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Different controllers 
for suppressing oscillations 
of a hybrid oscillator 
via non‑perturbative analysis
Galal M. Moatimid 1, A. T. El‑Sayed 2* & Hala F. Salman 3

To arrive at an equivalent linear differential equation, the non‑perturbative approach (NPA) is 
established. The corresponding linear equation is employed for performing the structural analysis. A 
numerical computation demonstrates a high consistency with the precise frequency. The correlation 
with the numerical solution explains the reasonableness of the obtained solutions. For additional 
nonlinear kinds of oscillation, the methodology gives an exact simulation. The stable construction 
of the prototype is shown in a series of diagrams. Positive position feedback (PPF), integral resonant 
control (IRC), nonlinear integral positive position feedback (NIPPF), and negative derivative feedback 
(NDF) are proposed to get rid of the damaging vibration in the system. It is found that the NDF control 
is more efficient than other controllers for vibration suppression. The theoretical methodology is 
applied by using the averaging method for getting a perturbed solution. The stability and influence 
of various parameters of the structure are established at main and 1:1 internal resonance, which is 
presented as one of the worst resonance cases. Association concerning mathematical solution and 
computational simulation is achieved.

Many phenomena including photosensitive stability, electrical circuits, plasma oscillations, and buckling beams 
used the Duffing equation (DE)1. For far too long, nonlinear vibrations were of greatest significance in operative 
physics, engineering, applied mathematics, and in numerous real-world applications. Various methods were 
used to produce approximations of nonlinear oscillator  solutions2. To produce somewhat restricted solution 
for the parameterized DE, the homotopy perturbation method (HPM) and Laplace transform were  used3. The 
exact solution for the cubic DE, derived in this research, was demonstrated that the cubic stiffness factor and 
the damped variable have a destabilizing effect on the system. The controls of significantly forced systems have 
received a lot of attention in recent decades in a variety of practical engineering fields. In contrast to automatic 
frequency absorbers, which were substituted by controlling structure comprising sensors, actuators, and filters, 
passive oscillation absorbers have a physiological preparation related to their main organization. One important 
nonlinear oscillator that has been extensively noteworthy was the Van der Pol oscillator (VDP). The consequences 
were still being handled today. Two additional periodic forcing terms and the cubic-quintic Duffing-Van der 
Pol equation (DVdP) were  examined4. The autonomous scheme accomplished linearized stability when it was 
close to the equilibrium locations. Moreover, stability was examined in the non-autonomous system situation by 
using several time scales. How to control bifurcation in a delayed extended DVdP was  examined5. The controlled 
bifurcation oscillator at the perception of feedback advantage was numerically illustrated. To investigate the 
DVdP oscillator, the HPM was  used6. It has been shown to be efficient and practical to compare the analytical 
solutions and the numerical findings. Consequently, the approach was a useful methodology for dealing with 
this class of nonlinear issues.

Several dynamic processes in engineering, biology, biophysics, and communications could be described by 
oscillators. Analytical, computational, and experimental techniques were used to study nonlinear oscillations as 
well as their uses in physics, chemistry, and  manufacturing7,8. The greatest motivating nonlinear vibrations were 
self-excited, and it might be challenging to understand their dynamics. Researchers have extensively investigated 
HRVD. The structure of these oscillators has recently become a hot topic of a wealth of research. The serious 
analysis was done on several matters, bifurcations, limit cycle stability, hysteresis and jump phenomena, analytical 
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solutions, plasma vibrations, and noise  influence9. The nonlinear dynamics of ship movement were considered 
one of the many application areas. The roll motion has been given a lot of consideration through the years since 
it was the most important motion that might activate overturns. It appeared that it would continue to be popu-
lar for many years to come because so many casualties have been documented as a result of severe  rolling10. 
The nonlinear characteristics of damping and restoring frequently break the motion’s linearity. Hence, the two 
parameters were primarily responsible for adding nonlinearity to the equation. Many academics investigated a 
variety of roll motion models that included nonlinear components in damping and restoring. Many academics 
employed a variety of methodologies to pinpoint various ship  behaviors11. The phenomena of resonance and 
jump amplitude, as well as consistent, chaotic, and hyper chaotic performances, were the most significant. For 
instance, several  researchers12,13 explored ultra-harmonics, sub harmonics, and super harmonic oscillations in 
ship-rolling motion using various models. The dynamic DE behaviors were  investigated14. Existence of both pure 
and impure nonlinear damping parameters and ϕ6-equation, as well as, how they affected the system behavior 
has considerable bearing on the current study. Nine resonance states, of which seven were analyzed, were dis-
covered after a thorough examination of numerous resonance states using the multiple timescale approach. An 
external stimulated force and the HRVD with a cubic-quintic nonlinear parameter were  studied15. An adaptation 
of the Poincar’e-Lindstedt method was used to provide a roughly limited response. The numerical calculations 
via the Mathematica Software (MS) and the approximation solution were compared, and the results indicated 
good agreement.

