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Identification of a CpG‑based 
signature coupled with gene 
expression as prognostic indicators 
for melanoma: a preliminary study
Zhen Lin  & Liu Yang *

DNA methylation is an important part of the genomic biology, which recently allowed the 
identification of key biomarkers for a variety of cancers, including cutaneous melanoma. Despite 
the current knowledge in cutaneous melanoma, there is a clear need for new efficient biomarkers 
in clinical application of detection. We use The Cancer Genome Atlas data as a training set and a 
multi-stage screening strategy to identify prognostic characteristics of melanoma based on DNA 
methylation. Three DNA methylation CpG sites were identified to be related to the overall survival in 
the skin cutaneous melanoma cohort. This signature was validated in two independent datasets from 
Gene Expression Omnibus. The stratified analysis by clinical stage, age, gender, and grade retained 
the statistical significance. The methylation signature was significantly correlated with immune 
cells and anti-tumor immune response. Moreover, gene expression corresponding to the candidate 
CpG locus was also significantly correlated with the survival rate of the patient. About 49% of the 
prognostic effects of methylation are mediated by affecting the expression of the corresponding 
genes. The prognostic characteristics of DNA methylation combined with clinical information provide 
a better prediction value tool for melanoma patients than the clinical information alone. However, 
more experiments are required to validate these findings. Overall, this signature presents a prospect 
of novel and wide-ranging applications for appropriate clinical adjuvant trails.

Abbreviations
TCGA​	� The Cancer Genome Atlas
GEO	� Gene Expression Omnibus
SKCM	� Skin cutaneous melanoma
TSG	� Tumor suppressor genes
UCSC	� University of California Santa Cruz
CIBERSORT	� Cell-type identification by estimating relative subsets of known RNA transcripts
GZMA	� Granzymes A
PRF1	� Perforin
GO	� Gene ontology
GSEA	� Gene Set Enrichment Assay
TIDE	� Tumor Immune Dysfunction and Exclusion
SOX9	� SRY-Box Transcription Factor 9
MITF	� Melanocyte Inducing Transcription Factor
TIM-3	� T-Cell Immunoglobulin Mucin Receptor 3
LGALS9	� Galectin 9
MDSC	� Myeloid derived suppressor cell
CAF	� Cancer associated fibroblast
TAM	� Tumor-associated macrophage

Cutaneous melanoma is one of the deadliest neoplasms with high aggressive and metastatic characteristics1. 
The favorable prognosis of melanoma is dependent of its timely detection in early stage2. Once the melanoma is 
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established and developed, it becomes a threat to the patients’ life3. Therefore, the identification of novel effective 
prognostic indexes is needed to accelerate the detection of melanoma.

Aberrant DNA methylation is an epigenetic hallmark of cancer, which plays a significant role in cancer 
management4. It is increasingly recognized that epigenetic aberrations could induce cancer development and 
progression by inactivation of tumor suppressor genes (TSGs) at the promoter region4. Regarding melanoma, 
aberrant DNA methylation is the most widely studied dysregulated epigenetic mechanism5. Until now, over 
100 genes contributing to melanoma pathogenesis have been identified to be aberrantly hypermethylated5. 
These genes include SOX9, MITF, TIM-3 and LGALS96–8, which play critical roles in tumor cell biology after 
hypermethylation. The methylation patterns might be recognized as a biomarker for predicting the prognosis 
of patients. Furthermore, it is also reported that alterations of DNA methylation status can be involved in the 
tumor microenvironmental immune evasion and are able to modulate the response of immunotherapy9. Genomic 
methylation alterations counteract the contribution of high mutation burden and increase immunotherapeutic 
resistance10. Moreover, several epigenetic therapies have been developed inhibiting enzymes controlling epige-
netic modifications4. For example, 5-azacytidine and 5-aza-2-deoxycytidine were discovered as promising inhibi-
tors of DNA methylation for treating several malignancies11. Meanwhile, the use of inhibitors in combination 
with other key enzymes will greatly improve therapy and patient recovery11.

