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Deep learning system for true‑ 
and pseudo‑invasion in colorectal 
polyps
Joe Yang 1,4, Lina Chen 3,4, Eric Liu 1, Boyu Wang 1, David K. Driman 2, Qi Zhang 2* & 
Charles Ling 1*

Over 15 million colonoscopies were performed yearly in North America, during which biopsies were 
taken for pathological examination to identify abnormalities. Distinguishing between true‑ and 
pseudo‑invasion in colon polyps is critical in treatment planning. Surgical resection of the colon is 
often the treatment option for true invasion, whereas observation is recommended for pseudo‑
invasion. The task of identifying true‑ vs pseudo‑invasion, however, could be highly challenging. There 
is no specialized software tool for this task, and no well‑annotated dataset is available. In our work, 
we obtained (only) 150 whole‑slide images (WSIs) from the London Health Science Centre. We built 
three deep neural networks representing different magnifications in WSIs, mimicking the workflow of 
pathologists. We also built an online tool for pathologists to annotate WSIs to train our deep neural 
networks. Results showed that our novel system classifies tissue types with 95.3% accuracy and 
differentiates true‑ and pseudo‑invasions with 83.9% accuracy. The system’s efficiency is comparable 
to an expert pathologist. Our system can also be easily adjusted to serve as a confirmatory or 
screening tool. Our system (available at http:// ai4pa th. ca) will lead to better, faster patient care and 
reduced healthcare costs.

Colon cancer ranks as the third most frequently occurring type of cancer in North  America1. Up to 50% of 
adults over 50 years of age harbor at least one colorectal polyp. While most of them are benign, some of those 
polyps can be cancerous. Colonoscopies are a procedure that is routinely performed on adults to examine the 
colon to find abnormalities. Over 15 million colonoscopies are performed yearly in North America. During a 
colonoscopy, abnormal colon polyps are extracted to make into tissue slides for examination by pathologists. 
Distinguishing between true- and pseudo-invasion in colon polyps is critical in treatment  planning2. Surgical 
resection of the colon is often the treatment option for true invasion, whereas long-term monitoring is recom-
mended for pseudo-invasion.

It could be extremely challenging, however, to distinguish true- and pseudo-invasion for the following rea-
sons. First of all, the features used to differentiate true- and pseudo-invasion can be very subtle and complex. 
Recognition of distorted structures and complex morphological features often requires a panel of pathologists. 
Secondly, the slides inspected under microscopes are frequently large, and pathologists often need to use varying 
zoom levels to locate only a few crucial areas.

As shown in Fig. 1, typically, pathologists examine tissue slides at low magnification (zoom) level (e.g. 1× 
to 2× ) to identify regions of interest first. They then zoom in on each interested area to gather more detailed 
evidence, which may involve analyzing certain types of cells, tissue structures, stromal features, or interaction of 
groups of cells. High magnifications (e.g. 10× to 20× ) are necessary to visualize individual cells. Spatial relations 
are also important. Challenging cases often need to be reviewed by one or more expert pathologists. The entire 
process may take days to complete.

With the development of digital pathology, transforming histological slides into highly detailed whole-slide 
images (WSIs) through scanning has become popular. Furthermore, deep learning, being one of the most pow-
erful techniques of artificial intelligence, also has vast applications in digital pathology. Nevertheless, utilizing 
deep learning for true- and pseudo-invasion classification on WSIs is still considerably challenging. Firstly, 
the typical size of one WSI is enormous (averagely around 100,000 by 100,000 pixels), which is equivalent to 
tens of thousands of ordinary medical images. Additionally, to the best of our knowledge, there is currently no 
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labeled dataset available to train our deep-learning models. Moreover, the process of labeling WSIs is exceed-
ingly labour-intensive. To deal with this difficulty, we developed an innovative system for annotating tissue types 
across various (e.g. 1× to 40× ) magnifications. Although it requires some professional knowledge and time for 
annotating, the demand for labeled images is significantly reduced. To train our models, we acquired 150 cases 
from London Health Science Center (LHSC). However, only 50 of those cases have been annotated. As a result 
of the aforementioned difficulties, there currently exists no dedicated software tool for this crucial task. Although 
some prior  endeavors3–10 have been undertaken, they can not accomplish the tasks we have. Most of the current 
 works8–10 on colon polyp detection and classification focus on colonoscopic images, which are profoundly dif-
ferent from whole-slide histological images in terms of image size, colour, feature and the volume of information 
they contain. As a result, methods that are effective for colonoscopic colon polyp detections are generally not 
transferable to our task. On the other hand, most of the existing methods for whole-slide histological image 
 analysis3–7 follow a patch-based procedure at a single zoom level. On small patches, the cytological atypia is the 
most common information generated and used for diagnosis. However, diagnosis of adenocarcinoma requires 
not only cytological features but also architectural and stromal findings. In fact, the features useful for the dif-
ferentiation of invasive adenocarcinoma from high-grade dysplasia are not cytological atypia but desmoplastic 
stroma. These tissues containing architectural and stromal information vary in size and may be too large to fit 
into the patches or too small to be identified at one fixed zoom level.