Nonlinear vibrations included both our everyday lives and technological tools. Nonlinear oscillators were one 
of the most important and frequently used working prototypes in complex structures because of their impor-
tance in analyzing various nonlinear science, electrical factory production, and manufacturers. Among the most 
significant and well-known differential equations was the DE, whose solution was considerably relevant over 
recent years in physics, engineering, and environment. To improve a computational, analytical, or semi-analytical 
solution for this collection of issues in accordance with the DE type, many academics made a great deal of  effort16. 
Furthermore, the damping DE has a stronger connection to regular life. This was why many academics have 
endeavored to analyze the problem. The exclusively nonlinear problem with higher-order nonlinear restoring 
force was theoretically and computationally  analyzed17. The correlation between frequency and amplitude was 
a nonlinear oscillator key characteristic. The frequency-amplitude relationship, in this case, might be evaluated 
most simply using He’s frequency  formula18,19. The residual evaluation was matched to the frequency-amplitude 
implementation and its  variations18. To accurately approximate a nonlinear oscillator frequency, a few advanced 
techniques for residual computation were described. It was suggested to make a change that added a free param-
eter. He’s frequency-amplitude construction was used to conclude the relationship between a nonlinear oscillator 
frequency and amplitude using residuals from two trial  solutions19. An example of a high nonlinearity DE was 
used to show how accurate the solution approach was. The most accurate and simple formulation for nonlinear 
oscillators was the He’s frequency  construction20. The un-damped DE and its family were effectively solved using 
He’s frequency  formulation21. Because of the challenges of studying the cubic DE with higher-order nonlinearity 
or the quadratic damping equation, this topic remains one of the most essential topics that requested extensive 
investigation to find more precise solutions. Because there was frequently a perfect solution to a linear equation, 
He’s frequency construction for damped nonlinear vibration has also been a hot area of discussion. The linearized 
equation solution, also known as a nearly precise solution, demonstrated how to resolve the nonlinear problem. 
A precise solution was consistently found while linearizing equations with constant coefficients using the HPM. 
The current research sets out to use He’s frequency construction to verify the frequency of a nonlinear vibration 
with linear or nonlinear dampening forces. He’s frequency was the modified periodic solution that acts as a 
foundation for the current inquiry. By making use of the modified HPM, the stability analysis of the perturbed 
pendulum motion was  investigated22. In accordance with He’s frequency formulation, throughout the areas of 
fluid mechanics and dynamical system; two recent works were  provided23,24. Vibration alleviation and energy 
collecting in a dynamical system of a spring-pendulum were  performed25. The structure of the pendulum was 
modified using an independent electromagnetic ingathering system. The HPM straightforward and effective 
for many nonlinear problems; it deforms a complex problem into a linear system; however, it was still develop-
ing  quickly26. The simplest frequency formulation for nonlinear oscillators was introduced and proved, and a 
modification was  suggested27.

An attempt was made both theoretically and experimentally to preventing the oscillation on a flexible arm 
featuring a piezoelectric  actuator28,29. It was seen that the NDF control was much more effective than the PPF 
control. A resonant control mechanism called an NDF control on a quarter-vehicle car under parametric exci-
tation force to remove destructive vibrations was  proposed30. The vibration behaviors of HRVD with/without 
of an NDF controller at main and 1:1 internal resonance situation were addressed. Additionally, the stability of 
the control structure was analyzed after the estimated solution that was achieved by providing the technique of 
multiple time scales. An NDF control for collocated structures was designed that have embedded sensors and 
actuators to decrease vibration levels in the  system31,32. Furthermore, it was powerfully suggested to select the 
NDF controller for any oscillation attenuation after making an experimental comparison with the PPF control. 
An NDF controller as a novel resonant control logic which determines the feedback force using a second-order 
dynamic scheme, just like PPF, NPF, and the active modal tuned mass damper (AMTMD) were  presented33. In 
any event, the compensator construction makes the NDF more resilient to spillover effects than other controllers. 
It eliminated the contribution of both the upper and lower uncontrolled modes by acting as a pass-band filter. 
The vibrations of the HRVD with a cubic–quintic nonlinear term and an external force via the NIPPF control 
was  reported15. Moreover, at various levels of the control and structure factors, optimal operating conditions of 
the operation system and frequency response curves (FRCs) are described.

Given the above-mentioned aspects and the significance of nonlinear oscillation, the present paper has been 
motivated. Finding the various physical system behaviors while considering the HRVD is our aim. The novel 



3

Vol.:(0123456789)

Scientific Reports |          (2024) 14:307  | https://doi.org/10.1038/s41598-023-50750-9

www.nature.com/scientificreports/

strategy, often known as "new methodology" or NPA, merely converts the nonlinear ODE into a linear one. It 
generates a new matching frequency that looks like the linear ODE. For the advantage of the readers, a compre-
hensive explanation of the NPA is provided. The following is how the article is set up: The procedure for locating 
the analogous linear differential equation, via NPA, is described in “Description of NPA” section. The prototype 
HRVD and the linearization equation are numerically compared in “Methodology of Analyzing HRVD” section. 
This Section provides stability analysis in the absence of the excited force. The analysis of HRVD structure with 
NDF controller is depicted in “HRVD system with NDF controller” section. The stability analysis of HRVD with 
NDF controller is introduced in “Stability analysis of HRVD with NDF controller” section. The discussions and 
results are presented in “Discussions and results” section. The conclusion is introduced in “Conclusions” section.

Description of NPA
In this section, the aim is to make a transformation of the given nonlinear structure to an alternative scheme 
that gives a differential linear  equation34. In other words, the non-linear second order differential equation can 
be replaced by a linear one. The fundamental principle of the current methodology is to obtain a linearized 
procedure to the nonlinear form, which gives a linear oscillator covering the time collection of the vibration 
 history35. It was shown that the method can overlook the complications associated with nonlinear differential 
equations, and the outcomes were likened with accurate solutions. The reality and exclusivity of a comprehensive 
corresponding linear scheme were previously  inspected36. Now, the NPA can be described as follows:

A homogeneous third degree, in a given nonlinear differential equation, of nonlinear forces may be viewed as 
three quantities; the odd nonlinear damping forces, the quadratic nonlinear forces, and the restoring nonlinear 
odd force. Consequently, any nonlinear differential equation may be rephrased along these portions as:

where f (u u̇, ü) represents the odd secular terms, it signifies the Van der Pol–Rayleigh mechanism, g(u u̇, ü) refers 
the even non-secular terms, it denotes the second-order nonlinearity of Helmholtz employment, and h(u u̇, ü) 
indicates the odd secular terms, it specifies the cubic Duffing setup. They are addressed as:

where ai , bi , ci , di , ei , i = 1, 2, 3 are some constant coefficients, and ω represents the natural frequency of the 
original structure.

