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A robust microbiome signature 
for autism spectrum disorder 
across different studies using 
machine learning
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Johan Garssen 1,3, Aletta D. Kraneveld 1,4, Paula Perez‑Pardo 1* & Alejandro Lopez‑Rincon 1,2

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized 
by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within 
other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a 
plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer 
from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, 
gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. 
Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate 
whether there is a set of bacterial taxa relevant for ASD classification by using a sibling‑controlled 
dataset. Additionally, we aim to validate these results across two independent cohorts as several 
confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine 
learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene 
sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that 
discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of 
bacteria in the sibling‑controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa 
in a tenfold cross‑validation scheme using two independent cohorts (a total of 223 samples—125 ASD 
cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut 
microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of 
children in three distinct cohorts with AUC over 80% for the best‑performing classifiers. Our results 
indicate that the gut microbiome has a strong association with ASD and should not be disregarded 
as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the 
proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing 
datasets.

Abbreviations
ABC-I  Aberrant behavior checklist irritability
ADI-R  Autism diagnostic interview-revised
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M:F  Male to female ratio
MLP  Multi-layer perceptron
NT  Neurotypical
nt  Nucleotide
OTUs  Operational taxonomic units
REFS  Recursive ensemble feature selection
ROC  Receiver operating characteristic
SD  Standard deviation
SGD  Stochastic gradient descent
SVC  Support vector classifiers

Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders which are diagnosed based on behav-
ioural abnormalities, such as deficiencies in social interaction and communication, and repetitive  behaviour1. 
Although there is a great variability regarding the prevalence of ASD, it is evident that the number of individu-
als diagnosed with ASD has been considerably increasing in the last decades specially in countries with high 
socio-demographic indexes. These growing numbers are not explained solely by the use of newer advanced 
diagnostic methods, but also by the increase of risk factors for  ASD2,3. To this date, there are no epidemiological 
studies investigating ASD prevalence in the Netherlands, however, the number of children with ASD in primary 
schools in 2018 was 14/1000, similar to prevalence data found in other European  countries4,5. While worldwide 
prevalence largely varies, a 4:1 ratio male to female remains consistent across the  globe6. Both genetic and 
environmental factors contribute to ASD  development7, nonetheless, the exact underlying mechanisms that 
accompany this disorder are yet to be elucidated. Gastrointestinal disturbances such as diarrhea, constipation and 
abdominal pain are often present in individuals with  ASD8. In addition, gastrointestinal problems are correlated 
to a higher degree of ASD  severity9. Moreover, there are differences in the microbial communities colonizing the 
gut of ASD individuals when compared to control  populations10, and some of these changes can alter multiple 
host’s functions hinting for plausible molecular pathways relevant in  ASD11. Although abnormal gut microbiota 
composition has been repeatedly described in ASD, there is no consensus amongst the observed differences in 
bacterial  abundances12. In spite of that, multiple lines of associative evidence indicate the importance of these, 
bidirectional, interactions between microbiota, gut and brain (also referred to as microbiota-gut-brain axis) in 
ASD and other neurodevelopmental  disorders13.

Lifestyle, specifically diet, is a major contributing factor when studying human gut  microbiome14,15. Indi-
viduals with ASD commonly lack a diverse diet compared to neurotypical  individuals16. Siblings are frequently 
included as control subjects to better control for inter-individual variables like genetic background, household 
environment and dietary  habits17. Several studies emphasize the importance and possible role of abnormal gut 
microbiota in ASD  development18–20, and how the correction of the bacterial communities living in the gut may 
be an effective approach for ameliorating intestine- and brain-related problems in  ASD21. For example, faecal 
transplantation in Phase-I clinical trial has shown to significantly improve ASD behavioural scores and ASD-
associated gastrointestinal symptoms over a time frame of 2  years22.

Given the complexity of ASD pathophysiology and the lack of agreement on which gut microbes play an 
important role in the disorder, this study aims to identify a specific subset of bacteria that is (i) a signature 
for ASD classification, and (ii) reproducible among other populations. To these aims, we applied a machine 
learning-based algorithm, named recursive ensemble feature selection (REFS)23–25, in three available datasets 
from the analysis of gut microbiota composition in both ASD and control populations. One dataset including 
neurotypical siblings as controls was used for feature selection, while the other two datasets, which included 
unrelated age-matched children as controls, were used for  validation26–28. Feature selection methods allow us 
to identify specific traits to predict certain  conditions29. Thus, this study highlights the advantages of using a 
machine learning-based method to successfully predict ASD with the minimal number of features, in this case 
gut bacterial taxa. By analyzing data obtained from distinct cohorts, we suggest that our results are not dependent 
on other confounding factors such as lifestyle, dietary habits, and geographical region.

Methods
Data
Datasets were selected based on (i) availability of raw 16S rRNA gene sequencing data using Illumina, (ii) detailed 
information regarding the subjects recruited in the study including age, sex, and diagnosis of ASD, among others, 
(iii) neurotypical siblings for feature selection, and age-matched neurotypical subjects for feature validation as 
controls, and (iv) subjects between 2 and 7 years old. Raw 16S rRNA gene amplicon sequencing data from the 
study David et al. was used for feature  selection26. Paired-end reads 150 bp long from the V4 region of the 16S 
rRNA gene were sequenced in 60 subjects with autism spectrum disorder (ASD cases), and 57 siblings (controls). 
Two separate 16S rRNA gene sequencing datasets were used for validation, PRJNA589343 (single reads 250 bp 
long from V4 region in 77 ASD cases and 50 age-matched controls)27 and PRJNA578223 (paired-end reads 300 
bp V3–V4 regions in 48 ASD cases and 48 age-matched controls)28. See Table 1 for the characteristics of the 
individuals included in the studies.