In our work, we designed and implemented a novel deep-learning system, consisting of multiple deep neural 
networks. Our approach was inspired by the multi-zoom-level examination procedure employed by patholo-
gists (as illustrated in Fig. 1), and to mimic pathologists’ workflow. We first partition the WSIs into patches at 
low, medium, and high magnification (zoom) levels. See Fig. 3 for an overview of our design. Thereafter, for 
tissue type recognition, three convolutional neural networks (CNNs) were trained to classify the patches at their 
respective magnifications, solving the unbalanced model performance issue. Besides, we designed an additional 
CNN to aggregate the tissue type recognition results into a final true-/pseudo-invasion result, as shown in Fig. 5.

To facilitate annotation as well as prediction, we have developed a web-based system (AI4Path) specifi-
cally for pathologists. See Fig. 2 for the actual annotation. Unlike other digital pathology applications, AI4Path 
requires no specialized knowledge to operate. It is also easily accessible on any modern computer due to its web 
browser-based platform. Moreover, AI4Path provides the flexibility of customizable subclass sensitivity, making 
it easily adjustable for confirmation (as a second opinion) or screening (with minimum false negative errors). 
For details, see Fig. 7. With the screening function, our system can automatically detect suspicious cases, thus 
reducing pathologists’ workload. With the confirmatory function, our system can act as a reliable expert patholo-
gist to support primary pathologists in community hospitals. This significantly reduces the turnaround time of 
pathology reports and minimizes out-of-institution consultations, lowering healthcare costs.

According to the results of our study, our novel system presents a remarkable accuracy rate of 95.3% in clas-
sifying tissue types and an impressive accuracy of 83.9% in distinguishing true- and pseudo-invasions. These high 
accuracy rates and visualization (see Fig. 8) demonstrate the effectiveness of our system in aiding pathologists 
in their diagnosis and decision-making process.

AI4Path is currently being clinically tested and used in pathology labs at Western University and the Uni-
versity of Toronto. During such utilization, additional WSIs and annotations are collected for the training of the 

Figure 1.  An example of pathologists’ whole-slide image examination workflow under different magnifications 
(zoom) levels. Pathologists typically commence their examination of a whole-slide image by identifying 
probable regions of interest at low or moderate magnifications. Subsequently, they zoom into the regions of 
interest at higher magnifications for further examination. Based on their observations at different zoom levels, 
they establish whether the whole-slide image portrays true- or pseudo-invasion.
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deep neural networks to further improve accuracy. AI4Path has been offering the prospect of a cost-effective and 
convenient pathology tool. We expect that our innovative and efficient system will help diminish the workload 
of pathologists and relieve the financial strain on the public health system.

Looking ahead, we are planning to initiate a stage-two study that aims to expand the scope of AI4Path’s appli-
cations and test its robustness across a more diverse set of samples. This upcoming phase will involve a wider 
range of pathologist participation in terms of data collection and real-life user feedback. This will enable us to 
harness more holistic feedback and insights. By doing so, we aspire to achieve higher precision in our tool and 
to ensure that it’s well-suited to cater to the evolving needs of the medical community. Through this stage-two 
study, we also aim to solidify AI4Path’s position as a game-changer in modern pathology practice.

It is also noteworthy to mention that this paper extends the work presented in an  abstract11, which was pub-
lished during the 112th Annual Meeting of the United States and Canadian Academy of Pathology (USCAP) 
in March 2023.

