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Prediction of the aggregation rate 
of nanoparticles in porous media 
in the diffusion‑controlled regime
Vi T. Nguyen , Ngoc H. Pham  & Dimitrios V. Papavassiliou *

The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially 
harmful impacts on the environment and human health. This study aims to investigate the effects of 
flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion‑
limited regime and build an equation to predict the aggregation rate when NPs move in the pore space 
between randomly packed spheres (including mono‑disperse, bi‑disperse, and tri‑disperse spheres). 
The flow of 0.2 M potassium chloride (KCl) through the random sphere packings was simulated by the 
lattice Boltzmann method (LBM). The movement and aggregation of cerium oxide  (CeO2) particles 
were then examined by using a Lagrangian particle tracking method based on a force balance 
approach. This method relied on Newton’s second law of motion and took the interaction forces 
among particles into account. The aggregation rate of NPs was found to depend linearly on time, and 
the slope of the line was a power function of the particle concentration, the Reynolds (Re) and Schmidt 
(Sc) numbers. The exponent for the Sc number was triple that of the Re number, which was evidence 
that the random movement of NPs has a much stronger effect on the rate of diffusion‑controlled 
aggregation than the convection.

The transport of nanoparticles (NPs) in porous media has applications across various fields due to the NP distinc-
tive properties at the  nanoscale1–6. NPs can be injected into hydrocarbon reservoirs to improve the oil flow in 
enhanced oil  recovery7–9 and can be utilized to treat different pollutants in underground water  remediation5,10–13. 
In biomedical applications, nanoparticle-based drugs can be delivered through porous tissue structures to reach 
specific targets in the  body8,14,15. The effectiveness of such applications is advanced by understanding the mobil-
ity of NPs in porous media. Aggregation of NPs can significantly impact mobility because the creation of large 
aggregates often obstructs the pore  space16–18.

However, aggregation is not well understood mainly due to challenges associated with performing experi-
ments and taking measurements inside porous  media18,19. Consequently, there have been many computational 
models built to simulate the aggregation process in porous  media20–28. The most challenging problem of such 
models arises from the multiscale nature of the aggregation process. It is a combination of the movement of 
NPs and interactions among NPs, which are simulated at large  (10−5–10−4 s) and small  (10−9–10−8 s) timesteps, 
 respectively25,29. If the model relies on the physics of particle interactions, the use of very small timesteps is 
required to ensure the accurate simulation of the aggregation process; however, this results in a remarkable 
increase in the simulation time and it is impractical to simulate the process for a sufficiently long period to 
observe significant  aggregation29. Therefore, most models have used large timesteps to study the movement of 
particles in porous media and utilized probabilities for particle attachment and collision to predict the aggrega-
tion of NPs in porous  media1,17,25,27. Many researchers have utilized the Smoluchowski  model20–25 and Monte 
Carlo  methods3,26,27,30 to predict the aggregation kinetics of nanoparticles in porous media.

The Smoluchowski model accounts for the aggregation of nanoparticles as a second-order process. The change 
in the concentration of a cluster containing k primary particles with time t  is described as follows:21,31

The concentrations of particles i, j, and k are shown as ni , nj , nk , respectively, while the maximum number of 
primary particles in an aggregate is described as  c21,31. The collision efficiency α represents the probability that 
two particles attach to each other after collision. The collision efficiency is equal to 1 if the two particles always 
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aggregate upon a collision. The value of the collision efficiency α is dependent on the physicochemical interac-
tions among particles; however, it is difficult to find the relationship between the collision efficiency and the 
interactions among particles. Thus, most researchers have varied the value of α to make their simulation results 
match experimental data. As regards to the collision mechanism, it is represented by the collision frequency 
function β . In this model, the collision is caused by three mechanisms: Brownian motion, fluid shear stress, 
and size differences among particles. Thus, the collision frequency function β can be determined based on the 
molecular diffusivity of particles, the fluid velocity, and the size of  particles21,31. The Smoluchowski model is 
often combined with the advection–dispersion  equation24 or the Lagrangian particle tracking (LPT)  method17,25 
to estimate the aggregation of NPs while they move in porous media. In LPT method, particle movement is a 
result of convection and molecular diffusion caused by the fluid velocity and the Brownian motion of the NPs, 
 respectively32,33, while particle interactions are ignored.

Monte Carlo is widely recognized as a probability-based method for estimating the movement and transport 
of  particles27,30. Hul et al. devised a Monte Carlo model with off-lattice coarse-graining to explore the aggregation 
and transportation of nanoparticles in porous  media27. In their study, the displacement of individual particles at 
each time step was determined by a random angle and distance within 5 nm, and particles were restricted from 
moving backward in the flow direction. At the initiation of each simulation, particle–particle and particle-collec-
tor attachment efficiencies were pre-determined. When there was a collision between two particles or between a 
particle and a collector, a random number between 0 and 1 was generated that followed a uniform distribution. 
If the random number was less than the pre-defined attachment efficiency, the particle was considered to attach 
to the other particle or the collector.