Sequence filtering, chimera removal, and taxonomic assignment
Raw sequence reads from David et al.26 were processed using the software package DADA2 (version 1.8) under 
R 4.1.2  environment30. The first 10 nucleotides (nt) were trimmed from the forward and reverse reads following 
DADA2’s recommendation. In addition, reads with more than two expected errors were excluded from the analy-
sis. Consecutively, the reads were independently dereplicated and denoised using DADA2’s default parameters. 
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The resulting forward and reverse reads were merged with a minimum overlap of 20 bases. This resulted in 7160 
amplicon sequence variants (ASVs) prior to the removal of chimera sequences. The removal of the chimera 
sequences resulted in 2040 ASVs, with only 5% of the total reads removed. Taxonomies were assigned to all 
ASVs using the IDTAXA method from the DECIPHER  package31. A pretrained classifier based on the SILVA 
SSU rRNA database (version r138)31,32 was used with the IDTAXA method. See Table 2.

Table 1.  Characteristics of the subjects included in this study. ASD autism spectrum disorder, NT 
neurotypical, M:F male to female ratio, SD standard deviation, ADOS autism diagnostic observation schedule, 
CARS childhood autism rating scale, ADI-R autism diagnostic interview-revised, CGI-S clinical global 
impression severity of illness scale, ABC-I aberrant behavior checklist irritability. a 8 missing responses from 
NT subjects. b Not siblings. c SD not specified.

ASD NT

Subjects M:F Mean age ± SD ASD diagnosis Subjects M:F Mean age ± SD Country Refs.

60 43:17 5.02 ± 1.59 ADOS 57 27:22a 4.56 ± 1.88 USA 26

77 59:18 3.21 ± 0.98 CARS 50b 39:11 3.58±1.21 China 27

48 38:10 5c ADI-R, CGI-S, ABC-I 48b 24:24 4c China 28

Table 2.  Taxonomy annotation of the 26 selected ASVs using SILVA. Information includes index for feature 
importance based on REFS, whether the differential abundance of the selected ASVs was increased or decrease 
in ASD cases compared to controls of the discovery dataset (David et al.26), and whether each ASV was found 
in the validation datasets Zou et al.28 and Ding et al.27—PRJNA578223 and PRJNA589343, respectively.

Index Domain Phylum Class Order Family Genus Species
David et al 
(2021) PRJNA578223 PRJNA589343

1 Bacteria Proteobacteria Gammaproteo-
bacteria Enterobacterales Enterobacte-

riaceae NA NA ASD increased Yes Yes

2 Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacte-
riaceae Bifidobacterium NA ASD decreased Yes Yes

3 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospira NA ASD increased Yes Yes

4 Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Parabacteroides NA ASD increased Yes No

5 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae NA NA ASD increased No Yes

6 Bacteria Firmicutes Clostridia Eubacteriales Oscillospiraceae Oscillospira NA ASD increased No Yes

7 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae Sarcina NA ASD increased Yes Yes

8 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae NA NA ASD increased Yes Yes

9 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae NA NA ASD increased Yes Yes

10 Bacteria Firmicutes Erysipelotrichia Erysipel-
otrichales

Erysipelato-
clostridiaceae NA NA ASD decreased Yes Yes

11 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium NA ASD increased Yes Yes

12 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae Anaerosporo-
bacter NA ASD increased Yes Yes

13 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacte-
riaceae Collinsella NA ASD decreased Yes Yes

14 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae Butyricicoccus NA ASD decreased Yes Yes

15 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospira Eubacterium
eligens ASD decreased Yes Yes

16 Bacteria Firmicutes Erysipelotrichia Erysipel-
otrichales

Erysipelato-
clostridiaceae

Erysipelato-
clostridium NA ASD decreased Yes Yes

17 Bacteria Proteobacteria Gammaproteo-
bacteria Enterobacterales Enterobacte-

riaceae NA NA ASD increased Yes Yes

18 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae NA NA ASD increased No No

19 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospiraceae
UCG-004 NA ASD decreased Yes Yes

20 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium NA ASD increased Yes Yes

21 NA NA NA NA NA NA NA ASD increased Yes Yes

22 Bacteria Firmicutes Tissierellia Tissierellales Peptoniphilaceae Murdochiella NA ASD decreased No Yes

23 Bacteria Firmicutes Clostridia Eubacteriales Lachnospiraceae NA NA ASD increased No No

24 Bacteria Proteobacteria Gammaproteo-
bacteria Enterobacterales Enterobacte-

riaceae NA NA ASD decreased Yes Yes

25 Bacteria NA NA NA NA NA NA ASD increased No No

26 Bacteria Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium NA ASD decreased Yes Yes
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Raw sequence reads from  PRJNA58934327 were processed following the aforementioned procedure. The set 
filtering parameters included no truncation and a maximum of two expected errors per read, and the lack of 
a merging step as this dataset consists of single-ended reads (only forward reads). This resulted in 2030 ASVs 
after removal of the chimera sequences. Raw sequence reads from  PRJNA57822328 were processed in a similar 
manner with the following filtering parameters: truncate forward and reverse reads to 290 and 220 nt, respec-
tively; and remove all reads with more than two expected errors. This resulted in 18,758 ASVs after removal of 
chimera sequences.