In the present study, we aim to construct a novel methylation biomarker signature for melanoma prognosis 
and further immunotherapy application. To do so, we have investigated the prevalence of CpG island methyla-
tion in TSGs silenced in cancer to design methylation profiles associated with main clinicopathological features. 
Moreover, we have explored the prognostic significance of these TSGs promoter methylations in melanoma out-
comes. Comprehensive bioinformatics analyses were conducted to explore potential mechanism of biomarkers. 
This study presents an accurate predictive pattern for melanoma patients based on methylation and provides 
prospect of subsequent personalized medical care.

Methods and material
Data acquisition and processing
DNA methylation data (Illumina Infinium HumanMethylation450 array) from patients with skin cutaneous 
melanoma in the “cohort: GDC The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM)” as train-
ing set were acquired from the Cancer Genomics Browser of The University of California Santa Cruz (UCSC) 
(https://​xenab​rowser.​net/​datap​ages/?​cohort=​GDC%​20TCGA%​20Mel​anoma%​20(SKCM)​&​remov​eHub=​https%​
3A%​2F%​2Fxena.​treeh​ouse.​gi.​ucsc.​edu%​3A443). RNA-sequencing data, protein expression data, and clinical 
information were also retrieved. The clinical data were preprocessed by exclusion of patients with missing 
follow-up information. Additional methylation data and corresponding clinical information for independent 
validation set 1 and set 2 were obtained from Gene Expression Omnibus (GEO) (196 patients, GEO accession 
number GSE14448712; 47 patients, GEO accession number: GSE515478). All the data of methylation beta matrix 
was filtered and normalized with ChAMP R package13.

Survival model construction process
At first, 459 tumor samples were included in our study by removing the samples with unavailable DNA meth-
ylation data, gene expression or survival data. The list of common CpG probes shared between 450K and EPIC 
array was selected to investigate the association between gene expression and DNA methylation across tumor 
samples. 342,127 DNA methylation sites were remains to follow-up filtration. Then, Pearson coefficient between 
gene expression and corresponding methylation β level in the promoter region (“1stExon”, “5’UTR”, “TSS1500”, 
“TSS200”) were calculated. A high negative Pearson coefficient <  − 0.6 with P < 0.05 was set as criteria for iden-
tification of expression related methylation probes. Subsequently, 1288 probes were identified to associated to 
expression and subjected to the unique Cox regression analysis. 313 probes were retained based on the criteria of 
P < 0.001. At last, the stepwise-cox regression analysis is used to construct a best fitting prognostic model. A risk 
score formula was established by considering the expression of optimized 3 probes measured by their estimated 
regression coefficients. Patients were classified into high or low risk groups with the median risk score as cutoff 
value. The study flowchart describing the process is shown in Fig. 1.

Determination of tumor‑infiltrating immune cells and immune responses
Cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT), an analyti-
cal algorithm, is developed to offer an estimation of the abundances of 22 immune cell population in a mixed 
neoplasm tissue14. ESTIMATE predicts tumor purity, and the presence of infiltrating stromal/immune cells in 
tumor tissues15. The cytolytic activity (CYT) score was obtained by calculating the geometric mean of granzymes 
A (GZMA) and perforin (PRF1) mRNA expression levels in tissue16. RNAseq data was analyzed by edgeR algo-
rithm and Gene Ontology (GO), KEGG pathway enrichment and Gene Set Enrichment Assay (GSEA) that were 
carried by clusterProfiler package.