The straightforwardness of He’s  frequency37 may be extended to achieve theoretical formulae for the whole 
equivalent frequency � of the damping Helmholtz Rayleigh Duffing oscillator.

Newly, this issue was considered by  He38 as consuming the characteristic of the special functions. It was 
recommended the following trial answer:

Keeping in mind the preliminary circumstances:

To catch a modest and precise frequency–amplitude formula, a roughly corresponding linear equation of 
Eq. (1) will be transformed to a linear equation as:

Equation (5) is a corresponding linear equation and can be analyzed by the regular methods. The purpose is 
to use the guessing solution as given in Eq. (3). Presuming the nonappearance of a damping constant χ and the 
non-homogeneous part � , the entire frequency is condensed to equivalent frequency �.

Following El-Dib39–41, the three parameters in Eq. (3) may be formulated as follows:
Frequency integration formula
The use of He’s formula is convenient to calculate the frequency for the advanced generalized h(u, u̇, ü) . The 

frequency may be calculated roughly by following El-Dib39–41 as:

Integrative damping formula
One may calculate the frequency for specialized networks f (u, u̇, ...u) by using He’s frequency. El-Dib39–41 

proposed the equivalence damping term as follows:

(1)ü+ f (u u̇, ü)+ g(u u̇, ü)+ h(u u̇, ü) = 0

(2)
f (u, u̇, ü) = a1u̇+ b1u

2u̇+ c1uu̇
2 + d1u̇

3 + e1üu̇
2

g(u, u̇, ü) = a2u̇u+ b2u̇
2 + c2u

2 + d2u̇ü
h(u, u̇, ü) = ω2u+ b3uüu̇+ c3üu̇

2 + d3u
3 + e3üu

2







,

(3)u = A cos �̃t.

(4)u(0) = B, and u̇(0) = 0.

(5)ü+ χ̃ u̇+�2u = �̃.

(6)�2 =

2π/�̃
∫

0

u h(u, u̇,
...
u)dt/

2π/�̃
∫

0

u2 dt.

(7)χ̃ =

2π/�̃
∫

0

u̇ f (u, u̇,
...
u)dt/

2π/�̃
∫

0

u̇2 dt.
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Non-secular part
It should be noted that the non-secular portion has the second-order formula. Therefore, Following El-

Dib39–41, the non-homogeneity will be computed by replacing: u → B
2
, u̇ → B�̃

2
, and ü → B�̃2

2
.

To this end, the nonlinear Eq. (1) is transformed into the linear one as given in Eq. (4). One can utilize the 
normal form to Eq. (4) to estimate the stability criteria in a simpler form.

Methodology of Analyzing HRVD
The HRVD is examined in this study in accordance with the relevance of the aforementioned processes. The 
standard formula of the HRVD may be written in an ordinary differential equation (ODE) as:

where the unknowns may be defined as follows:

Symbol Description

y, ẏ, ÿ Displacement, Velocity, and Acceleration

ω Natural frequency

µ Linear damping factor

β1 Impure quadratic damping factor

β2 Pure quadratic damping factor

γ1 Impure cubic damping factor

γ2 Pure cubic damping coefficient

� Cubic nonlinear Duffing factor

δ Quintic nonlinear Duffing factor

F External excited force

σ External forcing coefficient

The initial conditions of Eq. (1) may be initiated as

In recent decades, the majority of addressed nonlinear dynamic systems have concentrated on the pertur-
bation theory. The overcoming of dynamic system components exhibited nonlinear behavior, and as a result, 
the overall structure is fundamentally nonlinear. Consequently, it is common knowledge that linear system 
techniques depend on the assumption that only a limited set of procedures may be performed. If the procedure 
range restrictions are reached, these approaches fail, which may lead to either poor performance or unstable 
operation. It has been recommended that these nonlinear systems can be subjected to the perturbation method. 
These procedures are employed to evaluate the stability and presentation of the structure as well as to generate 
approximate analytical solutions for these nonlinear systems. Currently, an original methodology for examin-
ing nonlinear equations in the absence of any perturbation approaches is recommended. With this sense, vast 
series solutions are not required, and there is no worry about their convergence. Investigating the matching 
linearized methodology to the nonlinear system is the main goal of this paper. In accordance with El-Dib39–41, 
the performance of a similar structure is examined by linearizing it. However, the HPM is employed to achieve 
the frequency response equation from the resulting linear system. It is necessary to propose a trial solution that 
verifies the commencement circumstances to solve the nonlinear structure by the NPA. The following descrip-
tion could be used to describe the recommendation trail solution:

Assuming a guessing attempt of the fundamental Eq. (1) like

Similar initial conditions are used, where u(0) = A, and u̇(0) = 0 , The parameter � refers to the total fre-
quency, which will be determined latter.

Equation (1) may be written in an alternative form as

where

It should be noted that the functions f1(y) as well as f2(y, ẏ) are odd formulae; temporarily, the formulation 
f3(y, ẏ) is an even one. He’s formula can be working to regulate the frequency of the presence of odd factors in 
the regulatory fundamental equation of motion. El-Dib39–41 evaluated the frequency in such a way as before to 
produce:

(8)ÿ + ω2y + 2µẏ + β1yẏ + β2ẏ
2 + γ1y

2ẏ + γ2ẏ
3 + �y3 + δy5 = F cos σ t,

(9)y(0) = A, and ẏ(0) = 0.

(10)u(t) = A cos�t ⇒ u̇(t) = −A� sin�t.

