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Discrimination of missing data 
types in metabolomics data based 
on particle swarm optimization 
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In the field of data analysis, it is often faced with a large number of missing values, especially in 
metabolomics data, this problem is more prominent. Data imputation is a common method to deal 
with missing metabolomics data, while traditional data imputation methods usually ignore the 
differences in missing types, and thus the results of data imputation are not satisfactory. In order to 
discriminate the missing types of metabolomics data, a missing data classification model (PX-MDC) 
based on particle swarm algorithm and XGBoost is proposed in this paper. First, the missing values 
in a given missing data set are obtained by panning the missing values to obtain the largest subset 
of complete data, and then the particle swarm algorithm is used to search for the concentration 
threshold of missing data and the proportion of low concentration deletions as a percentage of overall 
deletions. Next, the missing data are simulated based on the search results. Finally, the training data 
are trained using the XGBoost model using the feature set proposed in this paper in order to build a 
classifier for the missing data. The experimental results show that the particle swarm algorithm is 
able to match the traditional enumeration method in terms of accuracy and significantly reduce the 
search time in concentration threshold search. Compared with the current mainstream methods, the 
PX-MDC model designed in this paper exhibits higher accuracy and is able to distinguish different 
deletion types for the same metabolite. This study is expected to make an important breakthrough in 
metabolomics data imputation and provide strong support for research in related fields.

Metabolomics aims to provide a panoramic view of the metabolome, revealing the metabolic state of an organism 
in different physiological or pathological states by analyzing and interpreting metabolite profiles in biological 
 samples1. Metabolomics can be applied to multiple fields, including life sciences, medicine, agriculture, and envi-
ronmental science, among others. Through the study of metabolomics data, it is possible to gain in-depth insights 
into changes in metabolic reactions within organisms, discover potential biomarkers, identify key enzymes in 
metabolic pathways, and explore the underlying mechanisms of  diseases2,3.

Metabolomics data are of high dimensionality, diversity and complexity, encompassing information on a large 
number of metabolites. These data are often characterized as highly dynamic and are modulated by multiple fac-
tors, including environmental, genetic and physiological  states4–6. There are often missing values in metabolomics 
 data7, which need to be processed in an appropriate way to fully utilize the available data for data analysis. There-
fore, imputation or completion of missing values in metabolomics data is a very necessary preprocessing task.

There are various reasons for missing metabolomics data, specifically the following  three8: (1) metabolite 
concentrations are below the instrumental detection threshold; (2) missing values may be introduced randomly; 
and (3) changes in the measurement environment may result in missingness. Based on these reasons, missing 
values of data can be categorized into three  types9–12: (1) Missing Completely At Random (MCAR: Missing 
Completely At Random), which means that missing data are completely random and have no relation to the 
missing variable and other variables; (2) Missing At Random (MAR: Missing At Random), MAR values are 
independent of missing values but are dependent on the observed values (e.g., measured hormone variable); (3) 
Missing Not At Random (MNAR: Missing Not At Random), MNAR values refer to missing data depending on 
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non-observed variables, where concentrations below a specific threshold cannot be detected due to the limited 
detection accuracy of the instrument, resulting in missing data.

Due to different types of missingness, different imputation methods need to be selected. Identifying the type 
of missing values helps in selecting the appropriate data imputation mechanism. If the missing data are missing 
completely at random (MCAR), the probability of missingness can be assumed to be independent of the observed 
data itself or other unobserved factors. In this case, multiple imputation methods, such as multiple imputation, 
can be  used13. Because it is often difficult to determine whether there is a link between missing values, it is com-
mon to treat missing at random (MAR) as missing completely at random (MCAR) and use the same imputation 
method for  them14. However, if the missing data are missing at random (MNAR), it implies that the missing val-
ues themselves may be related to unobserved variables and that the missing values should be below the minimum 
value of the metabolite concentration. In such cases, imputation methods that simply use MCAR assumptions 
may result in biased or inaccurate data. Therefore, advanced imputation methods such as maximum likelihood 
estimation can be established for MNAR type  missingness9. Different imputation methods come with different 
assumptions and limitations. Accurately identifying the type of missing data can help avoid incorrect assump-
tions and inappropriate imputation methods, thereby enhancing the accuracy and reliability of data imputation. 
Dekermanjian et al. proposed a unique two-step imputation  method15, with the first step focusing on identifying 
the type of missing values. However, this method has a relatively low accuracy and assumes that there is only 
one type of missing data for the same metabolite. In response to this challenge, the paper introduces the based 
on Particle Swarm Optimization and XGBoost Missing Data Classification model (PX-MDC).