Feature selection and validation
We used  REFS23–25, a method applied for discovering biomarkers, to determine which ASVs are appropriate 
for differentiating ASD cases from controls. The ensemble is composed by 8 classifiers from the sci-kit learn 
 toolbox33: Stochastic Gradient Descent (SGD), Support Vector Machine classifier (SVC), gradient boosting, ran-
dom forest, logistic regression, passive aggressive classifier, ridge classifier and bagging. It is known that working 
with a small number of samples can cause overfitting, to avoid this problem, REFS uses nested-cross validation 
in a tenfold cross-validation scheme, a proven solution to produce more accurate and unbiased results regarding 
the number of  samples34. Prior to feature selection, the data (matrix containing ASVs’ counts) was normalized 
using scikit-learn’s Z-score  algorithm33. Each cycle of REFS removed the 20% least important ASVs, until only 
one feature was left. To prevent method’s randomization from negatively affecting results, this process was con-
currently run 30 times. For each run, performance metrics including averages and variances were calculated. The 
reduced features were selected based on the best performing cycle of the best run. To avoid bias selection of the 
ASVs, we performed a validation process similarly as it has been previously described in previous  studies23–25. 
This process applies 5 different classifiers that do not belong to the ensemble from the sci-kit learn  toolbox33: 
AdaBoost, Extra Trees, KNeighbors, Multi-Layer Perceptron (MLP), and Least Absolute Shrinkage and Selection 
Operator plus iterative process using Cross-Validation (LassoCV). The accuracy given by the average of the five 
classifiers in a nested tenfold cross-validation gives us an area under the curve (AUC) that estimates the power 
of a discriminant test, being more successful with values close to 1.0 which reflects an excellent  accuracy35.

The selected top scoring ASVs, were then validated in PRJNA589343 and PRJNA578223  datasets27,28. After 
processing the 16s rRNA raw sequences using DADA2, top scoring ASVs were extracted from the resulting ASVs 
of the validation datasets. The reads’ length in both validation datasets were 250 bp and 300 bp, respectively. As 
the selected ASVs of the discovery dataset were shorter (150 bp), ASVs were counted in the validation datasets 
when an exact match was found. Abundance data of all matching ASVs was added together and treated as one 
during validation. The resulting filtered datasets were tested using a tenfold cross-validation with the 5 classi-
fiers different from the classifiers used for the ensemble, and AUC of the receiver operating characteristic (ROC) 
curves were calculated. Whether the selected 26 ASVs were present or not in the validation datasets can be found 
in Table 2. For an overview of the methodology, see Fig. 1.

Figure 1.  Bioinformatic pipeline to select the optimal number of ASVs associated to ASD phenotype by 
applying REFS to a 16S rRNA gene sequencing dataset (discovery phase), and validation of the selected set of 
ASVs across different cohorts (valiation phase)26–28.
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Differential abundance
To determine differential abundance, the reduced discovery dataset was normalized using scikit-learn’s Standard-
Scaler scaling  algorithm33. Then, differential abundances for the discovery dataset for each selected ASVs were 
plotted as a heat-map comparing ASD cases and controls. See Supplementary Figure 1. Likewise, normalized 
differential abundances were plotted for the identified ASVs found on each validation dataset. See Supplementary 
Figs. 2 and 3. Heat-maps were created using the python script heatmap.py.

Results
Feature selection and validation of case‑control cohorts for ASD
For feature selection, we used a dataset of 16S rRNA gene sequences from 117 subjects (60 ASD cases and 57 
siblings)26. After applying REFS, features were reduced from 2040 ASVs (processed 16rRNA raw sequences 
obtained with DADA2) to 26 ASVs as the optimal number of features to distinguish between ASD cases and 
controls (see Fig. 2A). AUC of ROC curves was used for evaluating the diagnostic accuracy of each classifier. 
Mean classification accuracy in a tenfold cross-validation method increases when using the set of 26 reduced 
features compared to the 2040 processed features (average AUC = 0.816 and average AUC = 0.41, respectively). 
See results in Table 3.

For feature validation, we used 16S rRNA gene sequencing data from two age-matched cohorts with a total 
of 223 samples (125 ASD cases and 98 controls)27,28. We evaluated the mean AUC of the ROC curve of the previ-
ously identified 26 features employing the validation datasets in a tenfold cross-validation testing five classifiers 
using REFS. Although not all 26 sequences were found in both validation datasets, 22 and 20 ASVs were found, 
 respectively27,28 (see Table 2). In comparison to the classification accuracy mean of the discovery set (average AUC 
= 0.816), the scores of the validation sets resulted in good diagnostic accuracy (average AUC=0.748 and aver-
age AUC=0.74, respectively; see results in Table 4). Specifically looking at the classifier with the best diagnostic 
accuracy, MLP for the discovery dataset and Extra Trees for both validation datasets, we reported an AUC=0.90 
for the discovery cohort, see Fig. 2B, and an AUC=0.84 for both validation datasets, see Fig. 3.

Figure 2.  (A) Optimal number of features, ASVs, for ASD classification applying REFS to the discovery 
 dataset26. (B) ROC curve of the 26 selected features, ASVs, in the best performing classifier, Multi-Layer 
Perceptron (MLP), in REFS for the discovery  dataset26.

Table 3.  Accuracy of nested cross-validation (tenfold cross-validation) classifiers used for REFS on the 
discovery  dataset26. REFS recursive ensemble feature selection, AUC  area under the curve, SD standard 
deviation, MLP multi-layer perceptron, LassoCV least absolute shrinkage and selection operator plus iterative 
process using cross-validation.

