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Uncovering the hidden structure 
of small‑world networks
Ahmed Lachgar * & Abdelfattah Achahbar *

The small‑world (SW) network model introduced by Watts and Strogatz has significantly influenced 
the study of complex systems, spurring the development of network science as an interdisciplinary 
field. The Newman‑Watts model is widely applied to analyze SW networks by adding several randomly 
placed shortcuts to a regular lattice. We meticulously examine related previous works and conclude 
that the scaling of various pertinent quantities lacks convincing evidence. We demonstrate that the 
SW property primarily stems from the existence of clusters of nodes linked by shortcuts rather than 
just the mean number of shortcuts. Introducing the mean degree of clusters linked by shortcuts as 
a new key parameter resolves the scaling ambiguity, yielding a more precise characterization of 
the network. Our findings provide a new framework for analyzing SW networks, highlighting the 
significance of considering emergent structures in complex systems. We also develop a phase diagram 
of the crossover transition from the small to the large world, offering profound insights into the nature 
of complex networks and highlighting the power of emergence in shaping their behavior.

Complex networks are integral to various scientific disciplines, impacting fields as diverse as social, biological, 
transportation, and communication  networks1–7. Among the intriguing aspects of these networks is the presence 
of small-world (SW) behavior, characterized by short path lengths between nodes. The Newman-Watts (NW) SW 
model stands out as a notably well-established and thoroughly researched paradigm within such  networks8–14. 
This model is distinguished by the addition of new connections to an existing network based on a predetermined 
probability. These additional links, known as shortcuts, introduce a mix of order and randomness to the model, 
reflecting social patterns where individuals are more closely connected to those in their immediate vicinity than 
to those farther away.

A fundamental metric for the characterization of SW networks is the mean distance, denoted as ℓ , which 
measures the average distance between nodes. This metric provides valuable insights into the network’s inherent 
properties, allowing us to discern whether it exhibits SW behavior, characterized by ℓ ∼ ln(n) , or large-world 
behavior, with ℓ ∼ n . The scaling relationship for ℓ , as originally formulated by Newman and Watts using a 
renormalization group transformation (RG), can be expressed as ℓ = n

k f (nkφ) . Here, n denotes the total number 
of nodes, k represents the regular degree of the network, and φ quantifies the probability of introducing shortcuts 
between pairs of  nodes9. Several critical issues must be addressed in the context of scaling analyses applied to SW 
networks. First, scaling is only valid when the mean degree of clusters due to shortcuts is very small, which occurs 
when k2φ ≪ 19, where the network is almost regular and does not exhibit SW characteristics. Second, when 
studying the parameter n∗ , which represents the network size at which it becomes SW, it is expected to behave 
as n ∼ φ−τ with τ = 19,15,16. However, no universal behavior is observed for n∗ with φ , and the data collapse is 
valid only for each value of the degree k. This is problematic because the degree of the network is one of the 
arguments of the universal function, which requires the universal behavior of all system magnitudes according 
to k. Moreover, the mean field solution for the scaling function given by Newman et al.10, with the mean number 
of shortcuts x = nkφ as the relevant parameter, is only exact for small and large values of x. The solution fails 
when the probability φ is close to one, as there is a clear difference between the simulations and the mean-field 
solution, even for smaller values of φ . Thus, the scaling function that is often used to refer to the mean distance 
in SW networks is inadequate, and data collapse does not necessarily prove that the mean distance follows this 
path. Instead, this scaling function is more appropriate, as we will show, for representing the mean distance in 
regular networks. In our study, we introduce an innovative method to reveal the underlying structure of SW 
networks. Our approach first employs RG techniques, followed by a strategic division of the network into two 
distinct subnetworks. One subnetwork consists of regular nodes, while the other encompasses random nodes 
influenced by shortcuts. This bifurcation enables us to meticulously analyze the behavior of each subnetwork, 
facilitating a more accurate depiction of the scaling behavior of ℓ . Our research indicates that these networks 
exhibit a sophisticated pattern of organization that results from the appearance and cooperation of groups of 
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nodes. However, this structure cannot be identified using traditional network analysis methods that focus on 
individual nodes.