Figure 2.  An example of a pathologist annotated WSI using our developed annotation tool. Area A and B 
correspond to the regions of interest (a) and (b) shown in Fig. 1. The pathologists annotated the regions of 
interest by outlining the regions and giving them names.

Figure 3.  An overview of our novel true- and pseudo-invasion differentiation system, which consists of three 
main stages: 1. multi-zoom-level patching and patch preprocessing; 2. tissue recognition through selective patch 
classification; 3. concluding based recognized tissue types by aggregating patch-level results.
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Methods and materials
Research ethics
This study was approved by the Western University Research Ethics Board (HSREB 116725). The requirement 
to obtain informed consent was waived by the Western University Research Ethics Board for the following rea-
sons: the information used in this study is non-identifiable and not obtaining consent is unlikely to adversely 
affect the welfare of individuals to whom the information is related. All methods in this study were conducted 
in accordance with relevant guidelines and regulations.

Study cohort and digital pathology image acquisition
A retrospective case search was performed at the London Health Sciences Centre (LHSC). A total of 150 cases 
of colorectal polyps with true invasion and pseudo-invasion were selected. All cases were diagnosed with con-
sensus by at least three of the seven GI experts on our pathology review panel. The hematoxylin & eosin (H &E) 
stained slides were scanned by an Aperio CS scanner for high-resolution WSIs. The diagnosis of pseudo-invasions 
was based on the presence, location and shape of specific types of tissue on the WSIs, which were annotated 
for AI algorithm development. Further details on tissue types and annotations are provided in the subsequent 
“Datasets” section.

Datasets
In our study, we employed two datasets to train and validate our models. The first dataset consists of 150 LHSC 
cases. Among these, 67 WSIs were labelled as true invasions, while the remaining 83 WSIs were labelled as 
pseudo-invasions. Two expert pathologists were involved in the WSI annotation process as WSI annotation 
requires expert knowledge. Pathologists randomly selected and annotated only 25 true invasion slides and 25 
pseudo-invasion slides because the annotation process was extremely labour-intensive. All annotations were done 
using our developed annotation tool. Figure 2 presents an example of a WSI annotated by pathologists using our 
developed annotation tool. These annotations included nine  categories12,13 that pathologists believe are features 
differentiating true versus pseudo-invasions, namely acellular mucin, angulated gland, desmoplastic stroma, 
hemorrhage, lamina propia type stroma, luminal necrosis, mucus lake with peripheral dysplastic glands, rounded 
lobular group, and stroma with hemosiderin . Each annotation was represented by a tissue name associated 
with an ordered list of polygon vertex coordinates. However, the annotated tissue categories were not balanced, 
as some tissues naturally appear more frequently than others in number and size. We converted the annotated 
areas into collections of 224× 224 image patches at different zoom levels, and discarded any image patch that 
contains less than 60% of annotated areas.

The second dataset we used was the NCT-CRC-HE-100K14 dataset, which is a public dataset collected by 
the National Centre of Tumor Disease at Heidelberg. We used this dataset merely as a pre-training dataset for 
self-supervised learning to improve the performance of our models. This dataset is widely used for deep learning 
applications on colon cancers and tissue type classifications. It includes 100,000 non-overlapping image patches 
manually taken from 86 H &E stained WSIs at 20x zoom level (0.5 microns per pixel). All images in the dataset 
were RGB images with dimensions of 224× 224 , and they were normalized using Macenko’s image color nor-
malization  method15. The NCT-CRC-HE-100K dataset includes nine different tissue categories related to colon 
cancers. However, our pre-training process did not use the category labels from this dataset, as the self-supervised 
learning method we used did not require image labels as inputs for learning representations.

System architecture
Our system is an end-to-end system that comprises three main components, as depicted in Fig. 3. We first patched 
the input WSI at three different zoom levels and apply color normalization and background removal. Then, we 
employed three CNNs to recognize tissue types by selectively classifying the image patches into different tissue 
categories. We improved the performance of these CNNs by transfer learning via self-supervised learning. Third, 
we designed a shallow CNN that aggregates the patch-level predictions into a slide-level result, which determines 
whether a WSI contains true invasion or pseudo-invasion based on tissue type recognition.