(11)ÿ + f1(y)+ f2(y, ẏ)+ f3(y, ẏ) = F cos σ t,

(12)
f1(y) = ω2y + �y3 + δy5

f2(y, ẏ) = 2µẏ + γ1y
2ẏ + γ2ẏ

3

and f3(y, ẏ) = β1yẏ + β2ẏ
2







.
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and

One may now generate the matching linear equation by formulating it as

In the absence of the frequency of the excited force ( σ → 0 ), Eq. (16) can be changed to its standard proce-
dure through conversion:

Therefore, it can be expressed as:

where � =
√

̟ 2 − χ2/4.
Assuming similar previous preliminary conditions, f (0) = A, and ḟ (0) = 0 , and returning to the previous 

linear Eq. (16), the solution of the linear equation ( σ → 0)can be formulated as:

where

The stability criteria, in case of σ → 0 , can be expressed as:

Returning to the basic equation given by Eq. (8), the NPA enables us to create identical initial conditions (9), 
thereby being equivalent to the linear equation as shown in Eq. (16). The consequences of the corresponding 
dampening term as given in Eq. (13) and comparable frequency as given in Eq. (14) were discussed before. It 
is interesting to examine the relationship involving the linear ODE solution (non-perturbative solution) and 
the computation solution of the previous Eq. (14) using the numerical calculations via the MS. Therefore, the 
subsequent numbers for the applied settings are considered.

In light of the above sample chosen system, the command FindRoot through the MS produces the value of the 
total frequency as: � = 0.71838 . A comparison between the associated linear ODE equation and the computation 
solution of the fundamental Eq. (8) created the numerical calculation is also useful. The non-perturbative equa-
tion is given by Eq. (16). The framework is shown in this comparison, as shown in Fig. 1. The figure is obtained 
considering the prior data for an adequate sample with the given details. It involves the two equations as well. 
As can be seen, the findings are generally consistent with one another. Additionally, the MS shows that, up to a 
time of 500 units, the absolute difference concerning the theoretical and computational findings is 0.0132417.

As previously shown, the new methodology reveals an equivalent equation, which enables us to examine the 
stability configuration of the original prototype. Therefore, the criteria that arise in Eq. (16) can be represented 
together with the original equation as shown in Eq. (8).

It is convenient to use the MS to diagram the stability picture by graphing the initial amplitude A versus the 
total frequency � as revealed in Fig. 2.

On the other hand, the right-hand side of the equivalent Eq. (16) has no implication on the stability dia-
gram as shown in Fig. 2. Therefore, the influences of the parameters F, σ , β1, and β2 are depicted throughout 
Figs. 3, 4, 5 and 6 to depict the role of each of them in the amplitudes of the solution of the wave solutions of 
Eq. (19). Subsequently, in what follows, Fig. 3 shows the influence of the excited force F . As shown, the increase 
in F increases the solution amplitude. Therefore, one can say that the parameter F has a destabilizing impact 
on the stability profile. Once more, we show the NPA provided by Eq. (16). For different values of the external 
forcing coefficient σ , Fig. 4 plots the distribution of the time-dependent function versus time t  . The distribution 

(13)µeqv =

2π/�
∫

0

u̇f2(u, u̇) dt/

2π/�
∫

0

u̇2dt = 2µ+
1

4

(

γ1 + 3�2γ2
)

A2,

(14)̟ 2 =

2π/�
∫

0

uf1(u) dt/

2π/�
∫

0

u2 dt = ω2 +
3

4
�A2 +

5

8
δA4,

(15)Ŵ = f3(u, u̇)
∣

∣

u→ A
2
, u̇→ A�

2

=
1

4
(β1 +�β2)�A2

(16)ü+ χ u̇+̟ 2u == F cos σ t − Ŵ.

(17)u(t) = f (t)Exp(−χ t/2).

(18)f̈ (t)+�2f (t) = (F − Ŵ)Exp(µeqvt/2),

(19)u(t) = (C1 cos�t + C2 sin�t)Exp(−χ t/2)+
1

�2
(F − Ŵ),

(20)C1 = A−
1

�2
(F − Ŵ) and C2 =

µχ

2�
C1.

(21)�2 > 0, and χ > 0.

ω = 1.0, µ = 0.7, β1 = 1.2, β2 = 1.5, γ1 = 1.3, γ2 = 1.4, � = 1.6, δ = 2.5, F = 0.2, σ = 0.1, and A = 0.1

µ = 0.5, γ1 = 1.3, γ2 = 2.0, � = 016, δ = 2.5, � = 1.6, and δ = −2.5,



6

Vol:.(1234567890)

Scientific Reports |          (2024) 14:307  | https://doi.org/10.1038/s41598-023-50750-9

www.nature.com/scientificreports/

Figure 1.  Shows an association concerning the solutions of HRVD and its alternative linear equation.

Figure 2.  Depicts the stable/unstable regions.

Figure 3.  Portrays the impact of F.
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function is depicted as a periodic solution. Consequently, as σ grows, the wave solution amplitude remains 
fixed. In addition, as σ is raised, the wavelength decreases. In other words, the horizontal t− axis has two zeros 
moving in the direction of enhancing values. These findings demonstrate the stabilizing effect on the stability 
configuration. Figure 5 depicts the impact of the impure quadratic damping coefficient β1 . As recognized, the 
solution amplitude decreases according to the increase in β1 . Hence, it can be claimed that β1 has a destabiliz-
ing effect on the stability picture. The effect of the pure quadratic damping coefficient β2 is shown in Fig. 6. It is 

Figure 4.  Shows the inspiration of σ.

Figure 5.  Depicts the stimulus of β1.

Figure 6.  Represents the effect of β2.
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common knowledge that depending on the rising of β2 decreases the solution amplitude. Consequently, it can 
be said that β2 destabilizes the stability profile.