Classifier

26 Features 2040 Features

Average AUC SD Average AUC SD

AdaBoostClassifier 0.720 0.010 0.390 0.140

Extra trees 0.780 0.080 0.340 0.160

KNeighbors 0.790 0.100 0.420 0.070

MLP 0.900 0.080 0.410 0.100

LassoCV 0.890 0.090 0.500 0.000

Average 0.816 0.072 0.410 0.090
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Differential abundances of 26 specific bacterial taxa to distinguish between ASD cases and 
controls
To better understand the role of gut microbiota composition in ASD, we investigated the differential abundances 
and the taxonomy of the 26 identified features, the 26 ASVs, in the discovery  dataset26. See Table 2 for the assigned 
taxonomies to the selected ASVs, and Supplementary Fig. 1 for differential abundances.

At phylum level, we identified 17 ASVs belonging to the phylum Firmicutes, 3 ASVs to Proteobacteria, 2 
ASVs to Bacteroidota, 2 ASVs to Actinobacteria, and 2 ASVs were not assigned to any phyla. At a family level, 7 
ASVs belong to Lachnospiraceae, 6 ASVs to Clostridiaceae, 3 ASVs to Enterobacteriaceae, 2 ASVs to Erysipelato-
clostridiaceae, single ASVs were assigned to Bifidobacteriaceae, Prevotellaceae, Tannerellaceae, Oscillospiraceae, 
Coribacteriaceae and Peptoniphilaceae, and 2 ASVs were not assigned to any family group. At a genus level, 11 
ASVs were not assigned to any genera, 3 ASVs belong to Clostridium, 2 ASVs to Lachnospira, and single ASVs 
to Bifidobacterium, Parabacteroides, Oscillospira, Sarcina, Anaerosporobacter, Collinsella, Butyricicoccus, Lach-
nospiraceae UCG-004, Erysipelatoclostridium and Murdochiella. Only one ASVs was assigned to species level, 
Eubacterium eligens.

Both genera belonging to Actinobacteria phylum, Bifidobacterium and Collinsella, were decreased in ASD 
cases compared to controls. On the contrary, the two bacterial taxa belonging to Bacteroidota phylum, Prevotel-
laceae and Parabacteroides, were increased in ASD cases when compared to controls. Among the 3 different ASVs 
belonging to the Proteobacteria phylum, all of them assigned to the Enterobacteriaceae family, 2 of them were 
increased in ASD cases while the other one was increased in controls. The latter ASV-associated bacterium, was 
not found in any ASD subject. Within the ASVs from the phylum Firmicutes, we reported lower abundances of 
Erysipelatoclostridiaceae, Murdochiella, Butyricicoccus, Clostridium, Lachnospiraceae UCG-004, and Eubacterium 
eligens. Within the same phylum, increased differential abundances of bacterial taxa represented by the selected 
ASVs included Lachnospiraceae, Clostridium, Sarcina, Anaerosporobacter, and Oscillospira. In addition, 3 ASVs 
assigned to Lachnospiraceae and Oscillospira were not present in any control subject.

Table 4.  Accuracy of a set of 26 features selected from the discovery  dataset26 in nested cross-validation 
(tenfold cross-validation) classifiers in the validation  sets27,28. AUC  area under the curve; SD standard 
deviation; MLP multi-layer perceptron, LassoCV least absolute shrinkage and selection operator plus iterative 
process using cross-validation.

Classifier

Validation  set27 Validation  set28

Average AUC SD Average AUC SD

Adaboost 0.770 0.080 0.830 0.080

Extra Trees 0.840 0.080 0.840 0.110

KNeighbors 0.680 0.090 0.700 0.150

MLP 0.740 0.120 0.720 0.080

LassoCV 0.710 0.100 0.610 0.100

Average 0.748 0.094 0.740 0.104

Figure 3.  (A,B) ROC curves of the 26 selected features, ASVs, in the best performing classifier, Extra Trees, in 
REFS for both validation  datasets27,28, respectively.
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Discussion
Recently, the use of machine learning-based techniques is becoming more popular to study complex systems, 
and that has been the case for ASD. Artificial intelligence has been mostly applied to overcome limitations of 
traditional diagnostic  methods37,38. If we also consider its potential use for microbiome studies in human  health39, 
implementing machine learning to study the relationship between gut dysbiosis and ASD can give us valuable 
insights to understand the disorder, to better diagnoses, and to develop plausible therapies.

Microbiome analyses have multiple challenges that compromise the interpretation and reproducibility of the 
results across studies. Besides the importance of defining well-standardized methods to collect, store, process, 
and sequence the samples, it is important to agree on a consensual approach to analyze the data in order to draw 
correct  conclusions40. Several publications have investigated the effect of confounding effects in microbiome 
outcomes in ASD, as well as discrepancies based on the method to process the sequencing data like clustering 
the data in operational taxonomic units (OTUs) rather than  ASVs41–44. The present study, using the machine 
learning approach REFS, identified a specific set of bacterial taxa from ASV taxonomic annotation that is suf-
ficient to optimally differentiate between ASD cases and controls in a published sibling-controlled  dataset26. In 
addition, we demonstrated that this set of bacterial taxa can distinguish between ASD and control populations 
in two independent published  datasets27,28, indicating the robustness of the method.

We analyzed 16S rRNA gene sequencing data using the aforementioned machine-learning approach based 
on integrative analysis allowing to study the compositional nature of the gut microbiome. A proper statisti-
cal practice is essential for the correct interpretation of the analysis of microbiome data as using traditional 
statistical methods often present assumptions and  biases45,46. Looking into literature, approaches that integrate 
feature selection and cross-validation strategies provide a good predictive tool by discriminating between two 
phenotypes with the least number of relevant  features47,48. REFS has been successfully employed previously in 
other medical research studies using microRNA expression and messenger RNA expression  data49,50, indicating 
its large potential being applied to other kinds of biological data.

