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Discovering biomarkers associated 
and predicting cardiovascular 
disease with high accuracy using 
a novel nexus of machine learning 
techniques for precision medicine
William DeGroat 1, Habiba Abdelhalim 1, Kush Patel 1, Dinesh Mendhe 1, Saman Zeeshan 2 & 
Zeeshan Ahmed 1,3*

Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent 
genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of 
artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of 
CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. 
In this study, we proposed and employed a novel approach combining traditional statistics and a 
nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine 
by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-
processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) 
to assess the differences in transcriptomic expression and clinical characteristics between healthy 
individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to 
transcriptomic features based on their relation to the case–control variable. The top ten percent of 
commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random 
Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). 
After optimizing hyperparameters, the ensembled models, which were implemented using a soft 
voting classifier, accurately differentiated between patients and healthy individuals. We have 
uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were 
used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with 
clinical records collected from patients in our cohort. The identified biomarkers served as potential 
indicators for early detection of CVDs. With its successful implementation, our newly developed 
predictive engine provides a valuable framework for identifying patients with CVDs based on their 
biomarker profiles.
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GWAS  Genome-wide association studies
HF  Heart failure
IRB  Institutional review board
K-NN  K-nearest neighbor
MI  Myocardial infarction
ML  Machine learning
NGS  Next-generation sequencing
RF  Random forest
RFE  Recursive feature elimination
ROC  Receiver operating characteristic
SVC  Soft voting classifier
SVM  Support vector machine
WES  Whole exome sequencing
WGS  Whole genome sequencing
XGBoost  Xtreme gradient boosting

Artificial intelligence (AI) and machine learning (ML) encompasses a plethora of supervised and unsuper-
vised methodologies for scrutinizing genomics data, culminating in the formation of multivariate statistical 
 instruments1. The proficient implementation of AI/ML techniques holds the promise of fostering an augmented 
comprehension of diseases at the systemic level, unveiling the intricacies of genomic regulatory networks. By 
leveraging AI/ML approaches, clinical and genomics data can undergo statistical analysis and classification, 
enabling the prediction of high-risk patients. AI/ML can be deployed to capture genetic sequences associated 
with chronic diseases, categorize phenotypes based on knowledge about human diseases and establish popula-
tion dimensions for rare  diseases1,2. Genetic studies have facilitated disease  prognosis3,4, the identification of 
genetic regions and variants that influence disorders, and the functional assessment of these  regions5–7. While 
holding great prospects, the formidable task at hand lies in analyzing the immense magnitude of recognized (and 
unrecognized) genetic variations and leveraging this knowledge to facilitate diagnosis, ascertain risk, and forecast 
treatment responses among heterogenous human  populations8. This challenge is being addressed through preci-
sion medicine which encompasses the integration of clinical and genomics data to enable predictive treatment 
within a diverse cardiovascular disease (CVD)  population5. The primary objective of personalized medicine is to 
analyze a patient’s genetic makeup to identify crucial biomarkers and enhance comprehension of the underlying 
pathophysiology of intricate disorders such as  CVD6.

The American Heart Association states that approximately 82.6 million individuals in the U.S. presently suffer 
from one or more types of CVDs, establishing it as a primary factor behind mortality in both males and  females9. 
Common types of CVDs include stroke, congestive heart failure, coronary heart disease, and  hypertension10,11. 
Considering the intricate nature, risk factors, inherent genetic composition, and trajectory of CVD, personalized 
treatment is considered  indispensable12. Moreover, progress in genomics has significantly contributed to com-
prehending the molecular pathways linked to the prevalence of  CVDs3. These advancements were propelled by 
next-generation sequencing (NGS), which enabled the discovery of novel genetic correlations and the capacity 
to assess genetic diversity among  patients13. Recent developments in the field of genomics and bioinformatics 
have greatly aided in better understanding the complex nature of CVD etiology. However, the development of an 
AI/ML predictive engine that utilizes genetic biomarkers to assess the risk of CVD in patients is still in its early 
 stages14–16. Recent studies have explored the potential of employing AI/ML algorithms on whole genome and 
whole exome sequencing (WES/WGS) data for statistical and prognostic analyses for a wide variety of diseases 
including but not limited to Crohn’s  disease17, inflammatory bowel  disease18, breast  cancer19, colon  cancer20 and 
Alzheimer’s  disease21.

Previously, we have created AI/ML models to investigate and identify genes associated with heart failure 
(HF), atrial fibrillation (AF), and other CVDs and successfully predict these diseases with high  accuracy22. 
However, one of the major limitations of our and most of the other published disease specific research using 
AI/ML and bioinformatics approaches is the focus on genes known to be associated with  disease2,22,23. In this 
study, we propose a new AI/ML model that adapts an innovative nexus of algorithms to predict CVDs using 
critical transcriptomic biomarkers determined using our comprehensive statistical analysis (Fig. 1). Our model is 
trained on an AI/ML ready dataset of whole transcriptome-based gene expression and clinical data of consented 
individuals. We observed novel as well as known biomarkers that were associated with CVDs, relative to our 
previous  model22. We demonstrate that our current model can produce accurate predictions regarding CVD 
diagnosis. By identifying specific biomarkers, we have unveiled a crucial set of potential indicators for the early 
detection of CVDs. These biomarkers provide essential clues in identifying at-risk patients before symptoms 
manifest, allowing for timely intervention and improved patient outcomes. With the successful implementation 
of our newly developed predictive engine, healthcare professionals now have access to a valuable framework that 
utilizes biomarker profiles to accurately identify patients at risk of CVDs.

Material and methods
Our study is divided into two major steps: (I) identification of significant biomarkers, and (II) implementation 
of nexus AI/ML models for predictive analysis (Fig. 1).