Mean distance
The mean distance in a circular network is �ℓ̂� =

∑

n̂
2

ℓ̂=1
ℓ̂ · n(ℓ̂) ≈

∫

n̂
2

1 ℓ̂ · n(ℓ̂) · dℓ̂ , where n(ℓ̂) is the number of 
nodes at a distance ℓ̂ from a given node. Initially, we use the RG method and subsequently divide the network 
into two sub-networks. The first sub-network is composed of nodes that are not impacted by shortcuts and we 
refer to them as “regular nodes”. The second sub-network is made up of nodes that are influenced by shortcuts, 
which we term “random nodes”. With this approach, we compute the mean distance of the network and obtain 
the corresponding formula outlined in Methods:

where x = nkφ is the mean number of shortcuts, and y = 2k2φ represents the mean degree of clusters linked 
by shortcuts (see Methods) .

As the value of x approaches 0, the network becomes more regular and lim
x→0

h(x) = 0 . In this scenario, the 
mean distance of the network approaches n

4k , thereby validating our calculation. Indeed, with periodic boundary 
conditions on regular circular network �ℓ̂� = n

4k.
Figure 1a and b serve as robust validations of our methodology, providing compelling evidence for our 

approach. They distinctly illustrate the alignment between simulation results and (1). Notably, (1) outperforms 
the Newman et al. Eq. (2) in  accuracy10. Yet, we note discrepancies in simulations occurring within the same 
region as highlighted by Newman et al.

For large-world networks where �ℓ� ∝ n , the NW scaling function appears to be universal for small values of 
x. However, Newman et al. have shown that their mean field solution (2) breaks down as the density of shortcuts 
 increases10:

Figures 1b and 2a present compelling simulation results that challenge the notion of universality in large x 
values, particularly in the region traditionally classified as SW. These figures clearly depict systematic deviations 
for varying values of k, thereby undermining the assumption of universality in this regime. This observation is 
critical as it suggests that the mean distance within SW networks is influenced by factors beyond just the mean 
number of shortcuts, denoted by x. Our analysis points towards the need to consider an alternative parameter to 
more accurately characterize the dynamics of SW networks. Upon the application of the RG transformation, we 
define y as the mean degree of clusters interconnected by shortcuts. This parameter finds a parallel in the Erdös-
Rényi network model, where y corresponds to the average degree of nodes. In this analogy, the clusters in our 
model are akin to nodes, and the shortcuts to links in the Erdös-Rényi framework. Notably, y emerges naturally 
in the random component of the mean distance expression, as delineated in Eq. (1). Given its fundamental role 
in this crucial expression and its similarity to the Erdős-Rényi network, y will undergo meticulous evaluation to 
ascertain whether it truly serves as the central parameter controlling the dynamics of SW networks.

If y is significantly small, the network behaves like a large-world network and does not exhibit the SW prop-
erty. Taking y ≪ 1 in (1) we get:

The expression for �ℓ̂� in (3) does not directly involve y, suggesting that the appropriate scaling parameter in this 
regime may be x. On the other hand, if we assume that n is large and y is not too small in (1), we can approximate 
W

( ln(y+1)2(y+1)

4p

)

 as ln
( ln(y+1)2(y+1)

4p

)

 , h(x) approaches 1, and y+1

4p = n 2k2φ+1

8k3φ
 . Under these conditions, (1) 

becomes:

The above equation that displays the SW phenomenon is identical to what is observed in the Erdös-Rényi 
 model17. Consequently, the appropriate universal function that applies in this context is:

(1)�ℓ̂� =









W

�

(ln(y+1))
2
(y+1)

4p

�

ln(y + 1)
+ 1









h(x)+ n̂
1− e−x

4x
,

(2)f (x) = 1

2
√
x2 + 2x

tanh
−1

(√

x

x + 2

)

.

(3)�ℓ̂� = n̂
2W

(

x
2

)

h(x)+ 1− e−x

4x
.

(4)
�ℓ̂� =

ln ln(y + 1)2 + ln
y+1

4p

ln(y + 1)
+ 1+ 1− e−x

2y

≈ ln n

ln(y + 1)
.