Besides reducing the relevant features for ASD classification from 2040 ASVs to 26 ASVs using one dataset, 
we also tested how important these ASVs are for ASD classification, thus their application as a predictive tool, 
by validating them in other two independent datasets. Overall, our results showed good prediction accuracy 
means. For the discovery dataset, the best-performing classifier reported an AUC value of 0.90 using the dataset 
from David et al.26. During the validation phase, the best-performing classifier showed an AUC value of 0.84 
for both datasets Ding et al.27 and Zou et al.28 when the 26 selected ASVs were used for ASD status classifica-
tion. According to Šimundić35, these results indicate a highly accurate predictive method for discriminating 
ASD phenotype using 16S rRNA gene sequenced data despite of the expected high variability of the included 
populations in the study as they have different geographical regions, and most likely different lifestyles. Using 
our proposed approach to further analyze existing microbiome data or new data from longitudinal-designed 
studies including ASD and control populations will be valuable to better understand, and corroborate, the role 
of these 26 selected bacterial taxa in ASD development and progression.

A recent study by Yap et al. did not find grounds for an associative link between the gut microbiota and ASD 
diagnosis, implying that differences in the gut microbiota composition of ASD subjects are solely a consequence 
of ASD-related feeding  behaviour51. However, some research has been done regarding the potential use of gut 
microbiome data for ASD diagnosis making use of machine learning approaches. In three compelling meta-
analyses, Wu et al., Chavira et al. and Pietrucci et al. processed gut microbiome data across different existing ASD 
studies concluding that gut dysbiosis is associated to ASD, nonetheless, other factors such as sex, age, geographi-
cal region and lifestyle cannot be ignored when studying the role of intestinal microbes in  ASD52–54. All meta-
analyses used a fivefold cross-validation approach for machine learning classification on taxonomic annotation 
data, but the number and type of classifiers differed between the studies. In Chavira et al.53, they examined how 
taxonomic resolution impact predictive accuracy concluding that the higher the taxonomic resolution is, the 
better the models’ performance is. Additionally, Pietrucci et al.54 looked at the importance of the control groups 
for ASD classification using three different classifiers. Their results reported better accuracy when unrelated 
control groups were used for ASD classification. It can be explained by the fact that siblings have more similar 
microbiomes than unrelated individuals as they share more alike environment, lifestyle and  genetics55. While in 
these three studies a collective analysis was performed to study differential abundances of the intestinal micro-
organisms and the most relevant features for ASD classification, we applied feature selection in a sibling-control 
cohort and tested the selected features in two independent cohorts showing that other confounding factors 
are not interfering the reliability of the results. Moreover, the input data in our approach are ASVs rather than 
OTUs or taxonomic annotation allowing us to identify specific bacterial taxa with one-nucleotide  difference56.

Many of the studies investigating the influence of the gut bacteria in ASD pathophysiology, targeted micro-
biota composition by analyzing 16S rRNA gene sequencing data, measuring relative abundances of the present 
bacteria, and then searching for correlations between each individual bacterial taxa with other ASD-related 
traits. A serious limitation of using conventional statistical strategies in this type of compositional and high-
dimensional data can lead to erroneous  outcomes57,58. A possible way to overcome this problem is the use of 
multivariate analysis rather than univariate analysis, thus our study uses a multivariate, multidataset approach. 
Here, we identified 26 ASVs that, as a community, can separate ASD phenotype from neurotypical controls.

Moreover, looking at the differential abundances between ASD cases and controls in the discovery dataset, 
we also observed noticeable changes between ASD and control cases. In line with several studies that reported 
lower faecal Bifidobacteria abundance in children with ASD compared to neurotypical  children59–63, we also 
identified an ASV annotated as Bifidobacterium that was decreased in ASD cases compared to controls. One of 
the plausible pathways explaining the involvement of gut bacterial imbalance in ASD is metabolism. In a study, 
germ-free mice received human faecal microbiota transplantation using samples from either children with ASD 
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or typically-developed children. The results showed alterations in tryptophan metabolism, and Bifidobacteria 
changes correlated with differently abundant metabolites from derivatives of tryptophan  metabolisms64. Fur-
thermore, dietary interventions either with Bifidobacterium strains or other bacterial strains and/or compounds 
that increase Bifidobacteria levels in the gut have shown to improve, not only intestinal outcomes, but also ASD 
 severity65,66.

On the other hand, we observed increased bacterial taxa in ASD phenotype including Clostridia, Sarcina 
and Parabacteroides, among others, that have been also found to be increased in children with  ASD10,59,62,67–69. 
Interestingly, one of the aforementioned meta-analysis of gut microbiome data in ASD, also discovered a relevant 
feature for ASD classification belonging to the Sarcina genus, being increased in ASD cases compared to control 
 cases53. Although commensal Clostridia in the gut help to develop and maintain an intestinal homeostatic state 
and accordingly a balanced functioning of host’s biological processes, abnormal levels of some members of 
this genus have been widely linked to health problems including neurodevelopmental disorder  susceptibility70. 
Molecular pathways by which Clostridia can influence ASD involve metabolic, immunological and physiological 
 processes71,72. Additionally, antibiotic usage against these bacteria has shown beneficial effects in behavioural 
parameters of ASD  studies73. However, there is no consensus among other studies indicating that the beneficial 
effects stopped once the antibiotic intervention was finalized, and furthermore pre- and post-natal antibiotic use 
has been linked to ASD development in several  studies11,74. In our study we also observed a reduction of ASVs 
associated to Butyricicoccus and Eubacterium eligens known to exert beneficial effects by modulating immune 
response and producing health-promoting compounds as short-chain fatty  acids75–77. Recently, in a propionic 
acid rat model for ASD it was shown that therapeutic interventions like Bifidobacterium longum or faecal trans-
plantation ameliorated gut dysbiosis restoring Butyricicoccus  levels78. Taking into account all these associative 
evidence, targeting the gut microbiome with dietary interventions might improve ASD-related complaints. 
However, we need to comprehend the biological meaning of bacterial changes in ASD to check the added value 
of specific bacterial taxa as new diagnostic tool, and the use of gut microbiome modulation for improving ASD-
related complaints.