To obtain estimates of the aggregation or collision probabilities that are needed to implement such stochastic 
models, it is important to perform experiments to ensure that the simulation data agree with the experimental 
ones. Otherwise, such results are not reliable. However, performing many experiments related to aggregation of 
NPs in porous media is an arduous and challenging task. Thus, building a model relying on the physics of particle 
interactions is important to achieve reliable results and to reduce experiment time and resources.

The size of aggregates and the aggregation kinetics have been reported to depend on many factors includ-
ing the electrolyte concentration in the NP  suspension18,31,34–37, the size of primary  particles38,39, the fluid 
 velocity17,25,40, the particle  concentration17,24,41,42, and so on. Li et al.36 conducted experiments with  CeO2 NPs in 
aqueous suspensions of different KCl concentrations and found that the aggregation rate was proportional to 
the electrolyte concentration; however, when the electrolyte concentration was higher than the critical coagula-
tion concentration (CCC), the aggregation fell in the diffusion-limited regime and the aggregation rates did not 
change with the electrolyte concentration. The reason was that when the salt concentration increased before 
reaching the CCC, the more ions moved freely in the solution. These ions could shield the electric field between 
charged particles, thus reducing the strength of the electrostatic  force35,43,44. Consequently, the energy barrier for 
two particles aggregating with each other decreased when the electrolyte concentration  increased36. Aggrega-
tion occurring when the salt concentration was below the CCC is called reaction-limited aggregation. Once the 
concentration was equal to or higher than the CCC, there was no energy barrier and the attachment efficiency 
reached unity. In this case, the aggregation rate was controlled by the diffusion, thus aggregation was in the 
diffusion-limited regime.

Pham and  Papavassiliou25 utilized the lattice Boltzmann method in conjunction with a Lagrangian particle 
tracking method to simulate the movement of nanoparticles through randomly packed spheres. The aggrega-
tion of nanoparticles was predicted based on the collision and attachment probabilities, which were found by 
matching with experimental results. The NP aggregation rate was found to be a function of time when time 
was normalized using the time needed to drain the porous medium (i.e., the pore volume (PV) unit)25,29. The 
aggregation rate at high fluid velocity was found to be smaller than that at low velocity because the residence 
time in porous media for particles traveling at high velocity was small and they did not have many chances to 
collide with other  particles29.

Regarding effects of particle size, at the same electrolyte concentration and particle concentration, the high 
molecular diffusion of small particles promoted collision efficiency and thus aggregation  rate38,39. Raychoudhury 
et al.24 performed experiments investigating the effect of nanoparticle concentration on the aggregation of carbox-
ymethyl cellulose-modified nanoparticles of zero-valent iron (NZVI) in 0.1 mM  NaHCO3 in a packed column. At 
very low particle concentrations, the particle size did not change with time, while at higher concentrations, the 
particle size increased significantly with time due to aggregation among  particles24. When the particle concentra-
tion increased, there was a high chance for particles to be in interacting zones with others and form aggregates. 
In brief, it was found that the fluid velocity, particle size, and particle concentration had remarkable effects on 
the aggregation kinetics at the same electrolyte concentration. Nonetheless, most prior work did not show how 
to predict and control the aggregation rate using these parameters leaving a gap in aggregation understanding.

Despite the complexity of geometries and fluid flow in porous media, the local fluid velocities, fluid 
 stresses45–48, and particle  velocities49,50 in porous media could be predicted. For example, Voronov et al.47 found 
a universal three-parameter Gamma probability density function that can be used to predict the wall stress 
distribution in different scaffolds with porosity higher than 80%. Given the above observations, one can wonder 
whether the aggregation rate of NPs in porous media can be estimated. Therefore, it is important to find an equa-
tion showing the dependence of aggregation kinetics or aggregate size on time, particle concentration, Reynolds 
(Re), and Schmidt (Sc) numbers. The nanoparticles investigated in our work are cerium oxide  (CeO2) that has 
been one of the most employed NPs in manufacturing gas sensors, combustion catalysts, solid oxide fuel cells, 
and so  on51. Given their extensive applications, the release of  CeO2 NPs is common, which could potentially lead 
to toxic effects on the environment such as inhibiting soybean  growth52, causing DNA  lesions53, and toxicity in 
human lung  cells54. Therefore, understanding the aggregation and mobility of NPs like  CeO2 is critical.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1916  | https://doi.org/10.1038/s41598-023-50643-x

www.nature.com/scientificreports/

In brief, the contribution of our work is to model the aggregation rate of NPs in high electrolyte concentration 
solutions which is based on the physics of particle interactions. The primary particles in this work are spherical, 
and the aggregation is considered as a one-way coupling process. The model predicts aggregation rate as a func-
tion of time, NP concentration, Re and Sc numbers as they propagate in the pores between randomly packed 
spheres including mono-disperse, bi-disperse, and tri-disperse sphere packings. The lattice Boltzmann method 
(LBM) is applied to calculate the velocity field of an aqueous solution in porous media at the steady state; and 
the Lagrangian particle tracking with force balance (LPT/FB) method is then applied to keep track of the posi-
tions and velocities of particles at each time  step29. The positions of particles at each step are used to compute the 
hydrodynamic radius of aggregates. The LPT/FB method utilizes a force balance approach, relying on Newton’s 
second law of motion and taking the interaction forces among particles into consideration. Thus, the aggrega-
tion process of NPs in sphere packings is accurately simulated without using probabilistic methods.  CeO2 NPs 
in 0.2 M KCl aqueous solution were simulated because at this electrolyte concentration, the aggregation of  CeO2 
NPs was found to be in the diffusion-limited regime, as proven by both experimental and simulation  results29,36.