(5)g(y) = 1

ln(y + 1)
.
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A critical insight from our study is that the mean degree of clusters interconnected by shortcuts emerges as the 
sole relevant scaling parameter, a conclusion vividly illustrated in Figs. 1 and 2. This observation underscores 
the pivotal role of these inter-cluster connections in defining the network’s characteristics.

To substantiate our insights regarding the parameters x and y , we introduce a new parameter, � , defined as 
� =

�ℓ�
n̂

f (x) . If f (x) truly represents a universal function, then � should ideally equal 1. In Fig. 2, we plot � as a 
function of both y and x , where 〈ℓ〉 is derived from simulations of the Newman-Watts (NW) model, and f (x) is 
given by (2). Our results reveal that � approximates 1 when y is much less than 1. However, for larger values of 
y , � significantly exceeds 1, indicating the inadequacy of f (x) under these conditions. This observation aligns 
with Newman’s earlier critique regarding the limitations of f (x) as φ nears  110.

Further, Fig. 2b illustrates that f (x) loses its universality beyond certain x values, which vary according to the 
network parameters. Consequently, this leads us to conclude that y , rather than x , functions as the actual control 
parameter in the NW model. Moreover, Fig. 1c provides compelling evidence supporting the significance of y in 
the NW network. It demonstrates that in the large world regime, a small y value fails to produce a data collapse 
with ln(n) , suggesting that this range is not adequately described by y . In contrast, when y is not exceedingly 
small, a data collapse is observed, affirming y as an accurate descriptor of the system’s behavior. This finding not 
only corroborates our calculations but also significantly bolsters the validity of Eq. (4).

Another significant aspect is the necessity to express the system’s extensive quantities in terms of ln(n) . This 
adjustment is crucial due to the SW property of the network, which creates a perception as if there are only 
ln(n) nodes present. This phenomenon leads to a conceptual shift from considering individual node identities to 

Figure 1.  Scaling of the mean distance. (a,b), Behavior of 〈ℓ〉
n
k as a function of x for various values of k (from 

top to bottom k = 10, 5, 2, 1 ), network size is n = 106 . Each simulation is averaged over 100 achievements. In 
both figures (1) is the continuous line, (2) is the dashed line. The scale is semi-logarithmic in (a) and log-log in 
(b). (c) 〈ℓ〉

ln(n)
 as a function of y for various values of k (from top to bottom k = 1, 2, 5, 10 ), n = 106 , number of 

realizations for each simulations is 50. The scale is logarithmic.
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focusing on clusters. Such a perspective is instrumental in understanding and quantifying the emergence of SW 
behavior in these networks. By accounting for this, we can more accurately characterize the network dynamics 
and better understand the underpinnings of the SW phenomenon.

Transition from large to small‑world
Scaling analysis of 〈ℓ〉 is carried out by introducing the parameter n∗ , which represents the size of the network 
when it passes from large to SW. The scaling law for 〈ℓ〉 can be written  as15:

with F(i ≪ 1) ∼ i and F(i ≫ 1) ∼ ln(i) , hence ℓ(n ≫ n∗) ∼ n∗ ln(n) . Performing extensive simulations, we 
determine n∗ by calculating the slope of the curve of 〈ℓ〉 as a function of ln n . Simulations are repeated for several 
values of φ allowing to represent n∗ as a function of φ (see Fig. 3). Previously, it was believed that the value of n∗ 
is inversely proportional to φ raised to the power of τ = 1 , as indicated in prior works such as those referenced 
 in9,15,16. The data presented in Fig. 3a suggests that the relation between n and φ is not universal, as it is contin-
gent on the values of k. However, based on (4) and (6), we can predict that if there exists a universal function 
of n , it must be proportional to g(y) = 1

ln(y+1)
 . This hypothesis is strongly supported by the findings in Fig. 3b, 

which show excellent agreement between simulations and g(y). Furthermore, for the SW regime, it is deduced 
from these findings that n∗ ∼ y−τ , where τ = 1 . The way n∗ behaves with respect to y excludes the possibility of 
a phase transition for all non-zero values of y, which supports the existence of a crossover region between the 
SW and large-world  regimes16. Foreseeing whether a network is a small or large world is a vital element of this 
system. Our computations have unveiled the phase diagram of the transition, which empowers us to anticipate 
the nature of the network based on its parameters, and as a result, determine the transition line that distinguishes 
between the two regions (Fig. 4). Using the average number of shortcuts as a system control parameter would 
not have been viable because, as mentioned earlier, n∗ does not scale with it.

