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Deep learning for transesophageal 
echocardiography view 
classification
Kirsten R. Steffner 1,7*, Matthew Christensen 2,7, George Gill 3, Michael Bowdish 3, 
Justin Rhee 2, Abirami Kumaresan 3,4, Bryan He 5, James Zou 6 & David Ouyang 2

Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex 
cardiac pathology and the management of cardiac surgery patients. A key limitation to the application 
of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and 
unstructured nature of these images. In the present study, we developed a deep learning-based, 
multi-category TEE view classification model that can be used to add structure to intraoperative and 
intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) 
to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from 
Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos 
from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled 
views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View 
(area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal 
Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis 
View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 
at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately 
classify standardized TEE views, which will facilitate further downstream deep learning analyses for 
intraoperative and intraprocedural TEE imaging.

Cardiovascular disease is a leading cause of death and disability worldwide and has been one of the top ten 
most important drivers of increasing global disease burden in the last three  decades1. Echocardiography is the 
most commonly used imaging modality in the assessment of cardiac structure, function, and  disease2,3. The two 
main modalities of echocardiography imaging are transthoracic echocardiography (TTE) and transesophageal 
echocardiography (TEE). TTE imaging is used as a screening tool in asymptomatic patients and as the initial 
diagnostic tool for many cardiovascular disease states, including ischemic heart disease, valvular heart disease, 
rhythm disorders, and heart failure. TEE imaging is utilized in the workup and management of complex cardiac 
pathology such as sequelae after acute myocardial ischemia or acute aortic  disease3. TEE is particularly valuable 
as a monitoring and diagnostic tool utilized in the management of cardiac surgery  patients2,4. As the standard of 
care, intraoperative TEE imaging is performed during all major cardiac surgeries, especially those requiring an 
open sternotomy and cardiopulmonary bypass (CPB), to help make diagnoses, guide surgical decision-making, 
and evaluate hemodynamic states in real-time.

Given its importance in cardiovascular disease management, echocardiography imaging has become an 
important target for artificial intelligence (AI). Prior echocardiography-based AI research has focused on TTE 
videos, with recent work showing that machine learning algorithms are able to classify standardized TTE  views5–8, 
recognize cardiac  structures9, and estimate left ventricular ejection  fraction10. Additional work has demonstrated 
the ability to accurately diagnose the etiology of left ventricular  hypertrophy11, extract phenotypic informa-
tion such as age and  sex9, and predict clinical outcomes such as postoperative right ventricular failure after the 
implantation of a left ventricular assist  device12.
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Previous groups have also shown that machine learning models can be trained on TEE data to perform 
focused image segmentation tasks and automatically calculate measurements such as the mitral annular plane sys-
tolic excursion; however, such TEE-based approaches have been limited to small and highly-curated data  sets13–15. 
The application of AI and machine learning to TEE images acquired during the course of standard clinical care 
remains relatively unexplored. TEE imaging data is highly variable due to the dynamic environment in the cardiac 
surgery operating rooms, which results in the acquisition of varying image sequences, non-standard views, and 
missing views. Without an automated preprocessing and view classification pipeline for clinically-acquired TEE 
videos, deep learning tasks on unstructured intraoperative and intraprocedural TEE data remains challenging.

However, given the vitally important role that TEE imaging plays in the evaluation of complex cardiovascular 
disease states and in the perioperative management of high-risk cardiac surgery patients, there is great potential 
value to be extracted from TEE images with advanced deep learning methodologies. Therefore, the purpose of the 
present study was to train a deep learning-based TEE view classification model that could be used to create struc-
ture for intraoperative and intraprocedural TEE imaging data and thereby facilitate downstream TEE-based deep 
learning tasks. More specifically, the aim of the present study was to train a convolutional neural network (CNN) 
to accurately classify standardized TEE views using labeled intraoperative and intraprocedural TEE videos.