A polar plot of Eq.  (19) is designed in light of the parameters’ values for A = 0.1, 0.15, 0.2 and 
ω = 0.1, 0.5, 1.0 , as shown in Figs. 7 and 8, correspondingly. These diagrams obtain the performance of the 
corresponding solution when a small change in its initial situation and its essential natural frequency is con-
sidered. It is found that the designed curves in these figures rotate in repeated paths, forming these wonderful 
spiral shapes, which are symmetrical around its center. It is found that this symmetry increases with increasing 
A , as seen in Fig. 7, and the reverse is true with increasing ω , as shown in Fig. 8. These centers are seen as the 
accumulative point of these curves which varies along with the nominated values of A and ω . These curves rotate 
in several arrangements of closed or semi closed elliptical paths originating from this accumulative central point. 
The numeral of these curves declines and grows, with the increase of the amounts of A and ω , respectively. As 
seen from these figures, one can observe that the first graph of Fig. 7 is similar to the last one of Fig. 8 due to the 
utilizing the same data in these two plots.

Through the time interval [0, 50π] , Figs. 9 and 10 have been plotted to illustrate the function u(t) in a polar 
form according to the various values of δ = 0.5, 1.5, 2.5, and � = 0.2, 0.6, 1.6 , respectively. This simulation is 
represented by circulated intersected curves and distributed symmetrically about their centers. That distribution 
provides an initiation around the stable mode in which these curves act. The circulation of these interconnected 
curves rises or declines based on the impact of the affected factors. It is found that when the amounts of δ rise, 
the circulations rises, as exposed in the graphs of Fig. 9. The opposite holds true for portions of Fig. 10 with the 
growth of � values. Furthermore, it can be seen that the concentration and wave wideness of these curves rise 
with the rise of � and decreases with the rise of δ , which implies that the influence of � is directly proportional, 
while the influence of δ is inversely proportional to the curves’ density and thickness. It is obvious that the two 
second plots of Figs. 9 and 10 are similar due to the similarity of the usage data.

HRVD system with NDF controller
In the current section, we present a comprehensive explanation of the method of reducing the resulting vibrations 
of Eq. (8) as shown in Fig. 1, which describes the HRVD system with cubic-quintic nonlinear terms subjected to 
the external excitation force. Accordingly, we apply the NDF control technique as previously  demonstrated28–33 
to the fundamental equation of motion (8). Therefore, the considered system can be formulated after control 
to become:

Figure 7.  Displays the polar plots of the linear equivalent differential (19) for the variation of the initial 
amplitude A.

Figure 8.  Displays the polar plots of the linear equivalent differential (19) for the variation of the natural 
frequency ω.
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Applying the NDF control as previously  demonstrated28–33 to the fundamental equation of motion (8), it may 
be formulated in the following system:

where the parameters of NDF controller system are presented as follows:
u is displacement, ω1 is the normal frequency, µ1 is the linear damping coefficient, G1 and G2 are the signals 

gain from NDF controller.
The calculation of RK-4 is used to illustrate the time history graph figure and the phase portrait before and 

after merging the NDF controller at one of the worst resonance cases which presented as the simultaneous pri-
mary and 1:1 internal resonance ( σ ≈ ω and ω1 ≈ ω ). These achieved computations are based on MATLAB® 
Software controller. Accordingly, the model selected scheme is:

The time history is shown in Fig. 11a for the steady state amplitude of HRVD model before applying the 
controller. As revealed, the amplitude scopes 0.1235. Instantaneously, Fig. 11b characterizes the phase portrait 
concerning the velocity and amplitude for the similar situation, which displays the chaotic attractor and estimated 
multi-limit cycle. In accumulation, the reaction of the HRVD model through the NDF control is portrayed as 
a Poincare map drawn in Fig. 11c that specifies the motion’s type of the model and the control. On the opposite 
side, Fig. 12a represents the amplitude of the deliberated construction after merging the NDF controller. It is 
found that the amplitude develops 0.0006373. Consequently, conferring to this control, the amplitudes have 
been condensed by the ratio 99.48%. Furthermore, Fig. 12b and c show the phase portrait between the velocity 
and amplitude and a Poincare map diagram after applying the NDF control, which displays enhancement of 
the chaotic attractor and the limited cycle numerals. Lastly, the efficiency of the NDF control Ea is addressed as 
( Ea = steady-state amplitude of the construction beforehand NDF divided by afterward controlling) and is of 
193.79. Analogous outcomes have been achieved in our preceding  study28–33.

Furthermore, Fig. 13 demonstrates that the highest steady-state amplitude occurs in one of the worst reso-
nance cases (the primary resonance) before the inclusion of the controller. However, after the inclusion of the 

(22)ÿ + ω2y + 2εµẏ + εβ1yẏ + εβ2ẏ
2 + εγ1y

2ẏ + εγ2ẏ
3 + ε�y3 + εδy5 = εF cos σ t + εG1u̇,

(23)ü+ ω2
1u+ 2εµ1 u̇ = −εG2ẏ,

ω = 1.0, µ = 0.7, β1 = 1.2, β2 = 1.5, γ1 = 1.3, γ2 = 1.4, � = 1.6, δ = 2.5, F = 0.2,µ1 = 0.0007, G1 = 0.8,G2 = 0.8

Figure 9.  Displays the polar plots of the linear equivalent differential (19) for the variation of the parameter δ.

Figure 10.  Displays the polar plots of the linear equivalent differential (19) for the variation of the parameter �.
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NDF controller, the system amplitude appears to be diminished when the controller operates when the primary 
resonance and 1:1 internal resonance are together, which leads to the quality of the NDF controller on the system.

Applying the averaging technique as mentioned  in42–45 to get the frequency response equations, the overall 
solution of Eqs. (22) and (23) when ε = 0 is expressed as follows:

(24)y = a1 cos(ωt + φ1),
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Figure 11.  Time history, phase portrait and Poincare section of style deprived of control at σ = ω.
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Figure 12.  Time history, phase portrait and Poincare section of controlled style at σ = ω and ω1 = ω.