Conclusion
In this study, we have employed a novel application of the RG transformation to dissect the complex structure 
of SW networks. Our approach distinctively categorizes nodes into ’regular’ and ’random’, unveiling the hidden 
architecture of these networks. This method underscores the concept of emergent behavior in SW networks, 
highlighting that the network’s macroscopic properties are not merely a sum of individual nodal connections, 
but rather a result of intricate interactions between clusters of nodes. Our findings suggest a significant reinter-
pretation of the SW regime, as previously defined in the NW model. We contend that this regime might more 
appropriately be characterized as a large-world regime. This reevaluation stems from our analysis showing that 
the average number of shortcuts, traditionally used as a control parameter, leads to misleading conclusions. 

(6)�ℓ(n,φ, k)� ∼ n∗F
( n

n∗

)

,

Figure 2.  Validity of the universal function f(x). Variations of � with x in (a) and with y in (b) for various 
values of k (from top to bottom k = 10, 5, 2, 1 ), n = 106 . The number of achievements for each simulation is 
1000. The scale is semi-logarithmic.
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Instead, by focusing on the average degree of clusters linked by these shortcuts, we demonstrate a more accurate 
and coherent framework. This new perspective allows for an optimal alignment of system variables with network 
parameters, resulting in a remarkable data collapse. Additionally, we introduce a phase diagram that distinctly 
maps the transitional boundary between large and SW regimes. This visual representation not only solidifies our 
theoretical findings but also offers a practical tool for researchers in the field to better understand and navigate 
the complexities of SW networks.

Methods
“Regular” and “random” nodes
We assume that the network can be split into two sub-networks: a regular one and a random one. Our approach 
is founded on this assumption.

First, we study in detail the number of neighbors nℓ located at a distance ℓ from an arbitrary node by applying 
the RG in real space on the network (Fig. 5a and b. As the NW model combines both regularity and randomness, 
we can categorize nodes into two groups: regular nodes nre(ℓ) and random nodes nra(ℓ) based on their distance 
ℓ to a randomly selected root node. Regular nodes have not been impacted by the introduction of shortcuts, 
while random nodes have been affected by shortcuts and their distances have consequently been altered (Fig. 5c).

Figure 3.  Data collapse and scaling of n∗ . Scaling of n∗ as a function of φ (a) and as a function of y (b) for 
various values of k (from top to bottom k = 1, 2, 5, 10 ). The black line represents (5) multiplied by a constant. 
Each point is determined from the slope of ℓ as a function of ln(n) . System size varies from 1000 to 200000, the 
number of realizations is 300 and the scale is logarithmic.

Figure 4.  Phase Diagram of the SW network. Symbols (same as in Fig.3) are at the borders where n = n
∗ , i.e, 

the limits where the network passes from the large world ( ℓ ∼ n ) to the SW ( ℓ ∼ ln n).
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In the RG n becomes n̂ = n
k and k becomes k̂ = 1 (Fig. 5). Each set of k neighboring nodes is replaced by single 

entity named cluster. The number of clusters in the network is then n̂ . After adding shortcuts, the probability that 
a cluster is randomly linked to another cluster is φ̂ = 1−

(

1− 2kφ
n

)k2 , for n ≫ kφ we have φ̂ ≈ 2k3φ
n  . Let Pre(ℓ̂) 

be the probability that the distance ℓ̂ between any cluster and the root node has not been changed after adding 
the shortcuts, and let Pra(ℓ̂) be the probability that the distance between any cluster and the root node becomes 
ℓ̂ after adding the shortcuts (see Fig. 5d). Reducing the distance of a given cluster to the root can be achieved by 
one, two or more shortcuts. We denote π(M)(i) the probability that the regular initial distance ℓ̂ of a cluster is not 
changed to a specific smaller distance i through M shortcuts. A distinction is made between the following cases:

 Shortening distances via single shortcuts
Let π(1)(i) the probability that a cluster j does not change its initial distance ℓ̂ to the distance i ( i < ℓ̂ ) through 
a single shortcut:

a b

c

R

d

j

R

Figure 5.  Illustrations explaining the method. The RG transformation of a network (a) with n = 20 and 
k = 2 (a) to another with n̂ = 10 and k̂ = 1 (b). (c), distance to the root node R after introducing a shortcut. 
Green nodes whose distance to R is changed are called random nodes. Blue nodes whose distance to R remain 
unchanged are called regular nodes. (d), represents the case {1, i − 1} , where the green nodes are the positions 
that cannot be occupied by the intermediate node. Since n̂ = 20 and i = 3 , the number of possible positions for 
the intermediate node is n̂− 2i = 14.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6555  | https://doi.org/10.1038/s41598-023-50651-x

www.nature.com/scientificreports/

The preceding expressions follow from the fact that the number of possibilities (jumps) to build a path such as 
ℓ̂ = i is 4(i − 1) . In general, this value tends to be overestimated because some of the possibilities correspond to 
distances ℓ̂ < i , which have already been included in the count for shorter distances. However when the number 
of jumps is small compared to the size of the network, the expression 4(i − 1) is exact.

From Eq. (7) we deduce the probability P(1)re (ℓ̂) that a cluster’s distance ℓ̂ remains unchanged with a single 
shortcut:

P
(1)
re (ℓ̂) can be written:

where the term π(1)(1) = (1− φ̂) was  omitted18.

 Shortening distances via two shortcuts
Assuming that R is the root cluster and j is any other cluster in the network, we can determine the number 
of possible routes between them given that there are two shortcuts connecting the two clusters. To do this, 
we introduce an arbitrary cluster, denoted as z, which lies between the two shortcuts. If the distance between 
R and j through z is i, then the number of possible routes is i − 1 . Specifically, this includes cases such as 
{{1, i − 1}{2, i − 2}, · · · , {i − 1, 1}} . For example, if i = 4 , we have three cases: {{1, 3}, {2, 2}, {3, 1}} . The first case, 
{1, 3} , indicates that the distance between cluster R and intermediate cluster z is 1, and the distance between z 
and cluster j is 3. The particular case of {1, i − 1} can be illustrated as follows:

In this case the number of possible paths between R and z is 1 because they are directly linked with a short-
cut, and the number of possible paths between z and j is 4(i − 2) since the distance between them is i − 1 (see 
the case of a single shortcut). The probability that the distance between clusters R and j is not equal to i is then 
(1− φ̂2)4(i−2) . To make the computations easier, we make an assumption that the probability of all other cases 
{{2, i − 2}, · · · , {i − 1, 1}} is equal to the probability of the case {1, i − 1} , which is a simplified approximation 
similar to mean field type. As there are i − 1 such cases, the probability of a cluster not changing its initial distance 
to the distance i through a specific intermediate node is given by (1− φ̂2)4(i−2)×(i−1) . The number of possible 
positions of the intermediate cluster z in the network is n̂− 2i (Fig. 5d), then the probability that a cluster does 
not change its initial distance to the distance i through two shortcuts is

whence

the term π(2)(2) is excluded from the sum as explained in the case of a single  shortcut18.

Shortening distances via M shortcuts
By following the same approach as the previous cases, it is easy to generalize for the case of M shortcuts. In this 
case we introduce M − 1 intermediate clusters, and we get:

(7)

π(1)(1) =(1− φ̂),

π(1)(2) =(1− φ̂)4,

π(1)(3) =(1− φ̂)4·2,

.

.

.

π(1)(i) =(1− φ̂)4(i−1).

(8)

P(1)re (ℓ̂) =π(1)(1)π(1)(2)...π(1)(ℓ̂− 1)

=(1− φ̂)(1− φ̂)4(1− φ̂)4·2...(1− φ̂)4(ℓ̂−2)

=(1− φ̂)1+4+4·2+4·3...4(ℓ̂−2)

=(1− φ̂)1+4
∑ℓ̂−1

i=1 (i−1).