Multi‑zoom‑level patching
The first part is multi-zoom-level patching, where an input WSI is partitioned into a collection of image patches 
of size 224× 224 pixels at three different zoom levels: 1.25× , 10× , and 20× . To prepare the image patches for 
further processing, we normalize the RGB colors to a mean of [0.485, 0.456, 0.406] and a variance of [0.229, 
0.224, 0.225]. Additionally, we perform simple background removal on each patch by examining its colors and 
discarding any patch with an average of RGB values close to 1 (e.g. white patches).

Selective patch classification
In the second part of our system, we developed a novel selective multi-zoom-level patch classification method, 
as shown in Fig. 4, which was inspired by the WSI inspection workflow of pathologists. Pathologists usually start 
with an overview of the WSI at a very low magnification to identify regions of the lesion, then zoom in on regions 
of interest to find more evidence. Finally, they conclude based on all the evidence and important features. To 
mimic this procedure, we trained three CNN using the ResNet-1816 architecture to represent each zoom level. 
The procedure starts by classifying the WSI patches using the first CNN model at 1.25× to find large-sized tissues, 
such as rounded lobular group and mucus lake, and to select patches of interest for examination at a medium 
zoom level. Then, the second CNN model was used on the selected patches of interest at a 10× zoom level to find 
medium-sized tissues and select patches of interest for examination at the highest zoom level. Finally, we used the 
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third CNN model on the selected patches to find small-sized tissues, such as LP stroma and luminal necrosis, at 
a 20× zoom level. After we obtained all the patch-level results from each level, we partitioned all the patches to 
the same size and created a 2D map that can be used for future aggregation. This multi-zoom-level design also 
solved the issue of improper zoom level. The issue usually occurs on single-zoom-level patch-based recognition 
methods, when the model tries to recognize tissues too large to fit into the current image patch or too small to 
be identified. This issue will lead to an unbalanced per-class recognition accuracy. Combined with other factors 
such as data imbalance and per-class learning difficulty, the final model performance might be severely impacted.

One might question how our models select patches of interest for later models. The selection was achieved 
by training the models to classify all nine tissue categories initially but only keep the predictions of the desired 
classes, leaving all other predicted patches as patches of interest for later models. However, as the latter models 
in this workflow only classify regions of interest selected by the previous models, any errors made by previous 
models have the potential to accumulate and negatively impact the final output accuracy. To address this issue, 
we established a threshold to accept classification results with only high confidence. Results with low predicted 
confidence have a high probability of being incorrect, and we excluded them to reduce the risk of error propaga-
tion. Subsequently, the later models in the pipeline will re-examine regions with low classification confidences 
at other zoom levels, increasing the likelihood of achieving accurate results.

Aggregating patch‑level results
In previous studies, linear classifiers were often applied to classify hand-crafted features, such as class percentages, 
to aggregate patch-level results into slide-level results. However, such linear classifiers ignore the 2D positional 
relationship between patch results, leading to suboptimal performance. In contrast, we designed a shallow CNN 
to aggregate the patch-level results by classifying a label map or a confidence map, as depicted in Fig. 5. A label 
map is a 2-dimensional tensor of size H ×W , in which each cell in the matrix stores the label index of the patch 
in the corresponding location in the WSI. A confidence map stores a list of N class confidence values in each 
cell, creating a 3-dimensional tensor of size H ×W × N . In our experiments, we found that classifying confi-
dence maps always leads to better performance than using label maps. Due to the limited number of WSIs in 
our dataset, we could not use deep CNN architectures, since the model complexity would be too high compared 
to the number of training samples and result in poor performance. Thus, we designed a shallow CNN with an 
appropriate complexity for our dataset, which consists of four convolutional blocks.

Each of the first three blocks contains a 3× 3 convolution layer with the same number of output channels 
as input channels, a dropout  layer17, and a ReLU activation  layer18. We introduced skip connections before the 
input layer and after the output layer of the first three convolution blocks to allow a stronger gradient flow for 
faster training, similar to the ResNet architecture.