In this research, this paper focuses on improving the classifier algorithm proposed by Dekermanjian et al. in 
order to remedy its shortcomings. The approximate steps of the classifier algorithm proposed by Dekermanjian 
et al. are as follows: first, the missing dataset is panned, the concentration thresholds of the missing data are 
searched through the grid, and then seven features, namely, mean, median, minimum, maximum, missing rate, 
metabolite quartile, and metabolite abundance of metabolites, are selected to construct the classifier using the 
random forest model. By studying the method in depth, this paper identifies the shortcomings of the method 
in using a grid search to determine concentration thresholds and the proportion of low-concentration dele-
tions as a percentage of the overall deletions when the search granularity is too large. Grid search is essentially a 
limited parameter enumeration method that is empirically related and cannot fully represent the diversity of all 
data. In addition, in terms of feature construction, this paper also notes that Dekermanjian et al. method treats 
different deletion types for the same metabolite as identical, which may lead to loss of information. In terms of 
selecting classifiers, this paper also observes that random forests may not be the best choice for the problem of 
categorizing deletion types in metabolomics data. In order to solve the above problems, three key improvements 
are proposed in this paper:

a. using particle swarm algorithm to search for concentration thresholds and the proportion of low concentra-
tion deletions as a percentage of overall deletions to improve search efficiency and applicability.

b. Nine different features, including the number of consecutively missing metabolites, the number of consecu-
tively missing samples, the mean, the median, the minimum, the maximum, the missing rate of metabolites, 
the name of metabolites, and the relationship between metabolites and the high and low concentrations they 
belong to, were used to construct the classifiers.

c. Introduction of XGBoost model as a construction method for the classifiers.

The results show that the method proposed in this paper has faster speed and wider applicability in searching 
concentration thresholds and the proportion of low concentration deletions as a percentage of overall deletions. 
Compared with Dekermanjian et al. method, the features constructed in this paper are able to distinguish dif-
ferent deletion types of the same metabolite. In addition, the classifier constructed using the XGBoost model 
exhibits higher classification accuracy. These improvements provide a more effective and accurate solution to 
the problem of categorizing deletion types in metabolomics data, which is expected to have a significant impact 
in related fields.

Data simulation
In real metabolomics data, the missing types of missing values are usually difficult to obtain, and therefore it is 
not possible to verify the accuracy of classifiers for different types of missing data. In this paper, simulation of 
missing metabolomics data is needed to generate missing data containing labels of missing types. First, a com-
plete dataset is selected and missing data are introduced according to the Mixed missingness (MM)  method14 
proposed by Y. Lee et al. to obtain missing data XMM . In this process, the type of missing data is recorded for 
subsequent verification of the accuracy of the classifier.

Datasets
Three publicly available and complete datasets were selected for this data imputation experiment, all of which 
are accessible through the Metabolomics Workbench (https:// www. metab olomi cswor kbench. org/).

Protein family data (bacteria)
This dataset is from an experiment to examine differences in intracellular metabolite concentrations between 
wild-type and knockout strains. The study consisted of 5 groups of 6 replicates each, with 1 sample missing (29 
samples total), and 249 metabolites were determined by GC–MS. The dataset and its experimental acquisition 
details are described in study ID ST000118.

https://www.metabolomicsworkbench.org/
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Asthma/obesity correlation study (mouse)
The experiments in this dataset examined how three different diets affect arginine metabolic pathways in mouse 
lungs. The experiment contained 80 mouse lung tissue samples with 612 metabolites measured by GC–MS, and 
details of this dataset and its experimental collection are available in study ID ST000419.