Methods
Lattice Boltzmann method
The lattice Boltzmann  method55–57 is employed herein to simulate the flow of fluid in porous media and obtain the 
velocity field at the steady state. In this method, the simulation domain is divided into a cubic lattice. Each node 
in the lattice is represented by a binary value which is equal to “True” for solid nodes and “False” for fluid nodes. 
The basis of this method is to apply the discretized Boltzmann equation in conjunction with mass and momentum 
conservation equations to compute the fluid velocities on the fluid nodes. The Boltzmann equation is a model 
that calculates changes in the particle distribution function when fluid particles move among the fluid nodes via 
streaming, collision, and forcing steps. The flow is induced by specifying a pressure drop (i.e., a forcing factor) 
along the flow direction. The no-slip and periodic boundary conditions are applied for the wall-fluid interfaces 
and the six faces of the three-dimensional computational domain, respectively. An in-house  code55,58 based on 
this method was written and has undergone careful validation for use in porous media, comparing its results 
to the Blake-Kozeny  equation59,60, simulation  data59,61,62, and experimental outcomes from other  groups45,59,63.

The Lagrangian particle tracking method with force balance
While most models simulate the aggregation of particles by applying the Smoluchowski  model21,31 together with 
either a conventional LPT  method25,32 or an advection–dispersion  equation24,64, our LPT/FB  method29 takes 
the interactions among NPs into account by using a force balance approach. Newton’s second law of motion is 
applied for each particle with mass mp and velocity −→Vp as follows:29,65

There are six forces exerted on each particle, including the gravity force ( −→Fg)66, buoyancy force ( −→Fb)66, drag 
force ( −→Fd)31,66,67, random force ( −→Fr)68, electrostatic force ( −→Fe)12,39,69, and van der Waals force ( −→F vdW)12,39,69. The 
magnitudes of these forces are calculated as seen below:

where ρp and ρf  are the densities of NPs and fluid, respectively; g is the gravity constant; D and R are the diameter 
and radius of NPs, respectively; U is the fluid velocity at the position of the particle and is calculated by the LBM; 

(2)mp
d
−→
Vp

dt
=

−→
Fg +

−→
Fb +

−→
Fd +

−→
Fr +

−→
Fe +

−→
F vdW .

(3)
∣

∣

∣

−→
Fg

∣

∣

∣
=

π

6
ρpgD

3

(4)
∣

∣

∣

−→
Fb

∣

∣

∣
=

π

6
ρf gD

3

(5)
∣

∣

∣

−→
Fd

∣

∣

∣
= 3πµD(U − Vp)

(6)
∣

∣

∣

−→
Fr

∣

∣

∣
=

√

6πkBTDµ

dt
ξ

(7)
∣

∣

∣

−→
Fe

∣

∣

∣
= 2πεε0ψ

2R

(

ke−kh

1+ e−kh

)

(8)k =

√

2NAIe2o
εε0kBT

(9)
∣

∣

∣

−→
F vdW

∣

∣

∣
=

32A

3

[

R6

(2R + h)3
(

4Rh+ h2
)2

]

.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1916  | https://doi.org/10.1038/s41598-023-50643-x

www.nature.com/scientificreports/

Vp is the velocity of the particle; µ is the fluid dynamic viscosity; kB is the Boltzmann constant (1.38 ×  10−23 J/K); 
T is the absolute temperature (298 K); ξ is a random variable that follows Gaussian distribution with a mean 
of zero and a variance of one; dt is the time interval;ε0 represents the permittivity of vacuum (8.854 ×  10−12 
 CV−1  m−1); ψ is the surface potential of particles within the solution; ε is the relative dielectric constant of the 
fluid; k is the inverse Debye length; NA is Avogadro’s number (6.02 ×  10−23  mol−1); I is the ionic strength; and 
eo is the unit charge (1.602 ×  10−19 C);A is the Hamaker constant; and h is the separation distance between two 
particles. To simulate the aggregation of  CeO2 NPs in 0.2 M KCl  solution14, ε = 78.5 (for water)36,  ψ = 45 mV, and 
A = 5.57 ×  10−20 J (for  CeO2)14,36,70 are used in this study.