Methods
Cohort selection and data processing
We obtained TEE image data for randomly selected adult patients who underwent an intraoperative or intrapro-
cedural TEE exam at Cedars-Sinai Medical Center (CSMC) between the years of 2016 and 2021. This resulted in 
2967 TEE videos, including intraoperative echocardiography images from open (via sternotomy) cardiothoracic 
surgical operations and intraprocedural echocardiography images from transcatheter procedures for structural 
heart disease. We also obtained TEE image data from randomly selected adult patients who underwent an 
intraoperative TEE exam during open cardiothoracic surgery at Stanford University Medical Center (SUMC), 
resulting in an additional 465 TEE videos for an external test set.

The Institutional Review Board at Cedars-Sinai Medical Center and the Institutional Review Board at Stan-
ford University Medical Center both granted ethical approval for this study. Given the nature of our study as 
a retrospective analysis of data that had already been collected as part of the clinical standard of care, a waiver 
of informed consent was granted by the Institutional Review Boards at both Cedars-Sinai Medical Center and 
Stanford University Medical Center. All study methods were performed in accordance with the guidelines and 
regulations outlined by both Institutional Review Boards.

TEE image data was converted from Digital Imaging and Communications in Medicine (DICOM) format 
data to AVI videos. Prior to labeling, model training, and analysis, an automated preprocessing workflow was 
undertaken to remove patient identifying information and eliminate unintended human labels. Each subsequent 
video was cropped and masked to remove text, ECG and respirometer information, and other information out-
side of the scanning sector. The resulting square images were either 600 × 600 or 768 × 768 pixels depending on 
the ultrasound machine and down-sampled by cubic interpolation using OpenCV into standardized 112 × 112 
pixel videos.

All training, validation, and test images were labeled by a board-certified echocardiographer. Expert consen-
sus echocardiography guidelines identify twenty-eight standardized TEE views for a complete intraoperative 
multi-plane TEE  exam16. For our multi-category deep learning view classification model, we chose the eight most 
consistently acquired and most clinically useful TEE views in the intraoperative assessment of cardiac surgery 
patients, including: the Mid-Esophageal (ME) 2-Chamber View, ME 4-Chamber View, ME Aortic Valve (AV) 
Short Axis (SAX) View, ME Bicaval View, ME Left Atrial Appendage View, ME Long Axis View, Trans-Gastric 
(TG) LV SAX View, and Aortic View.

Four of our eight chosen views (the ME 2-Chamber, ME 4-Chamber, ME AV SAX, ME Long Axis) represent 
pooled categories that integrate two of the twenty-eight standardized views. More specifically, the “ME 2-Cham-
ber View” class includes ME 2-chamber and ME mitral commissural views; the “ME 4-Chamber View” class 
includes ME 4-chamber and ME 5-chamber views; the “ME AV SAX View” class includes ME AV SAX and ME 
right ventricular (RV) inflow-outflow views; and the “ME Long Axis View” class includes ME long axis and ME 
AV long axis views. We also chose to generalize two categories (the TG LV SAX and the Aortic Views). TEE 
videos that did not fall into any of the eight chosen view classes were labeled as “Other.”

AI model design and testing
We trained a CNN to classify eight standardized TEE views. Our training and validation sets contained 2464 
unique videos (split 4:1), representing 2036 patients. The model was tested on 503 randomly selected videos 
from CSMC and 465 randomly selected videos from SUMC, none of which were seen during model training. We 
trained the CNN with residual connections and spatiotemporal convolutions using the R2 + 1D  architecture17,18. 
We chose R2 + 1D spatiotemporal convolutions based on our prior work with TTE videos, where we tested mul-
tiple model architectures with variable integration of temporal convolutions and found decomposed R2 + 1D 
spatiotemporal convolutions to have the best balance of computational complexity and model  performance10. A 
further description of model architecture and tradeoffs are well described in the original architecture  papers17,18.

Model weights were randomly initialized. Models were trained to minimize the cross entropy between the 
predicted view and the actual labeled view. We used an Adam  optimizer19, a learning rate of 0.001, and a batch 
size of 44. We employed early stopping to cease model training after no further improvement on the validation 
set occurred. Our final model trained for nine epochs. The model was trained on 32-frame sub-clips of videos 
in the training set, with a temporal stride of two, yielding a final model input length of 16 frames. The choice of 
16 frames is based on hyperparameter sweeps in prior work balancing model performance and computational 
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 efficiency10. The starting frame of these sub-clips within their parent clips were randomized during training as a 
form of data augmentation. All model training was done using the Python library PyTorch. Our code is available 
online at https:// github. com/ echon et/ tee- view- class ifier.