Non-diabetic/diabetic correlation studies (human)
The experiments in this dataset investigated changes in glucose homeostasis in two different populations. The 
experiment contained 181 samples with 511 metabolites determined by GC–MS, and details of the dataset and 
its experimental collection are provided in study ID ST000385.

Generating missing data
There are three main types of common metabolomics data missingness, but in real missing data, there is usually 
a mixture of multiple missingness types. The Mixed missingness (MM) model proposed by Lee et al. more real-
istically reflects the distribution of missingness in metabolomics datasets. In the MM model, the concentrations 
of metabolites are sorted in order from high to low, and a threshold percentage is set to classify the metabolites 
into high, medium, and low concentration levels. Threshold percentages need to be set by themselves according 
to the data. By observing the data, this paper assumes that the metabolite concentration higher than the overall 
metabolite concentration average is high concentration, lower than 1/10 of the overall metabolite concentra-
tion average is low concentration, and the rest of the metabolite is medium concentration, for three different 
data, the assumption can make the concentration thresholds are not the same, which can avoid the result error 
caused by the concentration thresholds are the same. The MM model points out that the missing rate of the low 
concentration accounts for the vast majority of the overall missing rate. Assuming that α is the proportion of 
low-concentration deletions to overall deletions. The range of α is set from 40 to 60% in this paper’s experiments, 
with a step size of 5%. The missing rate of the data ranges from 2.5 to 40% with a step size of 2.5%. With this 
setup, real metabolomics data with a mixture of different deletion rates and deletion types can be simulated. In 
fact, whatever assumptions are made about the concentration threshold and the proportion of low concentra-
tion misses to overall misses do not have an impact on the results of this paper’s use of particle swarm search for 
concentration thresholds. This is because the particle swarm search algorithm used in this paper is characterized 
by searching for a better global optimal solution, thus adapting to different contexts. Figure 1 clearly represents 
the distribution of the MM model.

Methods
The overall process of constructing a classifier proposed in this paper is as follows: firstly, a maximum complete 
set XComplete is obtained based on the missing data XMM . Secondly, XComplete is subjected to different concentra-
tion thresholds to simulate the missing to obtain X′MM . A particle swarm algorithm is utilized to find the X′MM 
that has the smallest Euclidean distance from XMM . At this time, the concentration threshold and the proportion 
of low concentration deletions as a percentage of overall deletions corresponding to X′MM are the concentra-
tion threshold and the proportion of low concentration deletions as a percentage of overall deletions of XMM . 
Finally, X′MM is utilized to construct a classifier to predict the missing data types in XMM . Figure 2 depicts the 
method proposed in this paper.
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Figure 1.  Schematic diagram of MM mixed deletion. Each column represents a sample, while each row 
represents a metabolite. In the figure, red color is used in this paper to indicate MNAR missing, while green 
color indicates MCAR missing.
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Maximum complete subset of missing data
In order to construct a data missing type classifier, a panning operation on the missing data is required. In this 
paper, the missing data for each metabolite was flattened to the far left to obtain the largest subset of complete 
data. This ensures that as much of the available data as possible is utilized when constructing the classifier and 
reduces the impact of missing data on the performance of the classifier. The red boxed area in Fig. 3 represents 
the largest complete subset of this dataset XComplete . When the sample size in XComplete is small, metabolites with 
missing values exceeding 20% of the sample size can be removed according to the 80%  rule16 for missing value 
processing of metabolomics data, and such processing can solve the problem of small sample size in XComplete.