The gravity force acts in the downward direction, opposing the buoyancy force. The drag force, a resistive 
force exerted by a fluid on a particle, has the direction opposite to the motion of the particle. Van der Waals and 
electrostatic forces act along the line connecting interacting particles and have opposite directions. The van der 
Waals force brings two particles closer, whereas the electrostatic force operates to drive them apart. Equation (2) 
is applied for each particle, which could be a single particle (not belonging in any cluster) or an aggregate. A single 
particle that does not belong in an aggregate may interact with many neighboring particles; thus, the electrostatic 
force in Eq. (2) is the summation of all the electrostatic forces arising from these interactions. The same principle 
applied for the van der Walls force in Eq. (2), while the remaining forces are calculated for one primary particle 
based on Eqs. (3–6). If a particle is an aggregate, the gravity, buoyance, electrostatic, and van der Waals forces 
are computed by summing up all the forces exerted on each constituent particle in the aggregate. However, 
the drag force and random force are determined for the entire cluster based on Eqs. (5–6) with the use of the 
hydrodynamic radius of that cluster. The velocity in Eq. (2) represents the velocity of the cluster, which is equal 
to the velocity of the individual primary particles within that cluster. The rotation movement of particles and the 
interaction forces between particles and the solid phase of the porous medium are not considered in this work.

At the beginning of each simulation step, the initial velocities and positions of all particles are known. The 
initial positions at each step serve as the basis for identifying the neighbors of each particle within an interaction 
zone and computing the number of aggregate clusters and their sizes in the system. Two particles will be consid-
ered neighbors and will interact if the distance between their centers falls below the cut-off radius, which is triple 
the diameter of single particles. The reason for selecting this cut-off radius has been presented  elsewhere29. When 
the separation distance between two particles is smaller than the primary minimum of the interaction force, the 
attraction is too large for them to be separated afterwards; hence, they are considered to be in the same aggregate 
and they are considered to have no interactions with other particles within the same cluster. The value of the 
primary minimum is selected based on the interactions forces and DLVO energy charts, which were presented in 
a previous  work29; and it is equal to 0.5 nm to ensure that the particles are permanently attached to each  other29. 
Most aggregates have fractal-like shapes; thus, the fractal dimension is utilized to describe how densely single 
particles are distributed in a cluster while the hydrodynamic radius is commonly used to represent the size of 
 clusters21,71. A dense cluster has a higher fractal dimension than a loose one. The value of fractal dimension, Df, 
ranges from 1 (for a cluster of particles on a straight line) to 3 (for a compact spherical shape). It is computed 
based on the following equation:72–74

where n is the number of primary particles in a cluster, kf  is the scale factor, R is the radius of single particles, 
and Rg is the radius of the gyration of a cluster. Rg is equal to the root mean squared distance between particles 
in a cluster and the center of mass of the aggregate.

The hydrodynamic radius of an aggregate, Rh, is the radius of a solid sphere that exhibits similar diffusion 
characteristics as the aggregate and it is computed based on the fractal dimension and the radius of gyration of 
a cluster as given below:72,75

Next, all the forces applied on each particle or cluster are calculated by Eqs. (3–9). Unlike LBM (which is an 
on-lattice method) where fluid particles have pre-defined movement directions, NPs in the LPT/FB algorithm 
have the freedom to move in any direction. Thus, all forces acting on x, y, and z directions are computed and 
incorporated into Eq. (2) to find the particle velocities in these directions. To determine the drag force, the fluid 
velocities at particle positions are required. The fluid velocity field from LBM, which is at steady state and does 
not change with time, is used to find the fluid velocities at the positions of particles by a three-dimensional 
interpolation in space.

To apply Eq. (2) to calculate new velocities and new positions as the simulation time advances, the value for 
the time step, dt, is required. If a relatively large and constant dt is used for all simulation steps, the computation 
cost will be low and it is possible to simulate up to the time required to observe large aggregates. However, the 
aggregation rate cannot be computed correctly since at the large dt, particles can pass through each other and 
many aggregation events can be missed. On the contrary, if a very small dt  (10−9–10−8 s) is applied for all the steps, 
more aggregation events will be captured, but the computational cost is too high to simulate the aggregation 
process. Therefore, in our study, dynamic timesteps are used and the values of dt at various steps are different. 
When there are at least two particles close to each other and interact, a very small dt is used to ensure that they 
cannot move more than one-tenth of the distance that separates them and one-fifth of the grid resolution of the 
porous medium. Consequently, no particles can pass through each other, or overlap with others, or move into 
the solid phase of the porous medium. However, this approach is practical for systems with low concentrations 
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of NPs. Otherwise, interactions become excessively frequent, necessitating a small timestep for the majority of 
the simulated time.

At this stage, dt is known, and by applying the first order discretization for the velocity derivative in Eq. (2), 
the new velocities and positions of all particles are computed. The positions of particles are employed to see if 
they overlap with others or move in the solid matrix of the porous medium. The value of dt will be reduced by 
one-half if overlapping occurs. In case a particle is found in the solid phase, it is bounced back to its previous 
position. The new positions and velocities at this time step are the initial ones for the next time step and the same 
calculations are repeated. In this way, the velocities, positions of all primary particles, and the size of aggregates 
are tracked with time. This method has been validated against the aggregation experiments of  CeO2 NPs sus-
pended in KCl solutions with different concentrations (0.001 M, 0.02 M, 0.1 M, 0.15 M, and 0.2 M). More details 
about this method and the validation have been presented  elsewhere29.