Tumor immune dysfunction and exclusion (TIDE) analysis
TIDE is a computational algorithm constructed by Jiang et al.17 to predict the immunotherapy response of 
immune checkpoint blockades. TIDE quantified the levels of two conventional mechanisms in the process of 
tumor immune evasion: T cell dysfunction and T cell exclusion. The TIDE score in patients with cutaneous 
melanoma from the TCGA cohort, including T cell dysfunction score and T cell exclusion score, were performed 
in the TIDE web (http://​tide.​dfci.​harva​rd.​edu) after uploading the transcriptome profiles. Then, the correlation 
among diverse immune parameters and signatures were evaluated.

https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
http://tide.dfci.harvard.edu
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Mediation analysis
VanderWeele’s mediation analysis is widely applied to test a hypothetical causal chain18. In this case, the cor-
responding mRNA expression was regarded as mediators, and its indirect effect (HRindirect) was determined, 
standing for the regulation via mRNA expression. Meanwhile, the effect of methylation status on clinical prog-
nosis is described as direct effect (HRdirect). Finally, the whole effect of methylation on survival is called HRtotal, 
composed of the two variables, HRindirect and HRdirect.

Nomogram construction
Nomogram was developed to predict the personalized estimation of the probability of prognosis, recurrence, 
or drug response19. In nomogram, each contributing parameter including age, gender, Tumor Node Metastasis 
stage (TNM stage), and risk score, was quantified by points and added up to generate a total point by individual. 
In the present study, we integrated the clinical characteristics and risk score in the nomogram for prediction 
of prognosis for each melanoma patients. The nomogram was processed via the rms package for R software. A 
calibration curve was applied to visualize the deviation between predicted probabilities and the actual situation, 
with 1000 replicates set up in the bootstrap method. The predictive accuracy of the nomogram was measured 
by the concordance index (C-index).

Statistical analysis
Kaplan–Meier survival curves were drawn and compared among subgroups using log-rank tests to assess sur-
vival differences. Multivariate Cox regression and subgroups stratification analysis were performed to explore 
whether the methylation-based risk score was independent of patients’ clinical features. To evaluate the efficiency 
of the survival prediction among the risk score and the TNM stage, receiver operating characteristic (ROC) 
analysis was performed. Hazard ratios (HR) and 95% C-index were also calculated. P values were two-sided, 
and P < 0.05 was considered statistically significant. Statistical tests above were performed using R version 4.0.0 
(The R Foundation).

Ethics approval and consent to participate
Consent for participation for all patients was obtained through The Cancer Genome Atlas Project.

Result
Derivation of prognostic DNA methylation sites and construction of risk formula
The study was conducted on 459 patients in TCGA cohort who are clinically and pathologically diagnosed with 
cutaneous melanoma. Firstly, univariate cox proportional hazard regression analysis was carried to filter the 
candidate mRNA-related-DNA methylation level data in the training cohort. With the strict criteria (P < 0.001), 
a total of 313 DNA methylation sites were identified as candidate markers that significantly correlated with the 
overall survival (OS) of patients. Subsequently, these candidate sites were used to perform multivariate cox 
regression analysis with both-side stepwise. Finally, 3 methylation sites were selected to contribute one hazard 
ratio model as the optimum prognostic model for predicting OS. The liner risk score formula was created as fol-
lows: Risk score = (− 1.29) * βcg09088834(NINL) + (0.7904946) * βcg16393012(ARHGDIB) + (0.7137228) * βcg09321817(HLA-DPA1). The 
detailed information of the three methylation probes is shown in Supplementary Table 1. The risk score for each 
patient was calculated using this formula. Then, patients were assigned into high-risk and low risk group based 
on the optimized risk value within the TCGA cohort (Fig. 2A). The survival of high-risk patients was significantly 
shorter than of low-risk patients in a Kaplan–Meier curve (Fig. 2B, P < 0.0001). The univariates Cox regression 
analysis was operated to evaluate the prognosis value of these sites respectively (Fig. 2C). Then, we calculated 

Figure 1.   Flowchart showing steps involved in identification of the prognostic DNA methylation signature in 
melanoma.
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the time-dependent area under the ROC curves (AUC) to evaluate predictive performance. AUC values at 3-, 
5- and 10-years indexes are 0.705, 0.703, and 0.719 respectively, representing a prognostic prediction (Fig. 2D).