A limitation of the current study is the different ASV length after processing the raw 16S rRNA gene sequenc-
ing data for each dataset. Because of the selected ASVs are shorter than the ASVs from both validation datasets, 
we cannot make a clear association between the specific bacterial taxa of the discovery dataset and the validation 
datasets. Most of the 26 selected ASV were taxonomically assigned to family or genus level, nevertheless, the 
amount of bacterial species and strains comprised in a single family or genus is remarkably  high79. When the 
26 ASVs were matched with the validation ASVs, there were multiple cases that more than one validation ASV 
contained a selected ASV indicating that different but closely related bacteria share that specific sequence. In 
addition, confounding factors that are known to influence the gut microbiota should be further explored in the 
context of ASD. For instance, evidence show that sex differences potentially have an important role in ASD pato-
physiology and support the observed male-sex  bias80,81, and specifically in analysis targeting the gut  microbiota82.

Conclusions
Overall our results demonstrate a strong microbiome signature for the classification of ASD in three independent 
cohorts. Our approach identified 26 features, bacterial taxa, that distinguish ASD cases from control cases with 
high accuracy. The method that we propose overcomes problems of bias and overfitting results by selecting the 
smallest number of relevant features identifying ASD status using several classification algorithms that rank the 
features differently. The discovery of a robust set of bacterial taxa associated to ASD phenotype can potentially 
be used for diagnostic purposes, and it might provide new insights into plausible molecular mechanisms of the 
gut-brain axis in ASD. However, further studies should aim to understand the biological significance of these 
specific bacteria in ASD pathophysiology, and additional data such as metabolic function of the gut microbiome 
may be of great importance to pursue this line of investigation.

Data availability
Data from David et al.26 was obtained from http:// files. cgrb. orego nstate. edu/ David_ Lab/ ASD_ study1/. Data from 
Ding et al.27 and Zou et al.28 was obtained from the GeneBank Sequence Read  Archive36 using sra-toolkit-2.11.3 
(accession numbers PRJNA589434 and PRJNA578223, respectively). Code used to run the analyses is available 
on Github https:// github. com/ stepp enwol f0/ Micro biome REFS. git.

Received: 4 July 2023; Accepted: 21 December 2023

References
 1. Happé, F. & Frith, U. Annual research review: Looking back to look forward-changes in the concept of autism and implications 

for future research. J. Child Psychol. Psychiatry 61, 218–232 (2020).
 2. Arango, C. et al. Risk and protective factors for mental disorders beyond genetics: An evidence-based atlas. World Psychiatry 20, 

417–436 (2021).
 3. Solmi, M. et al. Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. 

Mol. Psychiatry 27, 4172–4180 (2022).
 4. van der Gaag, R. J. The Netherlands and Autism 1–5 (Springer, 2018).
 5. Chiarotti, F. & Venerosi, A. Epidemiology of autism spectrum disorders: A review of worldwide prevalence estimates since 2014. 

Brain Sci. 10, 274 (2020).
 6. Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15, 778–790 (2022).
 7. Chaste, P. & Leboyer, M. Autism risk factors: Genes, environment, and gene–environment interactions. Dialog. Clin. Neurosci. 14, 

281 (2022).

http://files.cgrb.oregonstate.edu/David_Lab/ASD_study1/
https://github.com/steppenwolf0/MicrobiomeREFS.git


9

Vol.:(0123456789)

Scientific Reports |          (2024) 14:814  | https://doi.org/10.1038/s41598-023-50601-7

www.nature.com/scientificreports/

 8. Madra, M., Ringel, R. & Margolis, K. G. Gastrointestinal issues and autism spectrum disorder. Child Adolesc. Psychiatr. Clin. N. 
Am. 29, 501–513 (2020).

 9. Lefter, R., Ciobica, A., Timofte, D., Stanciu, C. & Trifan, A. A descriptive review on the prevalence of gastrointestinal disturbances 
and their multiple associations in autism spectrum disorder. Medicina 56, 11 (2019).

 10. Iglesias-Vázquez, L., Van Ginkel Riba, G., Arija, V. & Canals, J. Composition of gut microbiota in children with autism spectrum 
disorder: A systematic review and meta-analysis. Nutrients 12, 792 (2020).

 11. Fattorusso, A., Di Genova, L., Dell’Isola, G. B., Mencaroni, E. & Esposito, S. Autism spectrum disorders and the gut microbiota. 
Nutrients 11, 521 (2019).

 12. Peralta-Marzal, L. N. et al. The impact of gut microbiota-derived metabolites in autism spectrum disorders. Int. J. Mol. Sci. 22, 
10052 (2021).

 13. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877 (2019).
 14. Moschen, A. R., Wieser, V. & Tilg, H. Dietary factors: Major regulators of the gut’s microbiota. Gut Liver 6, 411 (2012).
 15. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
 16. Rashid, A., Iftikhar, N., Badar, S. A., Masood, F. & Rehman, I. Factors influencing food selectivity and food preferences of children 

with autism spectrum disorder. J. Pharm. Res. Int. 33, 152–159 (2021).
 17. Krajmalnik-Brown, R., Lozupone, C., Kang, D.-W. & Adams, J. B. Gut bacteria in children with autism spectrum disorders: Chal-

lenges and promise of studying how a complex community influences a complex disease. Microb. Ecol. Health Dis. 26, 26914 (2015).
 18. Vuong, H. E. & Hsiao, E. Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81, 411–423 

(2017).
 19. Hughes, H. K., Rose, D. & Ashwood, P. The gut microbiota and dysbiosis in autism spectrum disorders. Curr. Neurol. Neurosci. 

