Firstly, we consider the Australian stress map of Fig. 1b, without any boundary conditions information. We 
use the GDA 2020 Australian Albers (EPSG 9473) projection, an equal area conic projection centred on mainland 
Australia, in order to minimise the projection effects on the solid mechanics problem. We take as constraints the 
30 average stress province orientations from published  data5, within an arbitrarily drawn convex polygon includ-
ing our Australian area of interest (Fig. 3a). We use a geostatistical interpolation method—kriging15, as one of 
the most used techniques—to evaluate the stress orientation observations at every collocation point (Fig. 1b). As 
indicated in the previous benchmark, two displacements are needed and we select the rescaled observed velocities 
in Perth and Sydney (PERT and SYDN stations on FigurFig. 1b) as displacement constraints in the loss function. 
All other components of the loss function are set on every collocation point to enforce the momentum balance, 
constitutive model, and small strain definition. This conserves all properties within the numerical precision of 
the algorithm. The two elastic parameters needed can be defined in various manners, through the Lamé coef-
ficients, or typically through the Young’s modulus ( E = µ

3�+2µ
�+µ

 ) and Poisson ratio ( ν = �

2(�+µ)
 ). We define E and 

ν as functionals over the input (x, y) and normalise E. The results show that we retrieve a stress field matching 

Figure 2.  Benchmark results. The top row displays (a) the model setup over [0, 1]2 with all edges subject 
to stress or displacement boundary  conditions12 and the corresponding analytical solution for the resulting 
displacement fields ux (b) and uy (c). The second row indicates the results obtained by commonly used  PINNS12 
on a similar scenario with only two displacement constraints in opposite corners. The resulting displacements 
(e,f) differ greatly from the analytical solution. The bottom row shows (g) a varying setup with only two 
displacement constraints in opposite corners, but with stress orientation constraints over the domain, leading to 
qualitatively identical results for ux (h) and uy (i). These results highlight the validity of our method and the fact 
that stress orientation can alleviate the lack of boundary conditions.
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the stress orientation constraints, for some distributions of Young’s modulus and Poisson ratio (Fig. 3a–c). The 
corresponding displacement field, however, displays notable differences with the velocity observations.

Secondly, we run the optimisation based on the 16 velocity observations, without any stress orientation 
constraints. The results show (Fig. 3d–f) that all velocities can be matched by a geomechanical model, in which 
the stress orientation is nearly constant in the west-northwest—east southeast direction (Fig. 3d). This indicates 
a single effective stress orientation for Australia capturing the overall displacement distribution.

Matching satellite observations while identifying stress orientation discrepancies
The final step consists of considering simultaneously all velocity and stress observations. To account for potential 
inconsistencies, the velocity observations are prioritised over the stress orientations by setting a factor γ = 10−2 
(Eq. 3) to the stress orientation component of the loss function. The results show that we recover, as expected, a 
displacement field matching perfectly the velocity observations (Fig. 4a) and reasonably well the stress orienta-
tion data (Fig. 4b).

Our approach contrasts with traditional geomechanical  studies10,13 where the material properties are set 
manually from the extensive literature review as best guesses and where boundary conditions also need to 
be postulated by trial-and-error. Instead, our fit is obtained automatically, without stipulating any boundary 
conditions or material properties. The resulting distribution of Young’s modulus (Fig. 4c) shows an increased 

Figure 3.  End-member scenarios when (i) matching the interpolated stress orientations of Fig. 1b at all 
collocation points (a–c) or (ii) matching the 16 velocity observations (d–f). The resulting displacements (grey 
arrows) and stress orientations (black dashes) are shown in subfigures (a) and (c), along with observed velocities 
(red arrows) for comparison. The corresponding distributions of material properties—normalised Young’s 
modulus E and Poisson ratio ν—are shown in subfigures (b,c) for the first scenario and subfigures (e,f) for the 
second one. Matching all stress orientations leads to some mismatch for the displacements while matching the 
displacements leads to a nearly constant stress orientation.

Figure 4.  Results for scenario accounting for the 30 non-interpolated stress orientations and 16 observed 
velocities of Fig. 1. (a) Displacements (grey arrows) match very well all observed velocities (red arrows). (b) 
The stress orientations (black dashes) match most of the input, with some notable discrepancies. The other 
subfigures show the corresponding distributions of (c) normalised Young’s modulus E, (d) Poisson ratio ν , and 
(e) stress tensors (grey ellipses).
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rock strength from the East Coast to the West Coast, in agreement with the variation of lithosphere thickness 
with age across Australia, thinner for the Phanerozoic (< 542 Ma) on the East Coast than for the Proterozoic 
(542–2500 Ma) and Archean (> 2500 Ma) in the central and western parts of the  continent16. This also matches 
the fact that the western and central parts of Australia contain all the cratons, which are mechanically stronger 
than the fold belts located on the East  Coast13. The optimisation additionally leads to the distribution of Poisson 
ratio (Fig. 4d) and allows to get the full stress information (Fig. 4e) from observations only, without any bias as 
there are no user assumptions involved.