The signature is independent from clinical and pathological characteristics
There are varieties of clinical and pathological features that are considered as predictions for patients with mela-
noma, such as patients’ age, sex, AJCC stage, tumor thickness, the site where the sample was obtained, ulceration 
status, as well as mutation status20–24. Therefore, patients were regrouped according to different clinicopathologi-
cal characteristics to assess the independence and applicability of this three-DNA methylation signature. Age, 
gender, tumor tissue site, pathologic stage, Breslow thickness, ulceration, BRAF and NRAS mutation status were 
taken into consideration. Consequently, the three-DNA methylation signature remains a good reference for 
different regrouped cohorts in the forest plot (Fig. 3). Meanwhile, patients with BRAF mutation shows a high-
risk score comparing with counterparts without BRAF mutation. However, there is no difference about NRAS 
status (Supplementary Fig. 1). These results suggest that the methylation signature has a high effectiveness for 
risk stratification. The signature could therefore be used as an applicable independent prognostic predictor and 
guide clinicals to choose proper targeted drugs.

1

2

0 100 200 300 400

risk group

high
low

0

10

20

30

0 100 200 300 400

tim
e
 (

ye
a
rs

)

event

deceased
alive

cg09088834
(NINL)

cg16393012
(ARHGDIB)

cg09321817
(HLAD-PA1)

−2

0

2

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++ +++++++ ++

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++ +

+

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 10 20 30

Su
rv

iva
l p

ro
ba

bi
lity + high

+ low

230 17 4 1
229 56 6 1−− 0 10 20 30

Time(years)

Number at risk
Time(years)

A B

cg09321817
(HLA-DPA1)

cg16393012
(ARHGDIB)

cg09088834
(NINL)

(N=459)

(N=459)

(N=459)

2.042

2.204

0.275

(1.325 − 3.15)

(1.469 − 3.31)

(0.122 − 0.62)

0.0012 **

<0.001 ***

0.0019 **

# Events: 222; Global p−value (Log−Rank): 2.7286e−09 
AIC: 2257.13; Concordance Index: 0.66

0.1 0.2 0.5 1 2

Hazard ratio in SKCM

AUC at 3 years = 0.705

AUC at 5 years = 0.703

AUC at 10 years = 0.719
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

C D

ri
sk

 s
co

re risk group

Figure 2.   Construction of the 3-methylation signature in TCGA training set for determining survival 
outcomes. (A) The distribution of risk score, patients’ survival status and methylation expression panel. (B) 
Kaplan–Meier curves in all patients based on risk score. (C) 3 methylation probes were significantly correlated 
with overall survival derived from the univariable cox regression analysis in melanoma patients. (D) ROC 
analysis of 3 methylation for predicting of survival at 3, 5 and 10 years in TCGA cohorts.
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Evaluation of the methylation signature for survival prediction in other independent cohorts
To further examine the prognostic values of the three-DNA methylation signature in another independent 
cohorts, Kaplan–Meier and ROC analyses were carried out in two other independent cohorts (GSE144487 
N = 198; GSE51547, N = 47). Similarly, patients with high or low risk were grouped based on the median risk 
score of the training cohort (Fig. 4A, D). Patients in the low-risk group had a significantly longer overall survival 
in GSE144487, suggesting the three-DNA methylation performed well in prediction (P < 0.0001, Fig. 4B). 3-, 5-, 
and 10-year AUC were 0.678, 0.697 and 0.713, respectively (Fig. 4C). However, due to the limited sample size 
in the GSE51547 cohort, the log-Rank test was not significant but the AUC value in 3- and 5-year were 0.705 
and 0.833 (Fig. 4E, F), confirming that the three-DNA methylation signature can also predict the survival of 
melanoma patients in other independent cohorts.