Missing data XMM

Maximum complete 

subset of data XComplete

Search for concentration 

thresholds and low 

concentration loss rates

Generate missing data

X'MM

Feature engineering

Model training

Predict the type of 

missing missing 

data XMM

Figure 2.  The flowchart of the PX-MDC algorithm proposed in this paper shows the process of constructing 
the training data on the left side, while the right side shows the steps of constructing the classifier from the 
training data.
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Figure 3.  By panning the missing data, it is possible to obtain the largest complete subset of the red region as 
shown in the figure.
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Particle swarm search
In order to model data that is consistent with the distribution of missing data, it is necessary to obtain a con-
centration threshold for the original data and the proportion of low concentration deletions as a percentage of 
overall deletions. Assume that the threshold for high concentration is x , the threshold for medium concentration 
is y , the threshold for low concentration is z , and the he proportion of low concentration deletions to overall 
deletions is α . With the MM algorithm, a copy of the missing data can be generated and the similarity between 
this generated data and the original missing data can be calculated. In order to determine the best combination 
of concentration threshold and the proportion of low concentration deletions as a percentage of overall dele-
tions (x, y, z,α) , the similarity between each copy of the generated missing data and the original missing data 
can be  calculated15. This is done by calculating the deletion rate for each metabolite and transforming it into a 
vector of deletion rates. Then, the Euclidean distance between the two missing rate vectors is calculated, and 
a smaller distance indicates a higher degree of similarity between the  data17. Considering the randomness of 
the MM algorithm, this paper generates 10 copies of missing data for each group (x, y, z,α) . For each copy of 
the generated missing data and the original missing data, the Euclidean distances between them are calculated, 
and the arithmetic mean of these distances is taken as the Euclidean distance corresponding to the missing data 
generated for that group (x, y, z,α) . This can reduce the impact of randomness in the MM algorithm and increase 
the stability of the results. Figure 4 shows the schematic diagram of concentration threshold search.

For the search of concentration thresholds, Dekermanjian et al. proposes to use a grid search to achieve this, 
with the grid defining x from 5 to 100%, y from 60 to 80%, α from 5 to 60%, and all with a search step of 5%. In 
this paper, it is argued that the concentration thresholds are different for each set of data, the range of thresholds 
should not be fixed empirically, and a step size of 5% may lead to a large error in the results. Particle Swarm 
 Optimization18–20 (PSO) is a heuristic global optimization algorithm: first, a population of particles is initialized, 
each representing a potential solution, which are randomly distributed in the problem space. Then, the fitness 
value of each particle, i.e., the value of the objective function of the problem at the current position, is computed. 
Each particle maintains its own individual best position and the global best position of the whole swarm of 
particles. In each iteration, the particles are continuously updated according to their velocity and position, with 
the update of the velocity being influenced by the attractiveness of the individual best position and the global 
best position. This process iterates until a set number of iterations or a stopping condition is reached, and finally 
the solution corresponding to the global best position is returned as the optimal or near-optimal solution of the 
problem. Particle swarm search algorithms help to search and gradually approach the optimal solution in the 
problem space by modeling the synergy and competition among individuals in the population. Therefore, the 
particle swarm algorithm is a flexible and efficient global optimization algorithm that can effectively search the 
solution space for the optimal solution or near-optimal  solution21–23, which is suitable for the search problem 
of the concentration threshold of this problem. In order to compare the results of particle swarm search, this 
paper also carries out enumeration of all the (x, y, z,α) that satisfy the conditions to obtain the optimal solution. 
Following are the steps to implement the particle swarm search concentration threshold in this paper:

Figure 4.  For each set of (x, y, z,α) , a copy of the missing data can be generated using the MM algorithm. By 
calculating the missing vectors of these missing data, the Euclidean distance between the two copies of data can 
be obtained. The smaller the distance, the more similar these two pieces of data are. By particle swarm search 
algorithm, the optimal solution can be found.
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1. Initialize the particle population, randomly initialize the position and velocity for each particle.
2. For each group of (x, y, z,α) , perform MM algorithm on XComplete to obtain X′MM.
3. Calculate the deletion rate of each metabolite in XMM and X′MM to get the corresponding deletion vector.
4. Calculate the Euclidean distance between the two missing vectors in step 3 and store it.
5. loop steps 2–4 ten times and use the average of the ten Euclidean distances as the corresponding Euclidean 

distance of (x, y, z,α).
6. Update the position of the particle swarm to get the new (x, y, z,α) , and jump back to step 2 until the stop-

ping condition of the particle swarm search is met.
7. Obtain the optimal particle swarm.