Figure 13.  Diagram response to attain the measured one of worst resonance cases of the structure before and 
after the NDF controller.
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where a1 , a2,φ1 and φ2 are constants. The derivative of the previous equations with respect to t  yields

On the other hand, when ε  = 0 but nevertheless small enough, a1 , a2 , φ1 and φ2 are assumed as formulations 
of time in Eqs. (24) and (25). Thus, the derivative of these equations with respect to t  yields

Comparing Eqs. (26) and (27) with Eqs. (28) and (29) gives the following:

Differentiating Eqs. (28) and (29) with regard to t  yields

Substituting from Eqs. (24)–(27), (32) and (33) into Eqs. (22) and (23), one obtain the following equations

The concurrent main and 1:1 internal resonance ( σ ≈ ω and ω1 ≈ ω ) are studied in this work. Now, the aver-
aging equations are gotten by using the detuning parameters ( σ1 , σ2 ) according to ( σ = ω + εσ1 , ω1 = ω + εσ2 ). 
Inserting Eqs. (30) and (31) into Eqs. (34) and (35), then using the averaging equations of ȧm and φ̇m as dem-
onstrated  in31,32, one obtains

where θ1 = εσ1t − φ1 and θ2 = εσ2t + φ2 − φ1 . Thus θ̇1 = εσ1 −
˙̇φ1 and θ̇2 = ε(σ2 − σ1)+ θ̇1 +

˙̇φ2 yields

Equations (36), (38), (40) and (41) are addressed as autonomous amplitude-phase modulating equations.

(25)u = a2 cos(ω1t + φ2),

(26)ẏ = −ω a1 sin(ωt + φ1),

(27)u̇ = −ω1 a2 sin(ω1t + φ2).

(28)ẏ = −
(

ω + φ̇1
)

a1 sin(ωt + φ1) + ȧ1 cos(ωt + φ1),

(29)u̇ = −
(

ω1 + φ̇2
)

a2 sin(ω1t + φ2) + ȧ2 cos(ω1t + φ2).

(30)−φ̇1 a1 sin(ωt + φ1) + ȧ1 cos(ωt + φ1) = 0,

(31)−ϕ̇2 a2 sin(ω1t + ϕ2) + ȧ2 cos(ω1t + ϕ2) = 0.

(32)ÿ = −ω ȧ1 sin(ωt + φ1) − ω
(

ω + φ̇1
)

a1 cos(ωt + φ1),

(33)ü = −ω1 ȧ2 sin(ω1t + φ2) − ω1

(

ω1 + φ̇2
)

a2 cos(ω1t + φ2).

(34)



































−ω ȧ1 sin(ωt + φ1) − ω
�

ω + φ̇1
�

a1 cos(ωt + φ1)

+ω2a1 cos(ωt + φ1)− 2εµω a1 sin(ωt + φ1)

−εβ1ωa
2
1 cos(ωt + φ1) sin(ωt + φ1)+ εβ2ω

2 a21 sin2(ωt + φ1)

−εγ1ωa
3
1 cos2(ωt + φ1) sin(ωt + φ1)− εγ2 ω

3a31 sin3(ωt + φ1)

+ε�a31 cos3(ωt + φ1)+ εδ a51 cos5(ωt + φ1)



































=εF cos σ t + εG1ω1a2 sin(ω1t + φ2),

(35)

{

−ω1 ȧ2 sin(ω1t + φ2) − ω1

(

ω1 + φ̇2
)

a2 cos(ω1t + φ2)

+ω2
1a2 cos(ω1t + φ2)− 2εµ1 ω1 a2 sin(ω1t + φ2)

}

= εG2ω a1 sin(ωt + φ1).

(36)ȧ1 = −εµa1 −
1

8
εγ1a

3
1 −

3

8
εγ2ω

2a31 +
1

2ω
εF sin θ1 +

1

2ω
εG1ω1a2 cos θ2,

(37)φ̇1a1 =
3

8ω
ε�a31 +

5

16ω
εδa51 −

1

2ω
εF cos θ1 +

1

2ω
εG1ω1a2 sin θ2,

(38)ȧ2 = −εµ1a2 −
1

2ω1

εG2ωa1 cos θ2,

(39)φ̇2a2 =
1

2ω1

εG2ωa1 sin θ2.

(40)θ̇1 = εσ1 −
3

8ω
ε�a21 −

5

16ω
εδa41 +

1

2ωa1
εF cos θ1 −

1

2ωa1
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(41)θ̇2 = ε(σ2 − σ1)+ θ̇1 +
1

2ω1a2
εG2ωa1 sin θ2.
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Stability analysis of HRVD with NDF controller
By considering ȧm = θ̇m = 0 , where ( m = 1, 2 ), the fixed points can be obtained as mentioned  in46,47. Here, the 
steady-state solution of the system over the NDF control related to the fixed points as specified in Eqs. (36)–(39) 
is accomplished.

Then, the frequency response equations inside these fixed solutions are obtained as follows:

To establish the stability pattern of the steady-state solution, assume the following prospects:

where am 0 and θm 0 are the solutions of Eqs. (36), (38), (40) and (41); the actual minor and the disturbed amounts 
are addressed by am1 and θm1 . Replacing Eq. (48) with Eqs. (36), (38), (40) and (41), while maintaining only the 
linear terms of am 1 and θm 1 , one obtains the equation:

herein the overhead square matrix is called the Jacobian matrix X . The coefficients amounts ri j , ( i, j = 1, 2, 3, 4 ) 
are recorded in the Appendix. Consequently, the eigenvalues γr , ( r = 1, 2, 3, 4 ) are specified by X − γr I4×4 = 0 
and give the following equation:

where the coefficients R1 , R2 , R3 and R4 are recognized from the background. In view of the Routh–Hurwitz 
 standard43–45, if the real part of the eigenvalue is negative, then the periodic solution is stable; if not, it is unstable.