Association between three‑DNA methylation signature with immune cells and immune 
response
Immune cells calculated by CIBERSORT algorithm were compared in the two groups in the SKCM cohort. 
Diverse anti-tumor immune cells, including plasma B cells, CD8+ T cells, activated memory CD4+ T cells, 
activated natural killer (NK) cells, M1-like macrophages and activated dendritic cells (DCs) were found highly 
enriched in the low-risk population. Meanwhile, resting memory CD4+ T cells, resting NK cells, M0 mac-
rophages, M2-like macrophages and resting mast cells were elevated in the high-risk population (Fig. 5A). 
Considering the role of TILs as an important marker, we analyze the prognostic value with this parameter. This 
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Figure 3.   The prognostic value in subgroups based on clinicopathologic characteristics in TCGA cohort. 
The SKCM cohort was divided into subgroups based on clinicopathologic characteristics, such as gender, age 
of diagnosis, tumor tissue site, pathologic stage, Breslow thickness, ulceration, BRAF mutation and NRAS 
mutation.
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signature may serve as a reliable independent prognostic predictor even when considering immune cells as 
covariates (Supplementary Fig. 2). Immune score calculated by ESTIMATE algorithm was higher in the risk-
low group (Fig. 5B). The cytolytic activity (CYT) score is a new index of cancer immunity calculated from the 
mRNA expression levels of GZMA and PRF1, representing immune cytotoxicity16. CYT score was higher in 
risk-low group (Fig. 5C). Moreover, GSEA analysis GSEA analysis was performed by comparing the risk-high 
and risk-low group, uncovering that T cell receptor (TCR), CD8+ TCR downstream and B cell receptor path-
ways were significantly downregulated in the high-risk group (NES = − 0.24, p = 2.0e−6; NES = − 0.24, p = 2.0e−6; 
NES = − 0.24, p = 2.0e−6; Fig. 5D–F). Gene Ontology (GO) enrichment analysis showed that immune response 
related pathways, including T cell receptor signaling pathway, CD8 TCR downstream pathway, and T cell receptor 
signaling pathway, were also highly enriched in the low-risk group (Fig. 5G). Finally, in Reverse Phase Protein 
Array (RPPA) of SKCM cohorts, the protein levels of LCK and CD20 were higher in low-risk group, suggesting 
a boost of the anti-tumor immune response (Fig. 5H, I).

Relationship between the methylation‑based signature and immunotherapy response
Next, in order to predict the response of immunotherapy, we introduced the TIDE analysis into our study17. As 
expected, patients in the high-risk group displayed a significantly lower TIDE score, as well as T cell dysfunc-
tion (Fig. 6A). However, the high-risk population is characterized by higher exclusion scores (Fig. 6A). It is also 
widely accepted that microsatellite instability could be a predictor for immunotherapy efficiency25. MSI signature, 
a prediction model based on ridge regression, was higher in the low-risk group as compared to the high-risk 
group (Fig. 6B). Merk18 expression is considered as a T-cell inflamed signature for pan-cancer predictors of 
clinical benefit from anti-programmed cell death Protein 1 (PD-1) treatment26. Whereas IFN-γ-related mRNA 
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Figure 5.   Analysis of composition of tumor infiltering leukocytes and immune response. (A) The comparison 
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profile predicts clinical response to PD-1 blockade27. Both Merk18 and IFN-γ-signature were elevated in the 
low-risk group (Fig. 6B). Finally, we investigated myeloid-derived suppressor cells (MDSC), cancer associated 
fibroblasts (CAF) and tumor-associated macrophages (TAM) in the tumor suppressive immune microenviron-
ment. All of these are well-known biomarkers to predict the response of immunotherapy. We found higher 
MDSC, CAF and TAM levels in high-risk patients (Fig. 6C). These results suggest that the CpG-based signature 
could highlight a population with low-risk patients who may be more responsive to immunotherapy, especially 
immune checkpoint blockage (ICB).