Classifier features
The optimal concentration threshold and the proportion of low concentration deletions as a percentage of overall 
deletions can be obtained by particle swarm search algorithm. Using these parameters, MM missing is performed 
on the maximum complete subset XComplete to obtain X′MM , and the type of missing data is recorded so that it 
can be used to train the classifier. In this paper, the following features are proposed to construct a classifier for 
a particular missing value:

• Number of consecutive missing metabolites: when a metabolite has a high number of consecutive missing 
metabolites in the dataset, this may indicate that the missingness is not random, but more likely due to 
unobservable factors.

• Number of consecutive missing samples: in metabolomics experiments, samples are usually arranged in 
increasing or decreasing order of concentration. When the concentration reaches a specific value, the dele-
tion of metabolites may change, thus affecting the pattern of deletions in the data.

• Maximum, minimum, median, mean, and deletion rate of metabolites for each metabolite: statistical char-
acterization of a metabolite provides a better understanding of the nature of that metabolite and the pattern 
of deletions.

• Metabolite name: Different metabolites may be affected by different biological or experimental conditions, 
resulting in different deletion patterns.

• High or low concentration of the metabolite to which it belongs: metabolites at different concentration levels 
may have different deletion patterns.

Each missing value in X′MM is feature-labeled to obtain the corresponding vector, and when all the missing 
values are vectorized, the training data corresponding to that group of data is obtained, where Fig. 5 clearly 
depicts a copy of the training data corresponding to the classifier for the missing data. Since each group of 
(x, y, z,α) Y has random missing differences in X′MM generated each time, several copies of X′MM are generated 
to get richer training data to improve the accuracy of the classifier. According to the size of the amount of missing 
data, in this paper, we choose to generate X′MM five times to get the corresponding training data.

Classifier model
Common classifier models include plain Bayes, support vector machines, decision trees, random forests and 
neural  networks24,25. In Dekermanjian et al. study, random forest was used as the model to train the classifier. 
And in this paper, four common models, Random  Forest26–28, Plain  Bayes29,30,  XGBoost31–33 and BP Neural 
 Network34,35 are compared for training.

• Random Forest (RF): Random Forest is a powerful machine learning method for classification by construct-
ing multiple decision trees and integrating their predictions. Random Forest uses self-sampling and random 
selection of feature subsets to increase the variability among decision trees and improve the generalization 
ability of the overall model. It is well adapted to high-dimensional and large-scale datasets, can handle miss-
ing values and unbalanced data, and can assess the importance of variables and reduce the risk of overfitting 
with high accuracy and robustness, and is widely used in real-world scenarios.

• Naive Bayes: Naive Bayes is a classification method based on Bayes’ theorem. It is based on the assumption 
of conditional independence of features and classifies new samples by learning a priori probability and 
conditional probability models. Plain Bayes counts the frequency of each feature under each category in the 
training phase, calculates the posterior probability using Bayes’ theorem in the prediction phase, and selects 
the category with the largest posterior probability as the prediction result. Plain Bayes has good classification 
effect on small sample data, scalability on high-dimensional feature data, some robustness to missing data, 
and fast training and prediction speed. Although its assumption of conditional independence of features 
does not exactly match the actual situation, Park Bayes still shows good classification performance and is a 
simple but effective classification method for a variety of practical problems.