Our network differs from conventional deep CNNs, as we feed the output of the last convolution layer into a 
special convolution block instead of fully-connected linear layers. This last convolution block consists of a 1× 1 
convolution layer with two output channels, a global average pooling (GAP)  layer19, and a softmax activation layer 
as the final output layer of the entire network. The GAP  layer19, introduced by Lin et al., was used to reduce model 
complexity. The GAP layer aggregates the spatial information by averaging the values of pixels in each input 
channel, which is better suited for 2D inputs than forcing them to become 1D vectors to fit into fully-connected 
layers. Unlike fully-connected layers, the GAP layer has no trainable parameter, reducing the complexity of the 
model and preventing overfitting. Moreover, the GAP layer is less sensitive to image translation and rotation 

Figure 4.  A detailed illustration of our novel selective multi-zoom-level patch classification method for tissue 
type recognition. Areas of interest are represented in yellow colour. Our method views a WSI by patches. At each 
zoom level, a CNN recognizes certain tissue types on each patch and selects patches of interest for examination 
at higher zoom levels.
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than fully-connected layers, as the average value of pixels on a rotated or translated image is always very close to 
that of the original image. Using a GAP layer allows input confidence maps to preserve their shapes, preventing 
the risk of changing their labels due to resizing.

Since we used the GAP layer as the final output layer for the binary classification of true invasion and 
pseudo-invasion, the input to the last layer must have only two channels, each containing information related 
to one type of invasion. To achieve this, we used a 1× 1 convolution layer. Unlike conventional 3× 3 or 5× 5 
convolution kernels, which learn to capture local structural features by considering neighbouring pixels, a 1× 1 
kernel applies only linear weighting along the channels, reducing the number of parameters and time spent on 
the convolution operation.

Transfer learning via self‑supervised learning
Previous  research20 has demonstrated that transfer learning can be a valuable tool for accelerating the training 
process and improving accuracy, particularly when the available data is limited. However, when we attempted 
to apply transfer learning using the ResNet model pre-trained on the ImageNet  dataset21, we did not observe a 
significant improvement in our training process. This is because the ImageNet dataset consists solely of natural 
object images markedly different from medical images. As a result, we opted to pre-train our models for tis-
sue type recognition using datasets that closely align with our task, so that transfer learning would yield more 
effective results.

Although pre-training on a similar source dataset and then fine-tuning the model on the target dataset is the 
most common transfer learning method, recent  works22–24 suggest that self-supervised learning (SSL)25–29 is more 
effective, especially when the target dataset contains noise. Our dataset contains noise due to imprecise annota-
tion, as it is difficult and time-consuming to outline the tissue areas accurately. However, given the small size of 
our own dataset, we cannot generate a sufficiently large collection of image patches for SSL to learn discriminative 
feature representations. Therefore, we chose to apply self-supervised learning as a pre-training method on the 
NCT-CRC-HE-100K dataset and then transfer the knowledge by fine-tuning the models on our dataset. During 
pre-training, only the convolutional layers of our models were trained. Subsequently, we fine-tuned the models on 
our dataset via supervised training, with all convolutional layers frozen and fully-connected layers re-initialized. 
Additionally, the output layer was substituted to match the dimension of the number of output classes.

We used Bootstrap-Your-Own-Latent (BYOL)29 as the SSL method. This method learns robust representa-
tions by contrasting the model with a slightly different version of itself using different views of the same input. 
Given an input image x, and two different augmentations t and t ′ , at each iteration, the augmented images t(x) 
and t ′(x) are passed through two models with parameters θ and ξ , respectively, where θ is the desired set of 
parameters, and ξ is the exponential moving average of θ . The exponential moving average of θ is computed 
using the following equation:

where τ ∈ [0, 1] is the decay factor for the exponential moving average. Then, BYOL computes the mean-squared 
error between the predictions made by the two models, as shown in the formula below:

ξ ← τξ + (1− τ)θ

Figure 5.  Architecture of the designed CNN for aggregating patch-level results into a slide-level result. The 
CNN consisted of three main convolutional blocks and an output block. The CNN was designed to be shallow 
so that the model complexity does not overwhelm the small size of our dataset. With more training samples, we 
can increase the model complexity by adding more layers and using more complicated designs.
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where h(θ , t(x)) is the prediction from the model with desired parameters θ and input augmented by t, and 
h(ξ , t′(x)) is the prediction from the model with parameter ξ and input augmented by t ′ . Finally, BYOL updates 
the parameters θ by backpropagating the computed loss and starts the next iteration of the same procedure. By 
augmenting the input differently, the model learns to capture the semantic information of the input image, thus 
learning representations robust to the views of the same input.