The underlying mediation of mRNA expression in the effect of methylation on overall survival
To illustrate the underlying mediation pathway between methylation, and overall survival, the VanderWeele’s 
mediation analysis was performed. In this overall mediation model, the mediator was risk score calculated 
by linear combination including three genes’ mRNA expression (Fig. 7A). There is a clear relation between 
the methylation status and the corresponding mRNA expression level for the three CpG sites (Supplemen-
tary Fig. 3). Furthermore, these 3 genes were also associated with patients’ outcomes (Supplementary Fig. 4). 
Subsequently, prognostic equation based on the mRNA expression was also performed as described above: 
scoreexpression = (0.10) * NINL + (− 0.05) * ARHGDIB + (− 0.14) * HLADPA1. Interestingly, this score was sig-
nificantly associated with the prognosis. In the well-constructed mediation model, HRindirect is 2.15 (95% CI: 
1.71–2.72; P < 0.0001). The methylation signature was highly mediated via affecting the respective mRNA expres-
sion to predict the survival outcomes of patients (proportion mediated, 49%; Fig. 7B). To avoid bias in the find-
ings, sensitivity analysis was performed by excluding each gene expression from scoreexpression. We were able to 
find that the consequence of the mediation role of mRNA expression remained statistically significant (Fig. 7B).

Construction of a predictive nomogram
To develop a clinically applicable method predicting an individual’s outcome probability, we used a nomogram 
to build a predictive model, taking into consideration clinicopathologic covariates. Considering the basis of the 
multivariate analysis of overall survival, we generated a nomogram to predict the 3-, 5-, and 10-year OS in the 
training cohort (Fig. 8A). The predictors included age, gender and TNM stage. The calibration plots for the 3-, 5-, 
and 10-year OS rate were successfully predicted (Fig. 8B–D). Combination of clinical information, methylation 
data (AUC = 0.773, 0.725, and 0.77 for 3-, 5- and 10-year) showed a superior prediction ability in comparison to 
the model using clinical data only (AUC = 0.691, 0.613, and 0.673 for 3-, 5- and 10-year; Fig. 8E–G).

Discussion
In recent years, the importance of DNA methylation in the biology of cutaneous melanoma has been increas-
ingly appreciated5. For instance, it is well described that tumor suppressor gene promoters display the focal DNA 
hypermethylation in many cancers, including melanoma5. Furthermore, methylation features could be used to 
classify distinct subgroups with differing survival outcomes and biologic behavior within melanoma patient 
cohorts28. Previous studies discovered that DNA methylation regulates the expression of key genes such as 
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tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-
associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothe-
lin-1 (ET-1) in melanogenesis, a very important process in both cutaneous and ocular melanoma biology29–32. 
Previous study have revealed that a "Yin and Yang" role for melanin and active melanogenesis in melanoma 
development, progression, and therapy33. However, these studies usually concentrated on single gene methyla-
tion, which were unable to achieve a good performance of prediction. Moreover, their application was limited 
to specific clinical characteristics due to small patient numbers. Consequently, compared with individual DNA 
methylation, a combination of DNA methylation as biomarkers could achieve a better sensitivity and specificity 
as predictive pattern34.

This signature is confirmed by its high reproducibility and utility in various clinical groups with potential 
clinical applicability. Cutaneous melanoma has a high heterogeneity in terms of genome, clinical features, and 
histopathological characteristics35. Several parameters, including age, gender, stage of disease, Breslow thickness, 
and ulceration status, have significant influence on melanoma patient prognosis, relapse, and therapy responses23. 
For instance, the methylation signature could present reliable independence of the clinical factors mentioned 
above in regard to utilization. BRAF and NRAS are mutant genes in skin cutaneous melanoma associated with 
different tumor immune microenvironments24. Thus, we analyzed the performance of the signature among 
patients with different BRAF and NRAS mutation status. We could demonstrate that our signature is independ-
ent of these mutations and could be applicable as a prognostic biomarker. Meanwhile, considering that an ideal 
prognostic marker could efficiently stratify in other independent cohorts, we employed two other GEO datasets 
(GSE14487 and GSE51547) to validate the practicality of our three-DNA methylation signature. The 3-DNA 
methylation signature performed well in distinguishing low-risk and high-risk groups in these two independ-
ent cohorts as well, suggesting that this signature may be of high clinical value with wide-ranging applications.