This model is based on the physical processes of particle interactions and involves more complex calcula-
tions than models based on probabilities. Thus, LPT/FB requires more computational time compared to the 
probability-based methods, which utilize a probability tool to estimate aggregation events at large timesteps. 
However, in stochastic models, to obtain the correct probabilities and reliable results, many experiments have to 
be performed. When variables such as particle size, fluid velocity, or particle concentration change, the collision 
and/or aggregation probabilities also change. Thus, conducting new experiments is essential to find the correct 
probabilities, which can be a challenging and time-consuming process. On the contrary, in our model, once the 
Hamaker constant and the surface potential (for van der Waals and electrostatic forces calculations) are known, 
conducting additional experiments when particle size, fluid velocity, or NP concentration change is unnecessary.

Scope of work
This study investigated the effect of fluid velocity, particle size, and particle concentration on the rate of diffusion-
limited aggregation of  CeO2 in 0.2 M KCl through sphere packings, which are similar to sand packing.  CeO2 
NPs were examined because of their potentially harmful effects to the environment. In addition, the Hamaker 
constant and surface potential of  CeO2 were known and the aggregation process of  CeO2 in bulk was validated 
in our previous  study29. The comparability of the results is ensured by keeping the porous medium and particle 
interactions the same, and varying parameters such as fluid velocity, particle size, and particle concentrations. 
The fluid velocities were chosen to study the effect of Re in the laminar flow regime, while the particle size was 
changed to study the impacts of Sc. The particle concentration was within the range of low concentrations. The 
porous media were mono-disperse, bi-disperse and tri-disperse to establish that the findings were valid for dif-
ferent porous media configurations. Finally, the effects of the force field were investigated.

First, to explore how Re and Sc numbers affect the aggregation rate, twelve LBM runs were performed to 
simulate the flow of 0.2 M KCl solution through mono-disperse and bi-disperse sphere packings at six differ-
ent pore velocities including 50, 100, 200, 500, 1000, and 2000 µm/s. Next,  CeO2 NPs were uniformly released 
in the simulation domains; and the movement of NPs in porous media was then simulated by applying the 
LPT/FB method that accounted explicitly for interactions among particles. There were thirty LPT/FB simula-
tions conducted for the aggregation of 10 mg/L  CeO2 NPs in the mono-disperse sphere packing. For each pore 
velocity, five different LPT/FB runs were conducted with different values of particle radius (75, 85, 95, 105, and 
110 nm), which corresponded to different numbers of NPs (21,428, 14,720, 10,544, 7809, and 6792) to ensure 
that the concentration of NPs was constant for all runs. Another thirty numerical experiments were repeated for 
the case of bi-disperse spheres. Results from these experiments were used to obtain an equation to predict the 
aggregation rate based on time, Re, and Sc numbers. There were six LPT/FB runs with different velocities, differ-
ent particle sizes, and the same particle concentration carried out for the case of tri-disperse sphere packing to 
validate the model. They included experiments of 14,720 NPs sized 85 nm at fluid velocity 46 µm/s, 14,720 NPs 
sized 85 nm at fluid velocity 93 µm/s, 10,544 NPs sized 95 nm at pore velocity 93 µm/s, 7809 NPs sized 105 nm 
at pore velocity 93 µm/s, 10,544 NPs sized 95 nm at pore velocity 186 µm/s, and 7809 NPs sized 105 nm at pore 
velocity 1484 µm/s. The details of the three different types of randomly packed spheres investigated in this study 
are shown in Table 1 and Fig. 1. These sphere packings were created by utilizing the code of Baranau et al.76,77, 
which relied on the Lubachevsky–Stillinger generation  algorithms78,79.

To study the effects of NP concentration on the aggregation rate, NPs with seven different concentrations (3.6, 
5.4, 7.4, 10.0, 14.0, 18.8, and 27.4 mg/L) were released in the mono-disperse sphere packing at three different 
pore velocities (100, 500, and 1000 µm/s) and in bi-disperse sphere packing at two different velocities (200 and 
500 µm/s), and their motion was simulated by the LPT/FB method. Thus, there were 35 simulations performed 
for this part of the investigation. To vary the NP concentration, both the particle size and the number of particles 

Table 1.  Details of the simulation domains for mono-disperse sphere packing, bi-disperse sphere packing, and 
tri-disperse sphere packing  (ds is the diameter of the spheres used in the packing shown in Fig. 1).

Porous media Grid points Size (µm3) Porosity (%) Structure Hydraulic diameter (µm)

Mono-disperse 401 × 401 × 401 418.9 × 418.9 × 418.9 37 40 spheres  (ds = 130.3 µm) 51.3

Bi-disperse 501 × 501 × 501 428.2 × 428.2 × 428.2 35 60 spheres  (ds = 115.2 µm)
30 spheres  (ds = 57.6 µm) 39.7

Tri-disperse 501 × 501 × 501 432.9 × 432.9 × 432.9 34
30 spheres  (ds = 130 µm)
30 spheres  (ds = 97.5 µm)
30 spheres  (ds = 65 µm)

39.1
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were adjusted as seen in Table 2. Results from these simulation runs were used to build the model showing the 
dependence of the aggregation rate on NP concentration. Aggregation rates obtained from two different con-
centrations of NPs (5.4 and 18.8 mg/L of  CeO2 in 0.2 M KCl at 93 µm/s) aggregating in the tri-disperse packing 
were computed to verify the model predictions.