Results
Patch‑level tissue recognition accuracy
We converted the annotated regions into collections of image patches at the desired zoom levels, which we uti-
lized for training and evaluating our models. To evaluate the models’ performance, we randomly split the collec-
tion of image patches, utilizing 80% for training and the remaining 20% for testing. We employed classification 
accuracy as our evaluation metric, which is defined as the number of correctly classified images divided by the 
total number of images. The average accuracy of our models was 95.3%.

However, the categories in our dataset were unbalanced. Therefore, the accuracy might not provide enough 
information. Hence, we analyzed the per-class classification accuracy using a confusion matrix. For a more intui-
tive interpretation, we normalized the confusion matrix to show percentages of predicted samples instead of exact 
numbers, as depicted in Fig. 6. The confusion matrix shows that per-class accuracy was mostly balanced, as the 
models were able to predict most classes with accuracy above 90%. However, we observed that our models did 
not perform well on the fifth class (class number four on the figure axis), lp stroma. This class lacked annotations 
in our dataset to generate training samples, resulting in suboptimal accuracy.

Slide‑level classification accuracy
As mentioned in earlier sections, our system obtains slide-level classification results for true- and pseudo-inva-
sion by utilizing a shallow CNN to classify the confidence maps for each WSI. To generate the confidence maps, 
we utilized our system to produce one confidence map for each WSI in our dataset. We evaluated the performance 
of our shallow CNN using K-fold cross-validation on these 150 confidence maps. K-fold cross-validation is a 
widely used method for assessing the performance of a machine-learning model on an independent dataset. 
The process involves dividing the dataset into K subsets of equal size. The machine learning model is trained K 
times, with each of the K subsets used exactly once as validation data, while the remaining K-1 subsets are used 
as training data. The K results are then averaged to produce a single estimation of the model’s performance. 
For our cross-validation process, we set K = 10, and our shallow CNN achieved an average accuracy of 83.9%.

Impact of patch prediction confidence threshold
In the second part of our system, we employed a threshold to remove patch predictions with low confidence. This 
approach is advantageous since low-confidence predictions are more likely to be incorrect. However, setting the 
correct threshold is critical because a high threshold can remove correct predictions, whereas a low threshold 
may allow incorrect predictions to be accepted. Thus, we analyzed the impact of the patch prediction threshold 
on the final true- and pseudo-invasion classification performance. We examined our system’s false-positive (FP) 
rate and false-negative (FN) rate at each threshold. The FP rate and FN rate are defined as follows::

Lθ ,ξ = ||h(θ , t(x))− h(ξ , t ′(x))||22

Figure 6.  Normalized confusion matrix. The categories are acellular mucin, angulated gland, desmoplastic 
stroma, hemorrhage, lp stroma, luminal necrosis, mucus lake with peripheral dysplastic glands, rounded lobular 
group, and stroma with hemosiderin, as ordered on the figure axis. Our models achieved balanced accuracy in 
every class except for the fifth class (class number four on the figure axis), where we lacked training samples in 
our dataset.
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The FP and FN rates corresponding to each threshold value are illustrated in Fig. 7. We observed that both 
lines intersect when the threshold equals 0.55, where the system had the most balanced FP and FN rates. Never-
theless, the threshold can be adjusted depending on the situation and requirements. For confirmatory purposes, 
a high threshold can be set to have a low FP rate, providing a second opinion to the pathologists. On the other 
hand, for screening purposes, a low threshold can be applied to have a low FN rate, making the system behave 
like a “stringent” pathologist that assures true invasions are not missed.

System efficiency
Efficiency is an essential criterion in evaluating the practicality of a method in real-life applications. To assess 
the efficiency of our system, we randomly sampled ten WSIs from our dataset and calculated the average time 
taken for our system to recognize tissues and provide slide-level results. Our analysis showed that the system 
spends an average of 771.5 s (12.8 min) analyzing a WSI, which is comparable to the average  time30 an expert 
pathologist would spend examining an image. However, the time a pathologist takes to examine WSIs can vary 
significantly depending on various factors such as slide complexity, the pathologist’s experience, and the resources 
available. Pathologists can sometimes spend hours examining ambiguous cases and require cross-checking from 
colleagues to arrive at a consensus.