Rep. 18, 1–15 (2018).
 20. Tataru, C. et al. Longitudinal study of stool-associated microbial taxa in sibling pairs with and without autism spectrum disorder. 

ISME Commun. 1, 1–12 (2021).
 21. Yang, Y., Tian, J. & Yang, B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 194, 111–119 (2018).
 22. Kang, D.-W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 9, 1–9 

(2019).
 23. Lopez-Rincon, A., Martinez-Archundia, M., Martinez-Ruiz, G. U., Schoenhuth, A. & Tonda, A. Automatic discovery of 100-MiRNA 

signature for cancer classification using ensemble feature selection. BMC Bioinform. 20, 1–17 (2019).
 24. Kamphorst, K. et al. Predictive factors for allergy at 4–6 years of age based on machine learning: A pilot study. PharmaNutrition 

23, 100326 (2023).
 25. Blankestijn, J. M. et al. Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-

severe asthma. Pediatr. Allergy Immunol. 34, e13919 (2023).
 26. David, M. M. et al. Children with autism and their typically developing siblings differ in amplicon sequence variants and predicted 

functions of stool-associated microbes. Msystems 6, e00193 (2021).
 27. Ding, X. et al. Gut microbiota changes in patients with autism spectrum disorders. J. Psychiatr. Res. 129, 149–159 (2020).
 28. Zou, R. et al. Changes in the gut microbiota of children with autism spectrum disorder. Autism Res. 13, 1614–1625 (2020).
 29. Zhou, Y.-H. & Gallins, P. A review and tutorial of machine learning methods for microbiome host trait prediction. Front. Genet. 

10, 579 (2019).
 30. Callahan, B. J. et al. Dada2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).
 31. Murali, A., Bhargava, A. & Wright, E. S. Idtaxa: A novel approach for accurate taxonomic classification of microbiome sequences. 

Microbiome 6, 1–14 (2018).
 32. Quast, C. et al. The silva ribosomal rna gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 

41, D590–D596 (2012).
 33. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 34. Vabalas, A., Gowen, E., Poliakoff, E. & Casson, A. J. Machine learning algorithm validation with a limited sample size. PLoS ONE 

14, e0224365 (2019).
 35. Šimundić, A.-M. Measures of diagnostic accuracy: Basic definitions. EJIFCC 19, 203 (2009).
 36. Leinonen, R., Sugawara, H., Shumway, M. & Collaboration, I. N. S. D. The sequence read archive. Nucleic Acids Res. 39, D19–D21 

(2010).
 37. Raj, S. & Masood, S. Analysis and detection of autism spectrum disorder using machine learning techniques. Procedia Comput. 

Sci. 167, 994–1004 (2020).
 38. Hossain, M. D., Kabir, M. A., Anwar, A. & Islam, M. Z. Detecting autism spectrum disorder using machine learning techniques: 

An experimental analysis on toddler, child, adolescent and adult datasets. Health Inf. Sci. Syst. 9, 1–13 (2021).
 39. Marcos-Zambrano, L. J. et al. Applications of machine learning in human microbiome studies: A review on feature selection, 

biomarker identification, disease prediction and treatment. Front. Microbiol. 12, 313 (2021).
 40. Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome 

research. MBio 9, e00525 (2018).
 41. Shin, J. et al. Analysis of the mouse gut microbiome using full-length 16s rrna amplicon sequencing. Sci. Rep. 6, 1–10 (2016).
 42. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 

1–16 (2022).
 43. Chiarello, M., McCauley, M., Villéger, S. & Jackson, C. R. Ranking the biases: The choice of otus vs asvs in 16s rrna amplicon data 

analysis has stronger effects on diversity measures than rarefaction and otu identity threshold. PLoS ONE 17, e0264443 (2022).
 44. Jeske, J. T. & Gallert, C. Microbiome analysis via otu and asv-based pipelines—A comparative interpretation of ecological data in 

wwtp systems. Bioengineering 9, 146 (2022).
 45. Tsilimigras, M. C. & Fodor, A. A. Compositional data analysis of the microbiome: Fundamentals, tools, and challenges. Ann. 

Epidemiol. 26, 330–335 (2016).
 46. Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. 

Bioinformatics 34, 2870–2878 (2018).
 47. Ditzler, G., Morrison, J. C., Lan, Y. & Rosen, G. L. Fizzy: Feature subset selection for metagenomics. BMC Bioinform. 16, 1–8 (2015).
 48. Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: Tools 

and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).
 49. Lopez-Rincon, A. et al. Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor clas-

sification. Cancers 12, 1785 (2020).
 50. Lopez-Rincon, A. et al. Modelling asthma patients’ responsiveness to treatment using feature selection and evolutionary computa-

tion. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) 359–372 (Springer, 2021).
 51. Yap, C. X. et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 184, 5916–5931 (2021).
 52. Wu, T. et al. Potential of gut microbiome for detection of autism spectrum disorder. Microb. Pathog. 149, 104568 (2020).
 53. Chavira, A., Wang, E.H.-J. & Mills, R. H. Meta-analysis of the autism gut microbiome identifies factors influencing study discrep-

ancies and machine learning classification. BioRxiv.https:// doi. org/ 10. 1101/ 2022. 03. 18. 484910 (2022).
 54. Pietrucci, D. et al. Machine learning data analysis highlights the role of parasutterella and alloprevotella in autism spectrum 

disorders. Biomedicines 10, 2028 (2022).