To investigate if particles with different force field follow the same aggregation model as  CeO2 NPs, additional 
LPT/FB runs were conducted for particles having Hamaker constant A = 5.57 ×  10−19 J, ten times larger than that 
of  CeO2. Four runs including10544 particles sized 95 nm and 7809 nanoparticles sized 105 nm moving through 
the mono-disperse sphere packing at pore velocities 200 and 500 µm/s were carried out to find the dependence 
of the aggregation rate on Sc and Re. Moreover, 7809 particles with radius of 75 nm, 7809 particles sized 85 nm, 
14,725 particles sized 105 nm, and 21,428 particles sized 105 nm traveling through the same packing at 500 µm/s 
were simulated to investigate impacts of the particle concentration.

While conducting multiple simulations for one case is required in probability-based models such as Monte 
Carlo, in our study, each case was simulated once. Because the model is not stochastic, and the use of probabili-
ties is eliminated, performing multiple simulations for each case is unnecessary. To show the convergence of 
the model, six simulations of 10,544  CeO2 NPs (sized 95 nm) in 0.2 M KCl aqueous solution moving through a 
mono-disperse sphere packing at the pore velocity of 500 µm/s were carried out with different random numbers 
and different initial positions of particles. It is shown in Fig. 2 that the results from different simulations are not 
much different.

Results
Dependence of aggregation rate on time
Figure 3 shows the ratio of the mean hydrodynamic radius of the particles over the primary particle radius 
( Rh/R ) for  CeO2 NPs of different sizes and different fluid velocities in 0.2 M KCl solution as a function of time. 
Time is reported in terms of pore volumes, which illustrates how much fluid has been displaced through the 
porous medium. It was calculated by dividing the simulation time by the time that it takes for fluid to move 
through one simulation domain. Figure 3a is an illustration of the results from the experiments simulating the 
aggregation of NPs with the same particle concentration of 10 mg/L and different particle radii including 110, 
105, 95, 85, and 75 nm when they moved in the mono-disperse sphere packing at different velocities 50, 100, 
200, 500, and 1000 µm/s, respectively. The same runs in the bi-disperse sphere packing are displayed in Fig. 3b. 
It is clearly shown that when the time was less than 500 pore volumes the aggregation rate is linearly dependent 
on time, as below:

Figure 1.  Geometries of random packings of (a) mono-disperse spheres, (b) bi-disperse spheres, and (c) tri-
disperse spheres.

Table 2.  The particle concentration in this work was changed by varying the number of particles and their 
respective sizes.

NP concentration (mg/L) Number of particles Single particle radius (nm) Schmidt number

3.6 7809 75 349,447

5.3 7809 85 396,273

7.4 7809 95 443,100

10.0 10,544 95 443,100

14.0 14,720 95 443,100

18.8 14,720 105 489,926

27.4 21,428 105 489,926
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where S is the slope of the line. In other words, the mean size of particles increased linearly with time as aggre-
gation occurred. Figure 4a,b display typical images of clusters that were formed at the period when the mean 
Rh/R was equal to 3 and 5, respectively. These results are for the case of 10,544 NPs with primary particle radius 
of R = 105 nm flowing through the mono-disperse sphere packing at a pore velocity in the flow direction,  Vx, 
of 100 µm/s. Different runs with different pore velocities and/or sizes of primary particles had different values 
of S, which showed that S depended on the Reynolds and Schmidt numbers at a constant NP concentration.

Dependence of aggregation rate on Reynolds and Schmidt numbers
Sixty simulations of 10 mg/L NPs (in 0.2 M KCl) with different particle radii (from 75 to 110 nm) moving in 
mono-disperse and bi-disperse sphere packings at different velocities ranging from 50 to 2000 µm/s were analyzed 
to examine how the Re and Sc numbers affected the value of the slope S appearing in Eq. (12) in particular, and 
the aggregation rate in general. The Re was calculated based on the hydraulic diameter of the porous medium 
(as the characteristic length scale) and the pore velocity in the flow direction,  Vx. The Re of fluid flows through 
the mono-disperse packing with a hydraulic diameter of 51.3 µm varied from 0.0026 to 0.1, while the Re for the 

(12)
Rh

R
= S · t + 1

Figure 2.  Mean value of the ratio of the hydrodynamic radius over the radius of the primary particle and the 
standard deviation of this ratio for six simulations simulating the aggregation of  CeO2 nanoparticles in 0.2 M 
KCl. The nanoparticles flow and aggregate through mono-disperse spheres with pore velocity at 500 µm/s. The 
six simulations were performed with six different initial seeds for random number generation and with different 
initial positions of the particles. The maximum error is less than 3%.
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Figure 3.  The relationship between the ratio of the mean hydrodynamic radius of NPs to the primary particle 
radius and time at different pore velocities and particle sizes when  CeO2 NPs with a concentration of 10 mg/L 
flowed through (a) the mono-disperse sphere packing and (b) the bi-disperse sphere packing.
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bi-disperse packing having a hydraulic diameter of 39.7 µm was in the range of 0.002–0.079. The Sc correspond-
ing to particles with radii from 75 to 110 nm fell in the range of 349,447 to 513,339. First, the effect of the Peclet 
number (Pe = Re × Sc) on the rate of change of the mean hydraulic radius, S, was investigated. As seen in Fig. 5, 
the slope of the aggregation rate and the Peclet number did not appear to be correlated. Thus, the effects of Re 
and Sc numbers were examined separately and it was found that the slope of the aggregation rate was correlated 
to Re1/3Sc for both mono-disperse and bi-disperse sphere packings, as seen in Fig. 6a.