• XGBoost: XGBoost is an integrated learning algorithm based on gradient boosting decision trees, which is 
widely used in classification problems. It continuously improves the prediction performance of the model 
by iteratively training the decision tree model and optimizing the loss function. XGBoost uses an adaptive 
learning strategy to adjust the sample weights according to the prediction errors of the previous model and 
pays more attention to the samples that have been previously incorrectly predicted. At the same time, the 
complexity of the model is controlled by regularization terms to avoid overfitting. XGBoost has the advantages 
of handling high-dimensional sparse data, being robust to missing values, and evaluating feature importance. 



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:152  | https://doi.org/10.1038/s41598-023-50646-8

www.nature.com/scientificreports/

It excels in handling large-scale datasets and complex tasks and is one of the important classification algo-
rithms in machine learning.

• BP Neural Network (Backpropagation Neural Network): BP Neural Network is an artificial neural network 
based on the backpropagation algorithm, which is commonly used in classification problems. It consists of 
an input layer, a hidden layer and an output layer, and realizes the classification of new samples by learning 
the mapping relationship between the input samples and the corresponding output labels. BP neural net-
work calculates the output through forward propagation, and adjusts the weights and biases in the network 
according to the prediction error by using the backpropagation algorithm. By updating the weights and 
biases through many iterations, the network gradually optimizes the classification performance. BP neural 
networks have the advantages of learning nonlinear mappings, strong adaptability, and good generalization 
ability. However, BP neural networks also have the problems of local optimal solutions and sensitivity to 
initial weights. Nevertheless, BP neural network is still an important classification algorithm and is widely 
used in various fields.

Results
Particle swarm algorithm evaluation
In the problem of searching for the concentration threshold of missing data and the proportion of low con-
centration deletions as a percentage of overall deletions, Dekermanjian et al. proposed grid search to solve this 
problem, the essence of grid search is to enumerate the finite solution, and the initialization of grid search is 
based on experience, and can not be applied to all the data, so in this paper, we propose to use the Particle Swarm 
Algorithm to solve this problem. In order to verify the reliability of the results of the particle swarm algorithm 
search, in this paper, the enumeration method is used to solve the threshold, that is, (x, y, z,α) are from 1 to 
100%, the step size is 1%, and x + y + z = 100% satisfy , the results of the enumeration method and the results 
of the Particle Swarm Algorithm are compared.

For each set of data, by applying the particle swarm algorithm and the enumeration method, their thresholds 
x, y, z,α and the search time t  were obtained so that the percentage difference between the two algorithms could 
be calculated. For data with the same α value but different missing rates, there is consistency in their concentra-
tion thresholds and the proportion of low concentration deletions as a percentage of overall deletions. Therefore, 
such data can be categorized into the same category. When comparing the results, focusing on their mean values, 
this practice can provide support to verify the stability of the algorithm. From Fig. 6, it can be observed that the 
maximum percentage difference of x, y, z,α for all the data is 0.26, while the minimum percentage difference of 
the search time t  is 59.07. From this, it can be concluded that the differences between x, y, z,α are very small and 

Sample 1 Sample 2 Sample 3 Sample 4 

Mblt 1 56 82 99 45

Mblt 2 62 MCAR 65 70

Mblt 3 MNAR 69 MCAR 53

Mblt 4 MNAR 70 MNAR 48

Mblt 5 46 MNAR MNAR 49

Mblt 6 MCAR 44 MNAR MNAR

Mblt 7 32 MNAR 52 MCAR

Metabolites continuous
missing number

Sample continuous
missing number Max Min Median Mean Miss rate Metabolites Metabolites level Target