It is worth noting that the time taken by our system only depends on the size of tissue areas in a WSI and is 
insensitive to other factors. Furthermore, our system is currently implemented without utilizing any parallel 
programming techniques and only runs on a single GPU. We are continuously working on improving the system, 
and expect to increase the efficiency multiple times if we incorporate such improvements.

Visualization
Visualizing per-patch results is crucial for human interpretation since the final predictions rely on the tissue type 
recognition results. In Fig. 8, we present an example of tissue type recognition results visualized on a WSI. Each 
group of dots corresponds to an area of interest, and each color represents a different tissue type. These per-patch 
results not only serve as evidence to help pathologists understand the final prediction results but also assist them 
in identifying areas of interest more efficiently. The visualization also illustrates our multi-zoom-level tissue type 
recognition procedure, as one can see that the dots are grouped in squares of different sizes.

Ablation study
One may wonder why we did not opt for direct classification of downsized WSIs or exhaustive recognition of 
all patches at every zoom level. Both approaches have their respective strengths. The direct classification of 
downsized WSIs is significantly faster than the classification of tens of thousands of image patches. Exhaus-
tive recognition of all patches at every zoom level and combining the patch-level results at each area ensures 
a more robust recognition performance. To address these concerns, we compared our method against these 
approaches, as demonstrated in Table 1. The results reveal that directly classifying downsized WSIs into true 
and pseudo-invasion results in notably lower accuracy, which is almost the same as taking random guesses for 
binary classification problems. Exhaustively classifying all image patches at every zoom level and aggregating 
the information doubles the time required while providing only a minimal increase in accuracy. On the other 

FP rate =
# of False Positives

# of False Positives+ # of True Negatives
=

# of Incorrect Pseudoinvasions

# of Incorrect Pseudoinvasions+ # of Correct True invasions

FN rate =
# of False Negatives

# of False Negatives+ # of True Positives
=

# of Incorrect True Invasions

# of Incorrect True Invasions+ # of Correct Pseudoinvasions

Figure 7.  Threshold v.s. False rates. Higher thresholds lead to higher FN rates and lower FP rates, while lower 
thresholds lead to higher FP rates and lower FN rates.
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hand, our approach offers both efficiency and high accuracy. As mentioned earlier, the efficiency of our system 
can be further improved using many methods.

We also conducted an analysis employing a 224 by 224 sliding window approach on the WSIs to extract train-
ing images in the form of patches. Subsequently, we conducted training using a multi-head segmentation model 
based on the U-Net architecture, which was commonly used in previous  works8–10. The model produces two 
primary outputs: a classification type prediction and a 224 by 224 segmentation mask delineating the contour 
of the tissue of interest. Primarily, the U-Net model, designed for segmentation tasks, posed significant training 
challenges. This was exacerbated by the limited dataset at our disposal, comprising a mere 50 fully annotated 
WSIs, resulting in outcomes that fell short of our anticipated standards. Additionally, our proposed method 
relied on a patch-based strategy, necessitating the application of a 224 by 224 sliding window to traverse each 
entire whole-slide image. To exemplify this, we conducted a test utilizing a trained U-Net model on one of our 
vast whole-slide images, measuring 83663 by 76206 pixels. This process generated a total of 126,829 segmented 
patches, and the inference phase consumed more than 25 min. Upon broader evaluation, the validation accuracy 
exhibited substantial variance, ranging from 55% to approximately 70%, as depicted in the confusion matrix 
in Fig. 9. Furthermore, despite the incorporation of an upgraded Nvidia RTX 4090 graphics card, the average 
inference time remained at approximately 17 min. In direct comparison to our own method, which boasts an 
average duration of 12.8 min, it is evident that the U-Net segmentation approach not only failed to yield efficiency 
improvements but also yielded inferior performance results.