The relationship between S and Re1/3Sc was found to be

Therefore, when 10 mg/L  CeO2 NPs traveled through mono-disperse and bi-disperse sphere packings, the 
mean hydrodynamic radius of particles divided by the primary particle radius could be expressed as follows:

The x-axis in Fig. 6b shows growth of the mean hydrodynamic radius estimated by simulation, while the y-axis 
represents the same parameter calculated by using Eq. (14). The black line in Fig. 6b is the identity line where the 
x-coordinate is equal to the y-coordinate. Each point on this chart represents the value of the aggregation rate of 
NPs for a specific combination of Re, Sc, and time. The aggregation rates shown in this chart were computed at 
different times from 50 to 500 PV with an increment of 50 PV. The proximity of a point in Fig. 6b to the identity 
line indicates the error between the aggregation rate predicted by Eq. (14) and the one estimated through simu-
lation. The closer the point in Fig. 6b to the identity line, the more accurate the model. The maximum relative 

(13)S = 6.0× 10
9
(

Re1/3Sc
)−2.5

.

(14)
Rh

R
= 6.0× 10

9
(

Re1/3Sc
)−2.5

t + 1.

Figure 4.  Typical clusters formed at (a) mean Rh
R

= 3 and (b) mean Rh
R

= 5 when 10,544  CeO2 NPs with the 
initial radius of 105 nm moved in the mono-disperse sphere packing at the velocity of 100 µm/s.
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error and the average relative error for all points displayed in the chart were 13.6% and 2.7% respectively, which 
indicates that the proposed model in Eq. (14) gives a good prediction about the aggregation rate of 10 mg/L 
 CeO2 NP based on Re, Sc, and time.

Equation (14) shows that the aggregation rate decreased when the Reynolds number increased. The Reynolds 
number represented the convection effects on aggregation due to fluid flow, and when it increased, the residence 
time of particles in the simulation domain was shorter. Thus, particles did not have enough time to interact or 
collide with each other and the aggregation rate was low. In addition, the aggregation rate also depended on the 
Schmidt number. A lower Schmidt number (corresponding to higher molecular diffusion of NPs) accelerated 
the collision efficiency, thereby improving the aggregation kinetics. However, the exponent of the Sc was three 
times as large as that of the Re, which showed that in diffusion-limited aggregation, the molecular diffusion had 
a much stronger effect on the aggregation kinetics than the convection effects.

Dependence of aggregation rate on the particle concentration
Section “Dependence of aggregation rate on Reynolds and Schmidt numbers” shows the prediction model for 
the aggregation of 10 mg/L  CeO2 NPs in 0.2 M KCl in sphere packings. When the concentration of the particles 
varies, the predictive equation should be expressed in a more general form as

where B is a coefficient dependent on the concentration of NPs. In Eq. (14), it was B = 6.0× 109 , when the NP 
concentration was 10 mg/L. In this section, we aim to obtain the relationship between B and NP concentration 
by analyzing the results from numerical experiments with different concentrations at different velocities. It is 

(15)
Rh

R
= B

(

Re1/3Sc
)−2.5

t + 1

Figure 5.  Dependence of the slope of the aggregation rate (S) on Peclet number for the case of  CeO2 NPs 
moving through the monodisperse sphere packing.

Figure 6.  (a) Relationship between the slope of the aggregation rate (S) and  Re1/3Sc when  CeO2 NPs move 
through mono-disperse and bi-disperse sphere packings. Each point represents the S value of one simulation. 
(b) The comparison chart between aggregation rates obtained by simulations and those computed by Eq. (14). 
The black line in the chart is the unity line and each point is the aggregation rate at certain values of Re, Sc 
numbers, and time ranging from 50 to 500 PV with the increment of 50 PV.
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seen in Fig. 7 that the values of B at different velocities and particle sizes were almost similar to each other. While 
the values of B were independent of Re and Sc, they correlated strongly to NP concentration, C. At very low NP 
concentration, B depended linearly on C, which is a result that agrees with the experimental results of Szilagyi 
et al.44 that examined the aggregation of nano-sized amidine latex particles suspended in ionic liquid and water 
mixture. It was found that when the particle concentration was less than 5 mg/L, the hydrodynamic radius change 
with time was a straight line and the gradient of the line was linearly correlated to the particle concentration. 
In our study, there was no linear correlation between the values of B and NP concentration for concentrations 
higher than 10 mg/L. We employed a power equation to fit all the data points in Fig. 7, so that the rate of  CeO2 
diffusion-limited aggregation in sphere packings can be modeled as