Statistical analysis
An internal hold-out test data set from CSMC which was never seen during model training was used to assess 
model performance. An external test set from SUMC was also used for additional testing and was never seen 
during model training. Model performance was assessed via AUROC. Two-sided 95% confidence intervals using 
1000 bootstrapped samples were computed for each calculation. Unsupervised t-Distributed Stochastic Neighbor 
Embedding (t-SNE) was used for clustering  analysis20. All statistical analyses were performed in Python.

Results
Patient characteristics and surgery or procedure types represented in our training, validation, and test data sets 
are shown in Table 1. Our data sets included a broad spectrum of anatomic variation, clinical pathology, and 
imaging indications reflecting the cardiac open surgical and transcatheter procedural populations seen at CSMC 
and SUMC. The images also included a wide range of technical variation, including differences in spatial and 
temporal resolution, field of view depth and sector width, gain, image quality, and use of color flow Doppler 
(Fig. 1). The most frequently represented views included the ME-4 Chamber View, the ME Long Axis View, the 
TG Left Ventricular Short Axis View, and the ME Aortic Valve Short Axis View (Table 2).

Our view classification model achieved an overall micro-averaged area under the receiver operating curve 
(AUC) of 0.919 on the hold-out CSMC test set of TEE videos (Fig. 2 and Table 3). Our model showed particu-
larly good performance for the Trans-Gastric Left Ventricular Short Axis View (AUC = 0.971), the Mid-Esoph-
ageal Long Axis View (AUC = 0.954), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946), and 

Table 1.  Clinical characteristics and surgery or procedure types represented in the training, validation, and 
internal test data sets. SD, standard deviation. CABG, coronary artery bypass graft.

Total Train Validation Internal Test

Number of videos (n) 2967 1968 496 503

Mean age, years (SD) 67.8 (± 15.4) 67.9 (± 15.4) 68.3 (± 15.7) 66.9 (± 15.2)