1 1 70 62 65 65.7 0.25 Mblt 2 High MCAR

2 1 69 53 53 61 0.5 Mblt 3 Medium MNAR

2 1 69 53 53 61 0.5 Mblt 3 Medium MCAR

2 1 70 48 48 47.5 0.5 Mblt 4 Medium MNAR

2 1 70 48 48 47.5 0.5 Mblt 4 Medium MNAR

1 2 49 46 46 47.5 0.5 Mblt 5 Low MNAR

1 2 49 46 46 47.5 0.5 Mblt 5 Low MNAR

1 1 44 44 44 44 0.75 Mblt 6 Low MCAR

1 1 44 44 44 44 0.75 Mblt 6 Low MNAR

1 1 44 44 44 44 0.75 Mblt 6 Low MNAR

1 1 52 32 32 42 0.5 Mblt 7 Low MNAR

1 1 52 32 32 42 0.5 Mblt 7 Low MCAR

Simulated missing data

Training data

Figure 5.  Example plot of training data. In the upper table, the missing data is shown, where the rows represent 
different metabolites, the columns represent different samples, and the colors indicate the metabolites relative 
to the concentration threshold. In the following table, the training data obtained after incorporating the feature 
construction method proposed herein.
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Figure 6.  The search results of the particle swarm algorithm and the enumeration method were compared. 
The formula for calculating the percentage difference is the absolute value of the difference between the particle 
swarm results and the enumeration results divided by the particle swarm results. The heatmap clearly shows that 
the search time t has a greater impact than the difference.
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are within the acceptable error range, but the difference of the search time t  is very obvious, and the enumeration 
method takes much longer than the particle swarm algorithm. This indicates that the particle swarm algorithm 
not only achieves comparable quality of results to the enumeration method, but also reduces the solution time 
significantly and is suitable for this problem.

Feature quality and PX-MDC model evaluation
In order to evaluate the quality of features and PX-MDC model proposed in this paper, the experimental results 
of the proposed classifier model by Dekermanjian et al. as well as the classifiers such as Random Forest (rf), Plain 
Bayes, and BP Neural Networks are compared. The MM algorithm is applied to generate 10 batches of datasets 
with each particular value. For each batch of data, experiments were conducted with the missing rate gradually 
increasing from 2.5 to 40% (in steps of 2.5%) and the missing type of the missing value in each missing data 
was recorded. The types of missing values in these 10 batches of data were predicted using the constructed clas-
sifiers, and the prediction accuracies in the validation set and in the validation set with different missing rates 
were obtained, and the stability of the algorithms was solidly supported by averaging the prediction accuracies 
at the same missing rate.

According to the results in Figs. 7 and 8, the method proposed by Dekermanjian et al. performs relatively 
poorly on the validation set and the missing data set compared to the four models proposed in this paper. On 
the validation set, the average accuracy of the method proposed in this paper using the random forest model is 
13% higher on the ST000118 dataset and 8% higher on the ST000419 dataset relative to the method proposed by 
Dekermanjian et al. Meanwhile, the PX-MDC model has 20% higher average accuracy on the ST000118 dataset, 
6% higher on the ST000385 dataset, and 14% higher on the ST000419 dataset relative to the method proposed by 
Dekermanjian et al. On the missing dataset, the method proposed in this paper using the random forest model 
has 6% higher average accuracy on the ST000118 dataset, 5% higher on the ST000385 dataset, and 7% higher on 
the ST000419 dataset, relative to the method proposed by Dekermanjian et al. The PX-MDC model is also more 
accurate on the ST000118 dataset, ST000385 dataset, and ST000419 dataset. Meanwhile, the average accuracy 
of the PX-MDC model relative to the method proposed by Dekermanjian et al. is 6% higher on the ST000118 
dataset, 6% higher on the ST000385 dataset, and 9% higher on the ST000419 dataset.

In order to test the quality of the features proposed in this paper, the two features proposed in this paper 
were added separately were compared and the experimental results (Supplementary Figs. 1–8) showed that the 
accuracy of the classifier was better when both features were considered. Considering the effect of biological or 
experimental variables, comparing the name of the metabolite and the concentration level, the experimental 
results (Supplementary Figs. 9–10) show that the accuracy of the classifier is better when considering the name 
of the metabolite and the concentration level. In order to verify the effect of the division of concentration thresh-
olds on the experimental results, three different sets of concentration thresholds were randomly set, and the 
comparison found that the accuracy of the PX-MDC model has a certain stability (Supplementary Tables 1–10).