In the process of anti-tumor response, immune cells infiltrate into tumor tissue. The tumor cells work as 
antigens and activate the host immunity system36. The grade of tumor-infiltrating lymphocytes is an independent 
protective factor, which displays an excellent prognostic marker in melanoma37. Meanwhile, immune checkpoints 
targeted therapy has facilitated great progress in treating multiple cancers. It is well known that immune inhibi-
tors including PD-1, programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated Protein 4 
(CTLA-4) enable patients to produce an effective antitumor response, especially in melanoma38. However, there 
is a limitation that only one-third of patients show clinical benefit from immunotherapy39. Given the present 
situation, methylation status in DNA promoters play a critical role in cell lineage specification. Therefore, we 
hypothesize that DNA methylation signature may serve as a specific molecular predictor for the evaluation of 
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immune activity40. To preliminarily assess the predictive ability of the methylation-based signature, six differ-
ent well-validated immunotherapy biomarkers were used. The TIDE score was created to serve as an accurate 
biomarker for the immune checkpoint blockade response17. Microsatellite instability has been reported as a 
predictive factor for immunotherapy in malignant melanoma25. Merk18 expression represents a T cell inflamed 
signature that predicts therapeutic efficacy in patients treated with pembrolizumab across 20 cancers26. IFN-γ 
signature predicts clinical response to PD-1 blockade27. MDSCs, CAFs and TAMs are well known classic bio-
markers of the response to anti-PD-1/PD-L1 therapies41–43. We found that high-risk patients had significantly 
lower levels of TIDE score, MSI, Merk18, IFNγ-signature, MDSCs, CAFs and TAMs. In the current study, these 
novel findings represent that our methylation-based signature, although developed for accurate prognosis, also 
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significantly correlates with immune cell infiltration and anti-tumor immune response. However, further studies 
are needed to verify the ability of this signature to predict immunotherapy response.

In addition to DNA methylation, mRNA expression levels of three genes also affected prognosis significantly. 
NINL is identified as an oncogenic protein which causes spontaneous tumorigenesis in transgenic mice44. ARH-
GDIB is a metastasis suppressor gene affecting the migration of T cells in varieties of cancers45,46. HLA-DPA1 
is mostly expressed in antigen presenting cells and plays a central role in the immune system by presenting 
peptides derived from extracellular proteins47. Mediation analysis showed that around 49% of the methylation 
prognostic effect is mediated through affecting corresponding gene expression. Meanwhile, the mediational role 
of transcriptional regulation is confirmed by sensitivity analysis.

At last, we built a nomogram including methylation score and clinical pathology to predict individual prog-
nosis. Prognostic signature integrating DNA methylation and clinical information provides a better prognostic 
prediction value for melanoma patients than clinical information only. Our nomogram provides a simple and 
accurate prognostic tool for OS indication for patients with melanoma.

The study’s limitations should be noted. Firstly, the biologic mechanisms of the candidate markers NINL, 
ARHGDIB, and HLADPA1 are still unknown. Secondly, although this study was validated using two independ-
ent cohorts, clinical investigations in different populations are needed to validate the prognostic value of this 
signature. Last but not least, wet-lab experiments are required to further prove the correlation with the immune 
cells and the anti-tumor immune response.

Conclusion
In this study, we constructed a powerful DNA methylation signature with a high predictive efficiency for prog-
nosis in melanoma. The identified signature is independent from clinical and pathological characteristics and 
had a good performance in multiple cohorts. In the future, we hope that this signature could be used to refine 
the current prognostic model and to optimize the treatment strategy for patients with melanoma.

Data availability
Clinical information, high-throughput sequencing-counts, and DNA methylation data were retrieved from the 
UCSC xena (https://​xenab​rowser.​net/​datap​ages/?​cohort=​GDC%​20TCGA%​20Mel​anoma%​20(SKCM)​&​remov​
eHub=​https%​3A%​2F%​2Fxena.​treeh​ouse.​gi.​ucsc.​edu%​3A443), which is a publicly available database.
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