White (%) 71.6% 72.1% 69.7% 72.0%

Black (%) 10.2% 10.8% 11.8% 6.2%

Other/unknown (%) 8.7% 8.5% 7.8% 10.5%

Asian (%) 7.8% 7.3% 7.6% 9.9%

Pacific Islander (%) 1.1% 0.9% 2.7% 0.6%

Native American (%) 0.4% 0.3% 0.4% 0.8%

Hispanic ethnicity (%) 12.7% 12.3% 13.0% 14.3%

Female gender (%) 36.1% 36.5% 37.0% 33.6%

Atrial fibrillation (%) 36.9% 37.2% 37.0% 35.6%

Heart failure (%) 48.5% 48.6% 50.2% 46.1%

Hypertension (%) 54.2% 55.0% 51.0% 54.1%

Diabetes mellitus (%) 22.6% 23.3% 21.4% 21.3%

Ischemic stroke (%) 11.8% 12.3% 10.1% 11.3%

Transient ischemic attack (%) 6.3% 6.6% 5.9% 5.2%

Pulmonary embolism (%) 2.9% 3.0% 4.0% 1.2%

Myocardial infarction (%) 10.9% 10.3% 10.5% 13.9%

Peripheral artery disease (%) 17.4% 18.1% 15.8% 16.1%

Vascular disease (%) 26.2% 26.5% 24.0% 27.2%

Coronary artery disease (%) 37.1% 37.0% 36.6% 38.0%

Chronic kidney disease (%) 24.0% 23.8% 26.7% 21.9%

Liver disease (%) 5.1% 5.3% 4.6% 5.0%

Chronic obstructive pulmonary disease (%) 6.4% 6.7% 5.2% 6.8%

Prior smoker (%) 5.8% 5.7% 6.7% 5.4%

CABG (%) 6.3% 6.0% 5.9% 7.8%

Valve procedure (%) 10.3% 10.4% 8.0% 12.7%

Aortic procedure (%) 1.4% 1.4% 0.6% 1.8%

Combination of CABG, valve, and/or aortic procedure (%) 7.0% 6.7% 6.7% 8.5%

Other open cardiac procedure (%) 10.2% 10.4% 10.7% 9.1%

Mechanical circulatory support (%) 1.7% 1.4% 2.5% 1.8%

Transcatheter procedure (%) 63.1% 63.7% 65.6% 58.3%

https://github.com/echonet/tee-view-classifier
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the Mid-Esophageal 4-Chamber View (AUC = 0.939). The model performance also generalized well externally, 
achieving a micro-averaged AUC of 0.872 when tested on the 465 never-before-seen TEE videos from SUMC. Our 
model had similar performance for the Trans-Gastric Left Ventricular Short Axis View (AUC = 0.957), the Mid-
Esophageal Long Axis View (AUC = 0.905), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.898), 
and the Mid-Esophageal 4-Chamber View (AUC = 0.902) in the SUMC data set.

Clustering analysis suggests our AI model can identify a meaningful embedding space representing the 
various TEE views from heterogeneous video input that generalizes across two institutions (Fig. 3). Model 
performance was similar in standard black-and-white 2D B-Mode TEE videos (micro-averaged AUC = 0.902) 
and videos incorporating color flow Doppler information (micro-averaged AUC = 0.877) (Fig. 4), the analyses 
for which were performed on a combination of randomly selected internal and external test videos due to the 
overall low prevalence of color flow Doppler videos in our data sets.

Figure 1.  Sample training images used for the deep-learning view classification task. Images are 2-dimensional 
still frames sampled from the video data used in model training. Eight standard TEE views were chosen, 
including: the ME 2-Chamber View, ME 4-Chamber View, ME AV SAX View, ME Bicaval View, ME LAA View, 
ME Long Axis View, TG LV SAX View, and Aortic View. TEE, transesophageal echocardiography; ME, mid-
esophageal; AV, aortic valve; SAX, short axis; LAA, left atrial appendage; TG, trans-gastric; LV, left ventricular.

Table 2.  Number of TEE videos labeled for model training and validation, per view class. Eight standard TEE 
view classes were chosen. All TEE videos that did not fall into any of the eight chosen view classes were labeled 
as “Other.” TEE, transesophageal echocardiography; ME, mid-esophageal; TG, trans-gastric; LV, left ventricular; 
SAX, short axis; AV, aortic valve; LAA, left atrial appendage.

View Total (n =) Training (n =) Validation (n =)

ME 4-Chamber view 325 260 65

ME Long Axis view 295 236 59

TG LV SAX view 196 156 40

ME AV SAX view 179 143 36

ME Bicaval view 156 124 32

Aortic views 147 117 30

ME 2-Chamber view 93 74 19

ME LAA view 63 50 13

Other 1010 808 202

Total 2464 1968 496
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Discussion
Our deep learning model was able to classify the eight most commonly used intraoperative and intraprocedural 
TEE views with high accuracy across a wide range of clinical and echocardiographic characteristics. Our vid-
eos included patients undergoing many different types of open cardiac surgery and transcatheter procedures, 
representing a highly diverse mix of anatomic pathology and differences in practice patterns across two major 
institutions for cardiology and cardiac surgery. Images also varied with respect to resolution, sizing and focus 
of the field of view, and the use of color flow Doppler. The model performance was consistently high across the 
range of findings in both held-out internal and external test data sets, demonstrating the generalizability of our 
view classifier in real-world clinical contexts.