Discussion
Every year, over 15 million colonoscopies are conducted to identify colon cancers, during which the differentia-
tion of true and pseudo-invasion brings the most challenge to pathologists. In our work, we created a novel deep 
learning system to tackle the arduous task of differentiating true and pseudo-invasion on colon polyp WSIs. 
Our innovative system possesses several unique advantages that set it apart from previous research. Firstly, our 
system employs a selective multi-zoom-level per-patch prediction procedure inspired by pathologists, which is 
both efficient and accurate in tissue type recognition. Secondly, we aggregate the tissue type recognition results 
while incorporating the spatial relationship between patches, resulting in more dependable slide-level results. 

Figure 8.  A visualization of the tissue recognition results for a WSI from our system, which can provide visual 
evidence for pathologists to understand the final slide-level result from our model. Different groups of coloured 
dots represent different types of tissue areas that are used as evidence to make the final prediction.

Table 1.  A comparison between different methods that one might be interested in regarding accuracy and 
efficiency. Directly classifying downsized WSIs is very fast, but the accuracy is unacceptable. Exhaustively 
predicting every patch at every zoom level brings a minimal increase in accuracy but doubles the average time. 
Our selective multi-zoom-level patch prediction method ensures efficiency without compromising accuracy.

Method Accuracy (%) Average time (s)

Directly classifying downsized WSIs 59.7 0.3

Exhaustive multi-zoom-level prediction 84.2 1487.1

Selective multi-zoom-level prediction (ours) 83.9 771.5
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Thirdly, our system visualizes the tissue type recognition results through our innovative web-based system 
(AI4Path), as depicted in Fig. 8.

Moreover, our system offers an adjustable tissue recognition threshold to suit diverse needs. By analyzing 
the impact of patch confidence thresholds on our final output’s false positive and false negative rates, we have 
determined the optimal thresholds for different scenarios, such as screening or confirmatory functions. The 
screening function can alleviate pathologists’ heavy workload. Given that digital pathology has been implemented 
in numerous pathology centers and is expected to be adopted in all pathology departments in the near future, 
integrating our system into digital pathology platforms can automatically detect suspicious cases for pathologists 
to review. The confirmatory function can prove very beneficial for pathologists in community hospitals, par-
ticularly in sole practice. When the primary pathologist seeks consensus, and no expert pathologist is available, 
our system can act as a reliable expert pathologist to aid the primary pathologist. This can significantly reduce 
the turnaround time of pathology reports and provide patients with prompt reports for next-step management 
guidance. Moreover, it can reduce healthcare costs by minimizing the number of out-of-institution consulta-
tions needed.

Our study demonstrates exceptional accuracy in classifying tissue types and differentiating true- and pseudo-
invasions, achieving rates of 95.3% and 83.9%, respectively. Additionally, we have assessed the practicality of 
our novel system by measuring the time required to analyze a WSI, which indicates an average time of 771.5 s. 
This is comparable to the speed of an expert pathologist in normal cases and significantly faster than an expert 
pathologist in challenging cases.

While we are content with the insights gained and the robust solution presented in this study, the limited 
availability of data still constrains the performance of our system. Merely 150 labeled WSIs are available, among 
which only 50 were annotated by expert pathologists. Even with such limited resources, our system still achieved 
satisfactory results. We aim to provide our system as a resource for pathologists to use in their daily practice to 
obtain more data and enhance the performance of the system over time. Furthermore, the system incorporates 
a built-in annotation tool that allows pathologists to annotate and modify their areas of interest.

As we interpret these outcomes, it’s imperative to mention our upcoming stage-two study. This next phase 
is conceived to further the depth of AI4Path’s applications, testing its resilience and adaptability across an even 
broader array of samples. By incorporating a more extensive cohort of pathologists, we aim to acquire diverse 
feedback, honing the system’s capabilities. The insights from this subsequent study will be instrumental in shap-
ing AI4Path, ensuring it remains at the forefront of technological advancements in pathology.

Figure 9.  Normalized confusion matrix for U-Net based model experiment.
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In conclusion, we present the potential for an affordable and easily accessible assisting tool for pathologists. 
We anticipate that our pioneering system will help reduce the workload of pathologists and alleviate the financial 
burden on the public health system.

Data availibility
Data from the NCT-CRC-HE-100K are available at https:// doi. org/ 10. 5281/ zenodo. 12144 5614; data from the 
London Health Science Centre are available from the corresponding author on reasonable requests, and not 
publicly available due to patient confidentiality.
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