(9)P(1)re (ℓ̂) = (1− φ̂)4
∑ℓ̂−1

i=1 (i−1),

(10)π(2)(i) = (1− φ̂2)4(i−1)(i−2)(n̂−2i),

(11)
P(2)re (ℓ̂) =π(2)(1)π(2)(2)...π(2)(ℓ̂− 1)

=(1− φ̂2)4
∑i=ℓ̂−1

i=1 ((i−1)(i−2)(n̂−2i)),
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then the probability that a cluster does not change its initial distance through M shortcuts is:

since φ̂ < 1 we can write

It follows that the probability Pre(ℓ̂) for a cluster not changing its initial distance ℓ̂ after adding any number 
of shortcuts is:

with

where the last line is deduced from the binomial formula.
Finally we get:

where the sum in the exponential is approximated by an integral since in a regular SW network ℓ̂ ∝ n ≫ 1.
Let Pra(ℓ̂) be the probability that, due to shortcuts, the distance of any given cluster to a root cluster has 

changed from its regular distance to a specific distance ℓ̂ . Pra(ℓ̂) can be written as the product of the probability 
that this cluster does not change its distance to another strictly less than ℓ̂ by the probability that the cluster 
changes its distance to a distance less than or equal to ℓ̂:

The number of regular clusters after renormalization, n̂re(ℓ̂) , is:

since when k̂ = 1 each cluster has two neighbors at distance ℓ̂ . On the other hand, the number of random clus-
ters is:

where n̂− 2ℓ̂ represents the maximum number of clusters with distance (to the root cluster) bigger than ℓ̂.
Then, the total number of clusters at distance ℓ is:

(12)π(M)(i) = (1− φ̂M)
4
(i−1)(i−2)...(i−M)

(M−1)! (n̂−2i)(M−1)

,

(13)
P(M)
re (ℓ̂) =π(M)(1)π(M)(2)...π(M)(ℓ̂− 1)

=(1− φ̂M)
4
ℓ̂−1
∑

i=1

(

(i−1)(i−2)...(i−M)
(M−1)! (n̂−2i)M−1

)

,

(14)
P(M)
re (ℓ̂) = e

−4φ̂M
ℓ̂−1
∑

i=1

(

(i−1)(i−2)...(i−M)
(M−1)! (n̂−2i)M−1

)

.

(15)
Pre(ℓ̂) =P(1)

re (ℓ̂)P(2)re (ℓ̂)P(3)re (ℓ̂) . . . P(ℓ̂−1)
re (ℓ̂)

=e
−4φ̂

ℓ̂−1
∑

i=1

(i−1)B(i)
,

(16)

B(i) =1+ [φ̂(i − 2)(n̂− 2i)] + [φ̂2 (i − 2)(i − 3)

2! (n̂− 2i)2]

+ . . .+ [φ̂i−2(n̂− 2i)i−2]

=1+ [φ̂(i − 2)(n̂− 2i)] + [φ̂2 (i − 2)(i − 3)

2! (n̂− 2i)2]

+ . . .+ [φ̂i−2(n̂− 2i)i−2]

=
i−2
∑

j=1

Ci−2
j [φ̂(n̂− 2i)]j1i−2−j

=(φ̂(n̂− 2i)+ 1)i−2,

(17)
Pre(ℓ̂) =e−4φ̂

∑ℓ̂−1
i=1 (i−1)(φ̂(n̂−2i)+1)i−2

≈e−4φ̂
∫ ℓ̂−1

i=1
(i−1)(φ̂(n̂−2i)+1)i−2di ,

(18)

Pra(ℓ̂) =Pre(ℓ̂− 1)(1− πt(ℓ̂))

=Pre(ℓ̂− 1)− πt(ℓ̂)Pre(ℓ̂− 1)

=Pre(ℓ̂− 1)− Pre(ℓ̂)

=− ∂Pre(ℓ̂)

∂ℓ̂

=4p(ℓ̂− 2)(p(n̂− 2(ℓ̂− 1)− 1))+ 1)ℓ̂−3Pre(ℓ̂)

=4p(ℓ̂− 1)(p(n̂− 2ℓ̂− 1))+ 1)ℓ̂−2Pre(ℓ̂).