Figure 2.  View classification model performance on the internal (CSMC) hold-out test set and the external 
(SUMC) test set. (a) AUC’s for each view class, demonstrating high accuracy (with AUC’s ranging from 0.816 
to 0.957). No AUC was able to be calculated for the ME Left Atrial Appendage View in the randomly selected 
SUMC test set due to low sampling. (b) Confusion matrices showing model performance, with views labeled 
by a board-certified echocardiographer along the vertical axis and views predicted by the deep learning model 
on the horizontal axis. Numerical values in the matrices and the color intensity of the heatmaps represent the 
number of images with the indicated ground-truth and model-predicted labels. AUC, area under the receiver 
operating curve; CSMC, Cedars Sinai Medical Center; SUMC, Stanford University Medical Center; ME, mid-
esophageal; AV, aortic valve; SAX, short axis; TG, trans-gastric; LV, left ventricular.
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Our study represents the first application of a machine learning strategy to TEE video image data acquired 
during the course of standard clinical care for open cardiac surgeries and transcatheter procedures. In prior 
work, the application of AI strategies to TEE has included focused image segmentation tasks and the automation 
of specific quantitative measurements. For example, groups such as Carnahan et al.13 and Andreassen et al.14 
demonstrated the ability to identify the mitral valve apparatus from highly curated three- and four-dimensional 
mid-esophageal-level TEE acquisitions with the mitral valve centered in the images. Tasken et al., was able to 
automatically quantify the mitral annular plane systolic excursion (MAPSE), using a pipeline that included a 
view classification task prior to the quantification of MAPSE, highlighting the utility and necessity of TEE view 
classification for downstream machine learning tasks. Thalappillil et al.21 and Li et al.22 used quantitative meas-
urements derived from TEE videos, rather than the TEE image data itself, as the input variables or output labels 
in their machine learning algorithms. Our group is the first to apply machine learning techniques to clinically-
acquired intraoperative and intraprocedural TEE image data and the first to add structure to the data contained 
within these comprehensive clinical TEE exams.

Table 3.  View classification model performance on the internal (CSMC) hold-out test set and the external 
(SUMC) test set. AUC’s for each view class and overall micro-averaged AUC’s. No AUC was able to be 
calculated for the ME Left Atrial Appendage View in the randomly selected SUMC test set due to low 
sampling. AUC, area under the receiver operating curve; CSMC, Cedars Sinai Medical Center; SUMC, Stanford 
University Medical Center.

View Internal CSMC Test AUC External SUMC Test AUC 

ME 4-Chamber view 0.939 0.902

ME Long Axis view 0.954 0.905

TG LV SAX view 0.971 0.957

ME AV SAX view 0.946 0.898

ME Bicaval view 0.909 0.846

Aortic views 0.913 0.833

ME 2-Chamber view 0.91 0.87

ME LAA view 0.816 Too few for AUC 

Other 0.75 0.706

Overall average AUC 0.919 0.872

Figure 3.  Clustering analysis showing the ability to distinguish among standard TEE views. t-SNE clustering 
analysis of input images demonstrates that meaningful representations of standard TEE views are clustered 
appropriately together. In other words, images are sorted into groups that reflect standard TEE classes. 
Embedding representation is consistent across CSMC and SUMC, suggesting robustness and generalizability of 
the approach. TEE, transesophageal echocardiography; t-SNE, t-Distributed Stochastic Neighbor Embedding; 
CSMC, Cedars Sinai Medical Center; SUMC, Stanford University Medical Center.
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Aside from the limited work that has been done with TEE videos, the large majority of prior AI-driven echo-
cardiography imaged-based studies have focused on TTE videos. For example, it has been demonstrated that 
machine learning algorithms trained on TTE videos are able to predict standard TTE  views5–8, identify cardiac 
structures, estimate cardiac function, make accurate diagnoses, identify phenotypic information that is otherwise 
not easily recognized by a human observer, and predict clinical  outcomes9–12,23,24. The major advantage of working 
with TTE videos over TEE videos for machine learning tasks is that the TTE clinical workflow inherently creates 
structure for TTE data. As compared to the clinical workflow for TEE imaging, the imaging pipeline for TTE 
video acquisition, interpretation, and reporting is more standardized and consistent across studies and includes 
many image annotations and quantitative measurements. The ability to leverage these integrated annotations 
and quantitative measurements has reduced the need for laborious post hoc image annotation and has facilitated 
the swift adoption of machine learning for TTE  data9.