Having removed any possibility of introducing artificial errors from the choice of boundary conditions and 
distribution of material properties, the discrepancies in stress orientation (Fig. 4b) indicate that the stress input 
data in those areas are simply not optimal at the selected scale of interest. This could be due to various factors, 
including the original data uncertainty, the averaging of all stress orientations, or the lack of observations in 
important areas. Fortunately, our methodology can easily include additional data at multiple scales, depending 
on the efficiency of the machine learning solution selected, which places the challenge mostly on the reliability 
of the stress orientation observations.

ML‑SEISMIC’s contribution: displacement patterns and stress tensor analysis
Our approach determines as output the displacements at the edges of the model, which are naturally consistent 
with the constraints imposed regardless of the geometry selected, and could then be used in turn as boundary 
conditions for further geomechanical models (e.g. for 3D models). Here, we automatically retrieve the displace-
ment patterns around Australia responsible for the overall compressive state of the continent (Fig. 4a) and the 
results (Fig. 4) remind us that displacements are not necessarily aligned with the maximum compressive stress 
direction, as seen for instance on the southwestern part of the model, where displacements don’t intuitively match 
the expected ridge-push force from the mid-ocean ridge between the Antarctic and Indo-Australasian  plates10,13. 
We also retrieve the distribution of stress tensors (Fig. 4e), which can be used in slip-tendency analyses for fault 
 reactivation17, or in fault dilation tendency  studies18 in cases where fluid flow is a key concern, as in geothermal 
 energy19, carbon  sequestration20 or hydrogen  storage21, for instance. ML-SEISMIC takes into account GNSS 
observations not only to show that large-scale averaged stress orientations must be revisited but also to identify 
where (Fig.4a).

The findings presented in this study contribute to the advancement of our comprehension of tectonics and 
offer a valuable complement to uncertainty quantification analyses for geomechanical  models22 or geostatistical 
investigations that reconcile stress orientation and  displacements23. It is noteworthy that our methodology is 
highly adaptable and applicable across a wide range of scales, spanning from crystallographic  investigations24 to 
continental-scale  analyses25,26. Importantly, the versatility of our approach holds significant promise, particularly 
due to its ease of extension. Previous applications of Physics-Informed Neural Networks (PINNs) have already 
demonstrated their proficiency in addressing three-dimensional elastic  problems27, plasticity  modelling28,29, 
handling  discontinuities30, and resolving multi-scale  challenges31. We anticipate this study to serve as a catalyst 
for a multitude of forthcoming scientific inquiries, further advancing our understanding of complex geological 
and tectonic phenomena.

Methods
We introduce a new approach to estimate the stress field on a physical domain � using a deep learning class of 
physics informed neural networks (PINNs). PINNs represent indeed a suitable machine-learning strategy for 
this type of physics. Considering the momentum balance, the constitutive relationship between the Cauchy stress 
tensor ( σ ) and the infinitesimal strain tensor ( ε ), as well as the small strain definition linking the strain tensor 
with the displacement vector u, the equations of linear elasticity read:

where the vector f denotes a body force, � and µ the Lamé coefficients, and δ the Kronecker delta. Here, Einstein’s 
notation is used. Equation (1) is well-posed with provided boundary conditions. We propose an approach to 
deploy neural networks (NNs) for solving Eq. (1) in a 2D domain in the absence of boundary conditions. Fur-
thermore, we introduce two constraints to the system considering the measured displacement vectors ( u∗x , u∗y ) 
provided by GNSS data, and θ∗ being the measured stress orientation. That is, we approximate Eq. (1) by a deep 
neural network which takes the spatial coordinates and available displacement observations as inputs to predict 
the corresponding displacement vector and stress tensor, i.e., (x, y, u∗x , u∗y , θ∗) → (ux , uy , σxx , σxy , σyy) . For the 
activation function, we use the nonlinear function φ(·) = tanh(·) . Our NN includes l layers with ni neurons in 
each layer and delivers the solution

with G a linear mapping acting on the last layer. In each hidden layer i, the nonlinear mapping is 
N (i)(·) = φ(W i × · + bi) . We deploy four hidden layers with 40 neurons each and a batch size of 32 for the 
 ADAM32 optimiser. The learning rate is set as a decreasing function of epochs as required. The choice of network 
hyper-parameters, i.e., depth, width, activation functions, etc., is based on our numerical experiments and may 
not be optimal. Proposing the optimal choices is beyond the scope of this paper.

(1)

σij,j + fi = 0,

σij = �δijεkk + 2µεij ,

εij =
1

2

(

ui,j + uj,i
)

,

(2)uNN (x; W , b) = G ◦N (l) ◦N (l−1) ◦ · · · ◦N (1)(x),
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The loss function reads

where θ is the azimuth of the eigenvector associated with the most negative eigenvalue (maximum compressive 
stress), |x| the mean squared error of the quantity x and function d(α,β) denotes the smallest angle difference 
between two lines of azimuths α and β . We consider � and µ as network parameters that change during the train-
ing phase to identify them at spatial coordinates. We use the weight γ as a free parameter to control the relative 
importance of the stress orientation overall.

All calculations were run on a M1 Macbook Pro with 32 GB of memory. As a conservative indication, obtain-
ing the results shown in Fig. 4 took 9.5 min on a single CPU.

Data availability
A Google Colaboratory script used to produce the benchmark results is freely  available33. The data supporting 
the findings of this study are available from the corresponding author upon reasonable request.
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