Discussions and results
Frequency response curve (FRC) and impact of various parameters
In the subsequent Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26, it must be noticed that the solid curves 
refer to the stable zones, whereas the dashed ones characterize the unstable areas.

(42)µa1 +
1

8
γ1a

3
1 +

3

8
γ2ω

2a31 =
1

2ω
F sin θ1 +

1

2ω
G1ω1a2 cos θ2,

(43)σ1a1 −
3

8ω
�a31 −

5

16ω
δa51 = −

1

2ω
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G1ω1a2 sin θ2,
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1

2ω1

G2ωa1 cos θ2,
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(48)am = am 0 + am 1, θm = θm 0 + θm 1, (m = 1, 2),
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Figure 14.  FRC of NDF controlled system at σ2 = 0 (a) ( a1 against σ1 ) and (b) ( a2 against σ1).
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Figure 15.  FRC contrast concerning both RK-4 (with circle) and theoretical solution (with line).

Figure 16.  Effects of F on FRC.

Figure 17.  Effects of γ1 on FRC.

Figure 18.  Effects of γ2 on FRC.
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Figure 19.  Effects of � on FRC.

Figure 20.  Effects of δ on FRC.

Figure 21.  Effects of G1 on FRC.

Figure 22.  Effects of G2 on FRC.
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Figure 23.  Effects of µ on FRC.

Figure 24.  Effects of µ1 on FRC.

Figure 25.  Effects of ω on FRC.

Figure 26.  Effects of σ2 on FRC.
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The FRC for both the model amplitude a1 and the amplitude of the related NDF controller are exposed in 
Fig. 14. For this aim, Fig. 14a shows the amplitude prototypical a1 versus σ1 . Instantaneously, Fig. 14b represents 
the control amplitude a2 against σ1 . Figure 14a has two peaks on two sides of σ1 = 0 and region between these 
peaks is called vibration suppression bandwidths.

Furthermore, it seems from Fig. 14a that the oscillations are damped in the zone of the frequency bandwidth 
after using the NDF control. Subsequently, we may indicate that the optimal mode of oscillation lessening is 
σ1 = σ2 = 0 . Previous instances were  involved15,30,42,48.

To explain the verification of the mathematical procedures and calculation methodologies, a comparison 
between them will be made. For this purpose, the contrast of FRC concerning both analytic solution in the 
solid lines and numerical outcomes in circles is shown in Fig. 15. It is shown that from this figure and from both 
Tables 1 and 2 that the analytical solution is merely reliable with the calculation path as shown  earlier15,30,42,48.

Figure 16 shows the impacts of different values of F on the FRC. With increasing amounts of F , the oscillation 
amplitude of the system increases, and the peaks of the curve grow up as shown in Fig. 16a.

For the amplitude of the control vibration, when the values of F are improved, the peak of the curve grows 
up as illustrated in Fig. 16b on FRC curves  earlier15,24,25,37,38,41.

Furthermore, in different earlier  works15,42, the effect of γ1 is shown in Fig. 17. From Fig. 17a, the two peaks 
of the curve grow up when the small values of γ1 are selected. The bandwidth and flatness of the peak for the 
controller curve increase when the values of γ1 are reduced, as indicated in Fig. 17b.

The effect of changing the values for γ2 is indicated in Fig. 18. On decreasing the values of γ2 , the height of 
the two peaks of the system curve increases and the areas of instability appear as represented by Fig. 18a. The 
bandwidth for the peak of the controller curve increases around σ1 = 0 until it flattens and turns into two peaks 
on either side of that region, and the areas of instability appear at small values of γ2 as shown in Fig. 18b. The 
previous mode is already  provided15.

Figure 19 describes the effect of different values of � on FRC. From Fig. 19a, at small values of � , the flatness 
and bandwidth of the two peaks for the curve of the structure shift to right. For Fig. 19b, it describes the flattening 

Table 1.  A comparison concerning RK-4 and averaging solutions ( a1 by σ1).

σ1 Numerical calculation Averaging solution Absolute error

− 4.9 0.02028 0.020334249400201 5.42494E−05

− 4.4 0.0217 0.022625531319440 0.000925531

− 3.9 0.02359 0.025493211859700 0.001903212

− 3.4 0.02624 0.029188950279256 0.00294895

− 2.9 0.03013 0.034123203483389 0.003993203

− 2.4 0.03602 0.041024363064727 0.005004363

− 1.9 0.04622 0.051327181275063 0.005107181

− 1.4 0.06713 0.068122962680242 0.000992963

0 0.0006373 4.405924091149890E−04 0.000196708

0.05 0.05393 0.030903923489380 0.023026077

0.1 0.09238 0.060330336880640 0.032049663

0.2 0.1333 0.108035297115075 0.025264703

0.3 0.1431 0.133828195617252 0.009271804

0.4 0.1309 0.140001098562017 0.009101099

0.9 0.09977 0.098528514681519 0.001241485

Table 2.  A comparison concerning RK-4 and averaging solutions ( a2 by σ1).

σ1 Numerical calculation Averaging solution Absolute error

− 5 0.0007756 0.00159446778063665 0.000819

− 4.5 0.001016 0.00196668462448009 0.000951

− 4 0.001367 0.00248630442207555 0.001119

− 3.5 0.001906 0.00324207062336632 0.001336

− 3 0.002758 0.00440060935300175 0.001643

0 0.2492 0.249236704179633 3.67E-05

0.5 0.09075 0.108361397040312 0.017611

1 0.03016 0.0363246714325892 0.006165

1.5 0.01336 0.0170592388013241 0.003699

2 0.007136 0.00977732901907154 0.002641

2.5 0.004275 0.00630920042671862 0.002034
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of the peak for the controller curve around σ1 = 0 until it becomes a peak to the right at a negative value of � , 
while it turns to a peak to the left at a positive value of � . Similar results were obtained  earlier42.