In contrast to the structured nature of TTE data, intraoperative and intraprocedural TEE data are fundamen-
tally more varied and relatively unstructured. The cardiac surgery operating rooms and structural heart disease 
procedural suites where TEE clinical exams are performed are highly dynamic environments. As a result, the 
TEE exams performed in these settings often vary in their acquisition sequences and inconsistently include image 
annotations or quantitative measurements. Moreover, intraoperative and intraprocedural TEE exams are subject 
to significant variation within and across studies, as they are acquired over the course of significant changes in 
clinical conditions, including changes cardiac loading, on- versus off-cardiopulmonary bypass (CPB), pre- versus 
post-surgical intervention, pharmacologic interventions, external cardiac pacing, and the use of other mechani-
cal circulatory support devices. The application of AI-driven strategies to intraoperative and intraprocedural 
TEE imaging has primarily been limited by the relatively unstructured nature of TEE data. Our present study 
represents the first attempt at creating structure for clinically-acquired intraoperative and intraprocedural TEE 
data sets with a machine-learning based view classification algorithm. Additionally, our choice of a video-based 
model rather than a still image-based model helps to regularize much of the challenging natural variation that 
occurs with TEE.

Even though multiple AI-driven TTE view classification studies have been conducted in the  past5–7, the ability 
to directly apply these tools to TEE data is limited. While TTE and TEE are both ultrasound imaging modali-
ties that capture cardiac structure and function, TTE views and TEE views are not entirely  analogous16,25. TTE 
images are acquired from the anterior (trans-thoracic) and left-lateral aspect of the patient, while TEE images are 
acquired from the posterior (trans-esophageal) aspect of the patient. Additionally, there are differences in probe 
manipulation and ultrasound beam rotation between the two modalities. The relationship between TTE versus 
TEE images are more nuanced than a simple one-to-one vertical flip. As a result, the advantages that allowed 
for the accelerated application of machine learning strategies to structured TTE data could not be automatically 
applied to TEE data.

The major limitation of our study is the class imbalance present in our data sets. Guidelines established by 
the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists identify twenty-
eight different TEE views necessary to complete a comprehensive intraoperative multi-plane TEE  exam16. In 

Figure 4.  Micro-averaged receiver operating characteristic curves for model predictions in subsets containing 
all color flow Doppler videos versus no color flow Doppler videos. This evaluation was performed using a 
combination of the internal and external test sets due to the low prevalence of color flow Doppler videos in our 
data sets.
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actual clinical practice, individual patient factors, anatomic variations and pathology, and time constraints in 
the cardiac surgery operating rooms and structural heart procedural suites can preclude the acquisition of all 
twenty-eight views. Oftentimes a comprehensive intraoperative TEE exam will include varying sequences, non-
standard views, and multiple missing views. This clinical reality was reflected in our random selection of TEE 
videos, from both CSMC and SUMC. Many of the twenty-eight standardized TEE views were inconsistently 
captured and did not yield enough examples for adequate model training, validation, and testing. The most 
frequently captured views across all randomly selected TEE studies included the ME-4 Chamber View, the ME 
Long Axis View, the TG Left Ventricular Short Axis View, and the ME Aortic Valve Short Axis View, which is 
consistent with real-world clinical settings.

While our view classification model performed well across all labeled views, it showed particularly good 
performance for the views with the most training data and the views with the most visually distinct anatomic 
features (namely, the ME-4 Chamber View, the ME Long Axis View, the TG Left Ventricular Short Axis View, and 
the ME Aortic Valve Short Axis View). With respect to clinical significance and plausibility, it is not surprising 
that the views with most training data are also the views with the most distinct features. The goal of intraoperative 
echocardiography is to support real-time surgical and procedural decision-making, which requires the efficient 
acquisition of a complementary set of images that comprehensively captures cardiac structure and  function4. To 
this end, the highest yield approach is to focus on a limited set of views that illustrate the relationships among as 
many significant structures as possible. Collectively, the ME-4 Chamber View, the ME Long Axis View, the TG 
Left Ventricular Short Axis View, and the ME Aortic Valve Short Axis View efficiently capture the large major-
ity of the information needed by intraoperative and intraprocedural physicians. Therefore, these were the most 
frequently encountered views in our random selection of TEE videos, and ultimately were the highest perform-
ing classes in our view classification model. The performance of our model was the least accurate for the ME 
Left Atrial Appendage View due to an inadequate number of examples of this view in our random selection of 
TEE videos. For the future, we will continue to update our view classification model, with a particular focus on 
increasing the number of labeled examples for rarer views.