https://doi.org/10.1101/2022.03.18.484910


10

Vol:.(1234567890)

Scientific Reports |          (2024) 14:814  | https://doi.org/10.1038/s41598-023-50601-7

www.nature.com/scientificreports/

 55. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a dutch population. Nature 604, 732–739 (2022).
 56. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene 

data analysis. ISME J. 11, 2639–2643 (2017).
 57. Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).
 58. Hernández Medina, R. et al. Machine learning and deep learning applications in microbiome research. ISME Commun. 2, 98 

(2022).
 59. Finegold, S. M. et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16, 444–453 (2010).
 60. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D. & Rubin, R. A. Gastrointestinal flora and gastrointestinal status in children 

with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 1–13 (2011).
 61. Wang, L. et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of 

children with autism. Appl. Environ. Microbiol. 77, 6718–6721 (2011).
 62. De Angelis, M. et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise 

specified. PLoS ONE 8, e76993 (2013).
 63. Coretti, L. et al. Gut microbiota features in young children with autism spectrum disorders. Front. Microbiol. 9, 3146 (2018).
 64. Xiao, L. et al. Fecal microbiome transplantation from children with autism spectrum disorder modulates tryptophan and sero-

tonergic synapse metabolism and induces altered behaviors in germ-free mice. Msystems 6, e01343-20 (2021).
 65. Grimaldi, R. et al. A prebiotic intervention study in children with autism spectrum disorders (ASDS). Microbiome 6, 1–13 (2018).
 66. Shaaban, S. Y. et al. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neu-

rosci. 21, 676–681 (2018).
 67. Wang, M. et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with 

autism spectrum disorder. Msystems 4, e00321 (2019).
 68. Parracho, H. M., Bingham, M. O., Gibson, G. R. & McCartney, A. L. Differences between the gut microflora of children with autistic 

spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005).
 69. Luna, R. A. et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism 

spectrum disorder. Cell. Mol. Gastroenterol. Hepatol. 3, 218–230 (2017).
 70. Ding, H. T., Taur, Y. & Walkup, J. T. Gut microbiota and autism: Key concepts and findings. J. Autism Dev. Disord. 47, 480–489 

(2017).
 71. Lopetuso, L. R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal clostridia: Leading players in the maintenance of gut 

homeostasis. Gut Pathog. 5, 1–8 (2013).
 72. Bezawada, N., Phang, T. H., Hold, G. L. & Hansen, R. Autism spectrum disorder and the gut microbiota in children: A systematic 

review. Ann. Nutr. Metab. 76, 16–29 (2020).
 73. Frye, R. E. et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb. Ecol. 

Health Dis. 26, 26878 (2015).
 74. Lukasik, J., Patro-Golab, B., Horvath, A., Baron, R. & Szajewska, H. Early life exposure to antibiotics and autism spectrum disorders: 

A systematic review. J. Autism Dev. Disord. 49, 3866–3876 (2019).
 75. Mirzaei, R. et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother. 139, 

111661 (2021).
 76. Chung, W. S. F. et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria 

in the human colon. FEMS Microbiol. Ecol. 93, 127 (2017).
 77. Mukherjee, A., Lordan, C., Ross, R. P. & Cotter, P. D. Gut microbes from the phylogenetically diverse genus Eubacterium and their 

various contributions to gut health. Gut Microbes 12, 1802866 (2020).
 78. Abujamel, T. S. et al. Different alterations in gut microbiota between Bifidobacterium longum and fecal microbiota transplantation 

treatments in propionic acid rat model of autism. Nutrients 14, 608 (2022).
 79. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut 

microbiota. Nature 489, 220–230 (2012).
 80. Kim, N. Sex difference of gut microbiota. Sex/Gender-Specific Medicine in the Gastrointestinal Diseases 363–377 (2022).
 81. Willsey, H. R., Willsey, A. J., Wang, B. & State, M. W. Genomics, convergent neuroscience and progress in understanding autism 

spectrum disorder. Nat. Rev. Neurosci. 23, 323–341 (2022).
 82. West, K. A. et al. Multi-angle meta-analysis of the gut microbiome in autism spectrum disorder: A step toward understanding 

patient subgroups. Sci. Rep. 12, 17034 (2022).

Author contributions
A.L.R. developed the methodology. A.L.R., D.R.V., D.R. acquired the data, performed the analyses and coded. 
P.P.P. contributed the biological interpretation. L.N.P.M. processed the results, wrote the manuscript and con-
tributed the biological interpretation. L.N.P.M., D.R.V., D.R., N.P., J.G., A.D.K., P.P.P. reviewed the manuscript. 
All authors approved the final manuscript.

Funding
The funding for the study was provided by the GEMMA project, funded by the European Commission by means 
of the Horizon 2020 program (call H2020-SC1-BHC-03-2018) with the project ID 825033.

 Competing interests 
J.G. is employed by the company Danone Nutricia Research. The remaining authors declare that the research 
was conducted in the absence of any commercial or financial relationships that could be construed as a potential 
conflict of interest.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 50601-7.

Correspondence and requests for materials should be addressed to P.P.-P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-023-50601-7
https://doi.org/10.1038/s41598-023-50601-7
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |          (2024) 14:814  | https://doi.org/10.1038/s41598-023-50601-7

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	A robust microbiome signature for autism spectrum disorder across different studies using machine learning
	Methods
	Data
	Sequence filtering, chimera removal, and taxonomic assignment
	Feature selection and validation
	Differential abundance

	Results
	Feature selection and validation of case-control cohorts for ASD
	Differential abundances of 26 specific bacterial taxa to distinguish between ASD cases and controls

	Discussion
	Conclusions
	References