From Fig. 20, there is no effect of δ on FRC.
Changing the values of G1 and G2 with their effect on FRC is demonstrated in Figs. 21 and 22, correspondingly. 

The bandwidth region of the system expands at large values of G1 and G2 as represented in Figs. 21a and 22a, 
respectively. The peak of the controller curve decreases and turns into two peaks on both sides of the bandwidth 
region with increasing the values of G1 , as illustrated in Fig. 21b. While the peak of the controller curve expands 
without height until it turns into two peaks with an increase in their height on both sides of the bandwidth region 
with increasing values of G2 , as shown in Fig. 22b. Similar illustrations were presented in the previous  works30.

The effect of µ on FRC is shown in Fig. 23. With increasing the values of µ , the two peaks of the system curve 
decrease as shown in Fig. 23a. From Fig. 23b, the peak of the controller curve is flattened until the two peaks 
appear on either side of the region σ1 = 0 at small values of µ . Previous examples of the results were  included30.

The effect of µ1 on FRC is represented in Fig. 24. By increasing the amounts of µ1 , the two peaks of the 
structure curve go down and a jump phenomenon appears at the region σ1 = 0 as shown in Fig. 24a. From 
here, small values of µ1 should be chosen to a better reduction of the vibrations for the structure at the studied 
resonance situation. From Fig. 24b, the peak of the controller curve declines at large values of µ1 . Earlier results 
in the frequency response curves were provided  earlier30.

Figure 25 indicates the effect of different values of ω on FRC. From Fig. 25a, at small values of ω , the height 
of the two peaks for the system curve increases. Simultaneously, the peak of the controller curve rises at small 
values of ω as represented in Fig. 25b as shown  earlier30.

The effect of different values of σ2 on FRC is exposed in Fig. 26. In this figure, it is realized that the entire 
curve moves when changing the values of σ2 . As the studied resonance case (i.e. σ2 = σ1 ) is selected, the vibration 
of the system is suppressed as illustrated in Fig. 26a. Also, from Fig. 26b, when the studied resonance case (i.e. 
σ2 = σ1 ) is selected, the peak of the controller curve moves in this way. Similar results were obtained  earlier15,30.

Figure 27 shows a contrast concerning the perturbation procedures, as specified in Eqs. (36), (38), (40) and 
(41), and the calculation simulation as described in Eqs. (22) and (23) of the time history was achieved. The blue 
dashed lines display the modulation of the amplitude of the widespread coordinate. Furthermore, the red solid 
lines denote the time history of oscillations which display computationally the solutions of the structure with 
the NDF-control. Here is a better arrangement concerning the theoretical and computational solutions, which 
validates the approval of our solution.

Figure 28 presents the contrast concerning diverse controls to confirm the presentation of the oscillation 
lessening that seems in the HRVD system deprived of a control and designated with the red line. The contrast is 
completed through NIPPF control with a blue line, and NDF with a green line.

Conclusions
In the current work, the oscillating HRVD system with cubic-quintic nonlinear terms is examined theoreti-
cally and computationally, deprived of controller with an equivalent linear differential equation. The innovative 
approach also referred to as the “new methodology” or NPA just transforms the nonlinear ODE into a linear one. 
A new corresponding frequency that is similar to the linear ODE is produced. A thorough explanation of the NPA 
is included for the benefit to the readers. Using a numerical comparison performed by the MS, the theoretical 
results are confirmed. The precise numerical and theoretical solutions are both displayed outstanding consistency. 
When the restoring forces are present, as is commonly known, all classical perturbation approaches use Taylor 
expansion to augment these forces and, as a result, reduce the difficulty of the given problem. This shortcut is 

Figure 27.  Time history comparison between RK-4 and an Averaging method at σ = ω and ω1 = ω.
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no longer available under the NPA. With accumulation, it is possible to properly evaluate the stability analysis 
of the NPA, which was not feasible with earlier conventional approaches. Therefore, the NPA is a more reliable 
source for examining approximations of solutions for strongly nonlinear oscillators. Due to its adaptability to 
novel nonlinear situations, the NPA is a useful tool in the fields of applied science and engineering. It should be 
noted that there some recent works have been published during this novel  methodology49–52. Several plots curves 
are depicted to grantee the stability of the considered solutions. Since the unstable solutions are physically not 
preferred, no polar plots are graphed for the unstable case. The more details are emphasized with reference to 
the adopted distinctive technique. The approximation solution after the NDF control is achieved by adding an 
adapted averaging method. A computational approach based on numerical calculations is working to validate the 
preceding approximate solution. Additionally, each of the phase portraits and the linearized stability are planned. 
By contrast, the oscillation lessening for HRVD with NDF controller is proposed at the instantaneous main and 
1:1 internal resonance. Furthermore, a group of sketches is completed to validate the FRC and various parameters 
by the MATLAB Software. The most significant findings of the study can be summarized in the following points:

1. The NDF controller contributed to dropping oscillations for the careful HRVD with a condensed proportion 
of 99.48%.

2. The amplitude of the HRVD is amplified as excitation force F increases.
3. The cumulative amount of the factors γ1, γ2,µ,µ1,ω1 and ω yields a reduction in the amplitude of the HRVD.
4. The HRVD structure with a NDF control is grasped to the minimum amounts on the frequency response 

curve at σ1 = σ2.
5. The bandwidth region progressively increases in the amplitude of the HRVD structure as the control factors 

G1 and G2 rise.
6. Aimed at justification response curves, there are excessive arrangements concerning the estimations of FRC 

and RK-4 solutions as obtained in Fig. 14.
7. A Comparison between NIPPF and NDF controllers is presented to verify that the NDF control is the greatest 

controller approach that can be used to decrease the oscillations in the HRVD system as presented in Fig. 27.

Data availability
All data generated or analyzed during this study are included in this manuscript.
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