Therefore, it can be concluded that the method proposed in this paper is superior to the method proposed by 
Dekermanjian et al. in terms of feature quality. Further comparative studies also show that the XGBoost model 
is a more suitable choice for the classification of metabolomics missing data types. In the field of metabolomics 
data analysis, it is common to exclude the same metabolite when its missing rate reaches 20%, which follows the 
“80% principle” of metabolomics data processing. According to the results in Figs. 7 and 8, the PX-MDC model 
performs better in terms of accuracy than the method proposed by Dekermanjian et al. when the deletion rate 
is lower than 20%.

Discussion
In this paper, data simulation experiments were conducted on three sets of publicly available datasets, where 
the MM model was firstly missing using the complete dataset in order to obtain missing data XMM that cor-
responds to the real situation and to record the missing type of its missing values. Then the largest complete 
subset XComplete was obtained by panning the missing data and the particle swarm search algorithm was used 
to determine the concentration threshold and the proportion of low concentration deletions as a percentage of 
overall deletions of the closest missing data. The MM algorithm was simulated on the largest subset XComplete 
to obtain data labels with deletion types. Features such as the number of consecutively missing metabolites, the 
number of consecutively missing samples, the mean, the median, the minimum, the maximum of each metabo-
lite, the rate of missing metabolites, and the high and low concentrations of the metabolites and their belonging 
to the metabolite were used to construct the XGBoost classifiers.

The results of experimental analysis show that the PX-MDC model proposed in this paper has high accuracy 
and fast searching speed in concentration threshold searching, and the PX-MDC model has better features 
and higher accuracy compared to the model proposed by Dekermanjian et al. In addition, Dekermanjian et al. 
method uses an assumption that the missing values of the same metabolite belong to the same missing type. On 
the contrary, the PX-MDC model proposed in this paper performs more accurately in the prediction of deletion 
types for the same metabolite and is able to distinguish between different deletion types, which is more in line 
with the reality of metabolomics data.

When performing MM model missingness, this paper assumes that higher than the overall metabolite con-
centration average is set as high concentration, lower than 1/10 of the overall metabolite concentration average 
is set as low concentration, and the rest is medium concentration. At the same time, the missing rate of low 
concentration is set to account for the overall missing rate in the range of 40–60% with a step size of 5%. There-
fore, for each data, the concentration threshold is set differently, which can avoid the result error caused by the 
concentration threshold. In the modeling process, for any one copy of missing data, it is necessary to search for 
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Figure 7.  Accuracy of the classifier on the validation set. In this paper, the training data is divided in the 
ratio of 8:2 where 80% is used to construct the training set while 20% is used for the validation set. This study 
compares the experimental results of PX-MDC with Dekermanjian et al., Random Forest (rf), Plain Bayes, and 
BP Neural Networks on different combinations of data.
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the concentration threshold, and the particle swarm search algorithm can be used to quickly and reliably find a 
solution within the acceptable error range, which shows that the algorithm has a certain degree of universality.

In summary, this paper proposes the PX-MDC modeling method in constructing a classifier model for miss-
ing types of metabolomics data, and verifies the validity and superiority of the method in experiments, which 
provides a reliable support for the subsequent data imputation using different strategies, and can better restore 
the distribution of the real and complete data, which can provide effective help for the discovery of potential 
biomarkers, the identification of key enzymes in metabolic pathways, and exploring the pathogenesis of diseases.
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Figure 8.  Accuracy of classifiers on missing datasets. This study compares the experimental results of PX-MDC 
with Dekermanjian et al., Random Forest (rf), Plain Bayes, and BP Neural Networks on different combinations 
of data.
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Data availability
All datasets are accessible through the Metabolomics Workbench (https:// www. metab olomi cswor kbench. org/).
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