(19)n̂re(ℓ̂) = 2Pre(ℓ̂),

(20)n̂ra(ℓ̂) = (n̂− 2ℓ̂)Pra(ℓ̂),
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with v(ℓ̂) = (n̂− 2(ℓ̂+ 1))Pre(ℓ̂).
In order to measure the impact of individual sub-networks, we determine the total number of clusters within 

each sub-network, which we refer to as Ŝre and Ŝra:

which becomes for n̂ ≫ 1:

When regularity is dominating φ̂ ≪ 1 , then erf (2
√

2φ̂) ≈ 2√
π
2

√

2φ̂ , we get:

While φ̂ = 2k3φ
n  and n̂ = n

k so φ̂n̂
2

2
= knφ , which is none other than the mean number of shortcuts in the network. 

The sum of clusters in the regular sub-network is then:

with h(x) = 1−
√

π
4x erf (

√
x) , and x = knφ.

The number of clusters in the random sub-network is deduced from:

(21)

n̂(ℓ̂) =n̂re(ℓ̂)+ n̂ra(ℓ̂)

=2Pre(ℓ̂)+ (n̂− 2ℓ̂)Pra(ℓ̂)

=2Pre(ℓ̂)+ (n̂− 2ℓ̂)Pre(ℓ̂− 1)− (n̂− 2ℓ̂)Pre(ℓ̂)

=(n̂− 2ℓ̂)Pre(ℓ̂− 1)− (n̂− 2(ℓ̂+ 1))Pre(ℓ̂)

=v(ℓ̂− 1)− v(ℓ̂),

(22)

Ŝre =n̂re(1)+
n̂
2

∑

ℓ̂=2

n̂re(ℓ̂)

=n̂re(1)+
∫ n̂

2

2

n̂re(ℓ̂)dℓ̂

=n̂re(1)+ 2

∫ n̂
2

2

e
−4φ̂

∫ ℓ̂−1

j=1
(j−1)(φ̂(n̂−2j)+1)j−2dj

dℓ̂,

(23)

Ŝre ≈n̂re(1)+ 2

∫ n̂
2

2

e
−4φ̂

∫ ℓ̂
j=1

jdj
dℓ̂

≈n̂re(1)+ 2

∫ n̂
2

2

e−2φ̂ℓ̂2dℓ̂

≈2+ 2

[

√

π
2
erf (

√

2φ̂ℓ̂)

2

√

φ̂

]
n̂
2

2
(n̂re(1) = 2)

≈2+ 2

√

π

8φ̂

[

erf (

√

2φ̂
n̂

2
)− erf (2

√

2φ̂)

]

.

(24)

Ŝre ≈2+ 2

√

π

8φ̂

[

erf (

√

2φ̂
n̂

2
)− 2√

π
2

√

2φ̂

]

≈2+ 2

√

π

8φ̂
erf (

√

φ̂n̂2

2
)− 4

≈n̂
(

√

π

2φ̂n̂2
erf (

√

φ̂n̂2

2
)− 2

n̂

)

≈n̂

√

π

2φ̂n̂2
erf (

√

φ̂n̂2

2
).

(25)Ŝre = n̂(1− h(knφ)),
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Since each cluster is made up with k nodes, the total number of regular nodes is Sre = n(1− h(x)) and the total 
number of random nodes is Sra = nh(x).

“Regular” and “random” mean distance
The mean distance in the network is �ℓ̂� = �ℓ̂re� + �ℓ̂ra� , where �ℓ̂re� is the mean distance in the regular sub-
network, and �ℓ̂ra� is the mean distance in the random sub-network.