Therefore, the aggregate size can be predicted based on time, NP concentration, Re, and Sc by incorporating 
Eq. (16) in Eq. (15) as follows (when C is in mg/L):

Figure 8 is a chart comparing the aggregation rates predicted by Eq. (17) and those obtained at times rang-
ing from 50 to 500 PV with an increment of 50 PV from all the simulations done for all three sphere packings 
as described in the scope of work. It is observed that the maximum relative error was 16.4% while the average 

(16)B = 4.7× 10
8C1.1

(17)
Rh

R
= 4.7× 10

8C1.1
(

Re1/3Sc
)−2.5

t + 1

Figure 7.  The relationship between the coefficient B and the particle concentration, C, when  CeO2 NPs traveled 
through the mono-disperse sphere packing at velocities of 100, 500, and 1000 µm/s and through bi-disperse 
sphere packing at velocities of 200 and 500 µm/s. 

Figure 8.  The comparison chart between aggregation rates obtained by simulations and those computed by 
Eq. (17). The black line in the chart is the unity line and each point is the aggregation rate at certain values of Re, 
Sc numbers, and time ranging from 50 to 500 PV with the increment of 50 PV.
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relative error was 3.1%. Thus, Eq. (17) is a good model to predict the mean hydrodynamic radius of  CeO2 NPs 
in the diffusion-controlled aggregation when they travel through sphere packings.

Aggregation rate of particles with a different force field
Additional LPT/FB runs to compute the aggregation rates of particles other than  CeO2 moving through the 
mono-disperse sphere packing were conducted. These particles were assumed to have Hamaker constant 
A = 5.57 ×  10−19 J, which was an order of magnitude larger than the Hamaker constant of  CeO2. From the depend-
ence of S on Re1/3Sc and B on C as shown in Fig. 9a,b, the aggregation rate could be written as

It is found that the exponent of Sc is still three times larger than that of Re regardless of NP types, thus the 
impact of the particle size was more important than that of the flow field. Moreover, the exponents of NP concen-
tration, C, (equal to 1.2) and the dimensionless number Re1/3Sc (equal to − 2.6), were very close to those of  CeO2 
(1.1 and − 2.5), even though the force field was far different. On the contrary, the force field strongly affected the 
scale factor, which was equal to 1.7× 109 and 4.7× 108 when A = 5.57 ×  10−19 J and A = 5.57 ×  10−20 J, respectively.

Conclusions
This work utilized the lattice Boltzmann method in conjunction with a Lagrangian particle tracking algorithm 
modified with the force balance approach to account for the interactions among particles to examine the effects 
of time, Re, Sc, and NP concentration on the mean aggregate size in the diffusion-limited regime when NPs 
moved through the pore space in randomly packed spheres. The aggregation rate can be expressed as a function 
of time in a generic form as follows:

where α is the scaling factor, β and γ are exponents for the particle concentration, C, and the dimensionless 
number ( Re1/3Sc) . These parameters are expected to change when the interaction forces among particles vary. 
For the case of  CeO2 NPs, when the concentration of NPs is less than 27.4 mg/L, Eq. (19) with α = 4.7× 108 , 
β = 1.1 , and γ = −2.5 could predict the aggregate sizes within acceptable accuracy—the average relative error 
was 3.1%. At very dilute NP concentrations (< 10 mg/L  CeO2), β is equal to 1. These findings are in agreement 
with experiments from another laboratory where a linear correlation between aggregate size and NP concentra-
tion was  reported44. The rate of diffusion-limited aggregation is strongly affected by the particle size (i.e., Schmidt 
number) and this effect was three times as strong as the convection effect (i.e., Reynolds number). Thus, it is 
proved herein that the aggregation process of particles with known physicochemical properties (such as Ham-
aker constant, surface potential, and size) could be estimated and controlled by the size of primary particles, 
the particle concentration, and the flow field in decreasing order of influence. Thus, future work focusing on 
how to find parameters α , β and γ based on the particle force fields is essential, since it helps to quickly predict 
the aggregation rate of NPs in porous media for different types of NPs in different solutions. In addition, the 
particle–wall interaction is not considered in this study. Thus, it is suitable when the particle–wall interaction 
is either insignificant or very small compared to the particle–particle interaction. Such interactions can be 
incorporated in future work.

(18)
Rh

R
= 1.7× 10

9C1.2
(

Re1/3Sc
)−2.6

t + 1.

(19)
Rh

R
= αCβ

(

Re1/3Sc
)γ

t + 1

Figure 9.  The relationship between (a) the slope of the aggregation rate, S, and Re1/3Sc when NPs 
(A = 5.57 ×  10−19 J) sized from 95 to 105 nm, moved through mono-disperse packings at velocities of 200 and 
500 µm, (b) the coefficient B and the particle concentration, C, when NPs (A = 5.57 ×  10−19 J) with different 
concentrations ranging from 3.6 to 27.4 mg/L traveled through the mono-disperse sphere packing at the pore 
velocity of 500 µm.
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Data availability
The datasets used and/or analyzed during the current study are included herein. Raw data can be available from 
the corresponding author upon reasonable request.
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