In order to optimize the number of examples that we had per view for model training and to build a view clas-
sifier that is reflective of real-world clinical contexts, four of our eight labels (the ME 2-Chamber, ME 4-Chamber, 
ME AV SAX, ME Long Axis) represent pooled categories. These pooled categories reflect a combination of two 
standardized views that vary only slightly with regard to omniplane angle, field of view depth, or sector width, 
but otherwise capture many of the same key structures and anatomic relationships (Fig. 5). The “ME 2-Cham-
ber View” class included ME 2-chamber and ME mitral commissural videos; the “ME 4-Chamber View” class 
included ME 4-chamber and ME 5-chamber videos; the “ME AV SAX View” class included ME AV SAX and 
ME right ventricular (RV) inflow-outflow videos; and the “ME Long Axis View” class included ME long axis and 
ME AV long axis videos. We also chose to generalize two categories (the TG LV SAX and the Aortic Views), in 
order to increase the sample sizes of these classes (Fig. 5). Any image of the left ventricle in short axis, regard-
less of level (basal, mid-papillary, or apical), was classified as “Trans-Gastric Left Ventricular Short Axis View.” 

Figure 5.  Representation of variation contained within classified views. Six of the eight TEE view class 
labels represent pooled or generalized categories, reflecting the high degree of anatomical and visual overlap 
that occurs among the twenty-eight standardized TEE views recommended by the American Society of 
Echocardiography and the Society of Cardiovascular Anesthesiologists. The images are 2-dimensional still 
frames sampled from the video data used in model training. (A) The “ME 2-Chamber View” class included ME 
2-chamber (left) and ME mitral commissural (right) videos. (B) The “ME 4-Chamber View” class included ME 
4-chamber (left) and ME 5-chamber (right) videos. (C) The “ME AV SAX View” class included ME AV SAX 
(left) and ME RV inflow-outflow (right) videos. (D) The “ME Long Axis View” class included ME long axis (left) 
and ME AV long axis (right) videos. (E) The “TG LV SAX View” class included short axis videos of the LV at all 
levels, such as the mid-papillary (left) and the basal (right) levels. (F) The “Aortic View” class included videos of 
the aorta at all levels, such as the descending thoracic SAX (left) and upper esophageal aortic arch LAX (right) 
levels. TEE, transesophageal echocardiography; ME, mid-esophageal; AV, aortic valve; SAX, short axis; RV, right 
ventricular; LV, left ventricular; TG, trans-gastric.
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Similarly, any dedicated image of the aorta, regardless of level or axis orientation, was classified as “Aortic View.” 
Variation in patient anatomy and dynamic clinical needs often leads to the acquisition of TEE images that do 
not completely fit the criteria for a specific view class. It is not uncommon to acquire a TEE image that cannot 
be precisely categorized as a single view but instead falls in between two views. Therefore, combining categories 
with overlapping anatomic features for our view classification model mirrors real-world clinical practice.

In the present study, we demonstrate that our deep learning model can accurately classify standardized 
TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraproce-
dural TEE imaging. Previous work has already shown that intraoperative TEE imaging actively informs surgical 
decision-making26,27 and is associated with improved clinical outcomes after cardiac  surgery28,29. The develop-
ment of AI-driven models based on intraoperative TEE images has the potential to further enhance the value of 
echocardiography in the perioperative and periprocedural period by improving the ability to diagnose cardiac 
surgical diseases and complications, diagnose the underlying etiology of varied hemodynamic states, and predict 
clinical outcomes in the immediate and long-term postoperative periods.

Conclusion
In summary, we show that an intraoperative and intraprocedural TEE-based deep learning model can accurately 
identify standardized TEE views, the first step in the AI interpretation of TEE images. Our study represents an 
important first step towards the automated evaluation of intraoperative and intraprocedural echocardiography 
imaging and the leveraging of deep learning strategies for the advancement of patient care.

Data availability
The data that support the findings of this study are available through Kirsten R. Steffner, MD (ksteffner@stanford.
edu). Restrictions apply to the availability of these data, which were used under license for the current study, and 
so are not publicly available. Data are however available from the corresponding author upon reasonable request 
and with permission from the Stanford Center for Artificial Intelligence in Medicine & Imaging (aimicenter@
stanford.edu).
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