�ℓ̂re� is deduced from

using (17) and (19) we have

taking φ̂ small and considering ℓ̂ = O(n) (regular network), we get

then

�ℓ̂re� can then be written in the following form:

�ℓ̂ra� can deduced from the maximum of n̂ra(ℓ̂) as explained  in19. Explicitly, we have to solve ∂n̂ra(ℓ̂)
dℓ̂

= 0 . From 
(17) and (18) we obtain:

where u(ℓ̂) = 4φ̂(ℓ̂− 1)(φ̂(n̂− 2ℓ̂)+ 1)ℓ̂−2 . When shortcuts are present, the mean distance in the network is 
considerably lowered, we can therefore consider n̂− 2ℓ̂ ≈ n̂ , then

where y = φ̂n̂ is the mean degree of clusters linked by shortcuts. It is worth noting that y is analogous to the 
mean degree of nodes in the Erdös-Rényi network. The number of random clusters becomes:

then

(26)

Ŝra ≈n̂− Ŝre

≈n̂− n̂

�

π

2φ̂n̂2
erf





�

φ̂n̂2

2





≈n̂

�

1−
�

π

2φ̂n̂2
erf





�

φ̂n̂2

2





�

≈n̂h(x).

(27)�ℓ̂re� =
∫

n̂
2

1 ℓ̂ · n̂re(ℓ̂)dℓ̂
n̂

,

�ℓ̂re� =
1

n̂

∫ n̂
2

1

2ℓ̂e
−4φ̂

∫ ℓ̂−1

j=1
(j−1)(φ̂(n̂−2j)+1)j−2dj

dℓ̂,

∫ n̂
2

2

2ℓ̂e
−4φ̂

∫ ℓ̂−1

j=1
(j−1)(φ̂(n̂−2j)+1)j−2dj

dℓ̂ ≈
∫ n̂

2

1

2ℓ̂e−2φ̂ℓ̂2dℓ̂,

(28)

�ℓ̂re� ≈
1

n̂

∫ n̂
2

1

2ℓ̂e−2φ̂ℓ̂2dℓ̂

≈ 1

n̂

e−2φ̂ − e−
φ̂n̂2

2

2φ̂

≈ n̂

4

1− e−
φ̂n̂2

2

φ̂n̂2

2

.

(29)�ℓ̂re� ≈n̂
1− e−x

4x
.

(30)Pra(ℓ̂) = u(ℓ̂)e
−
∫ ℓ̂−1

j=1
u(j)dj

,

(31)u(ℓ̂) = 4φ̂(ℓ̂− 1)(y + 1)ℓ̂−2,

(32)n̂ra(ℓ̂) = n̂u(ℓ̂)e
−
∫ ℓ̂−1

j=1
u(j)dj

,
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The maximum of n̂ra(ℓ̂) is then given by the solution of

From (31) we get ∂u(ℓ̂)
∂ℓ̂

= u(ℓ̂)
[

1

ℓ̂−1
+ ln(y + 1)

]

 . Since y = φ̂n̂ = 2k2φ does not depend on the size of the net-
work n̂ , whereas ℓ̂ increases with n̂ , so we neglect 1

ℓ̂−1
 , and obtain ∂u(ℓ̂)

∂ℓ̂
= u(ℓ̂) ln(y + 1) . Replacing in (34), we get:

From (31) we get the distance ℓ̂max at which n̂ra(ℓ̂) is maximum:

with W(x) is the Lambert function.
Multiplying ℓ̂max by the fraction of random nodes, h(x) = 1−

√

π
4x erf (

√
x) , we get the mean distance in 

the random network:
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(33)

∂n̂ra(ℓ̂)

∂ℓ̂
=n̂

∂u(ℓ̂)

∂ℓ̂
e
−
∫ ℓ̂−1

j=1
u(j)dj + n̂u(ℓ̂)

∂e
−
∫ ℓ̂−1

j=1
u(j)dj

∂ℓ̂

=n̂
∂u(ℓ̂)

∂ℓ̂
e
−
∫ ℓ̂−1

j=1
u(j)dj − n̂u(ℓ̂)2e

−
∫ ℓ̂−1

j=1
u(j)dj

.

(34)
∂u(ℓ̂)

∂ℓ̂
− u(ℓ̂)2 = 0.

(35)u(ℓ̂) = ln(y + 1).

(36)ℓ̂max =
W

( (ln(y+1))2(y+1)

4φ̂

)

ln(y + 1)
+ 1,

(37)�ℓ̂ra� =
(W

(

(ln(y+1))
2
(y+1)

4φ̂

)

ln(y + 1)
+ 1

)

h(x).
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