Identification of significant biomarkers
We utilized a convergence of statistical algorithms to evaluate the variations in expression levels and clinical 
characteristics between individuals with CVDs and those that are healthy. The proposed feature selection model 
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uses four distinct algorithms: (I) Recursive Feature Elimination (RFE)24, (II) Pearson  Correlation25, (III) Chi-
Square  Test26, and IV) Analysis of Variance (ANOVA)27. A combination of these tests allows the model to adapt 
to different matrix sizes, distributions, and attributes. All these algorithms used our CIGT dataset to compute 
the statistical significance of supported biomarkers by means of a p value significance test.

To eliminate biomarkers that do not have high significance to CVD and reduce the computational load for 
the analysis downstream, we applied the RFE  algorithm28. In our study, we chose the scoring metric to be based 
on decision trees with top 10% number of features to be from the original list of biomarkers. The correlation 
coefficient plays a crucial role in ranking: the higher the coefficient, the higher the rank assigned to the gene, 
implying a stronger association between the gene and CVD. It is important to note that a higher rank corre-
sponds to a lower integer value. To determine each biomarker’s linear relationship to disease, we applied the 
Pearson correlation test where each biomarker was assigned a correlation coefficient. Subsequently, to examine 
the dependence between the test variable and the significant biomarkers, we employed the chi-square test. The 
chi-squared test has been applied widely in genomics for feature selection due to its application in multi-disease 
classification for genome-wide association studies (GWAS)29. The SelectKBest function is used to select the 
top ‘k’ (k = 10) features on univariate statistical tests, in this case, the chi-squared test. Next, we implement the 
ANOVA procedure, which uses a five-step approach to compute a f-statistic that determines the significance 
of a biomarker. We chose selectors that could easily be merged into a single scoring metric to select supported 
biomarkers for downstream analysis. Statistical methods that produce p values and ML selectors which provide 
rankings were favored to methods like principal component analysis, uniform manifold approximation, and 
projection, and t-distributed stochastic neighbor embedding that do not offer feature importance.

There are documented limitations associated with each testing algorithm utilized in our study. To address 
these challenges, we have merged these algorithms to satisfy different requirements. RFE cannot quantify the 
correlation between biomarkers and lacks the ability to compute multivariate significance. Furthermore, due to 
its iterative nature, RFE has a high time  complexity25. One of the main limitations of the Pearson correlation test 
is the sensitivity to range differences between the biomarkers and their relation to disease. However, we have 
accounted for this by increasing the volume of data to reduce range differences between biomarkers. The main 
challenge associated with the chi-square test is the number of Type I and II errors in small sample sizes. However, 
the rationale for implementing this algorithm was to make our overall system predict better in larger matrix sizes. 
A challenge that arises with ANOVA testing is the fact that if two groups of samples are of different sizes, then 
there is a direct issue with the strength and validity of the test. Due to the inclusion of all the other algorithms 
that can handle imbalances in sample size, this limitation is not of concern to this study. In our merged function, 
we select the statistically significant biomarkers for the ANOVA, chi-square, and Pearson correlation test and 
show up in the top 10% of significant biomarkers in RFE.

Figure 1.  Methodology and study design, workflow, and bioinformatics. This figure presents implemented 
statistical tests (Recursive Feature Elimination, Pearson correlation, Chi-square test, and Analysis of Variance) 
for the exploratory data analysis to assess the differences in genomics and phenotypic features between healthy 
individuals and patients with CVD and observe significant biomarkers. Next, applied a nexus of Machine 
Learning (ML) algorithms (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision 
Trees, and k-Nearest Neighbors) to predict CVD. In addition, it includes Training Dataset, Test Dataset, Soft 
Voting Classifier, and Visualization of Type I and II errors.
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Implementation of a nexus AI/ML models for predictive analysis
The biomarkers selected were predictive for patient diagnosis and classification. We selected four algorithms for 
this task: Random Forest (RF)30, Support Vector Machine (SVM)31, K-nearest neighbors (k-NN)32, and Extreme 
Gradient Boosting Decision Trees (XGBoost)33. We applied hyperparameter tuning to all algorithms, which were 
then ensembled using a Soft Voting Classifier to curate a powerful predictive engine that can perform accurate 
classification specific to user-specified matrices.

We started with RF, which is a meta-classifier that combines the output of multiple decision trees to categorize 
individuals based on their disease state. The algorithm computes a decision tree to classify patients based on their 
biomarker profile. The best decision tree from the forest was considered which highlights the decision boundary 
(i.e., polynomial) that the algorithm uses to sort patients. To classify patients based on their biomarker profile, 
we implemented SVM that computes support vectors. The most important classification feature highlights the 
relative significance of each biomarker. To further classify patients based on their biomarker profile and address 
limitations associated with SVM, we used the XGBoost algorithm. This algorithm computes a decision tree to 
highlight biomarkers that were of significance in the classification process. Finally, we applied the k-NN algorithm 
to determine the classification of a datapoint by majority voting amongst its ‘k’ nearest neighbors. The k-value 
was chosen based on iterating through all possible values of k and selecting the model with the highest accuracy.

Employing this nexus of ML algorithms helped us in navigating shortcomings that might arise from individual 
algorithms. The main limitation of SVMs is their inability to perform well when the data set is  large31. However, 
through a combination of algorithms, SVMs can be an integral part of an ML system when the input set is small. 
Another limitation arises in the implementation of XGBoost where the performance is greatly diminished on 
sparse and unstructured  data33. However, due to our robust data pre-processing function, we have been able to 
address this issue. The main limitation of k-NN is the sensitivity to feature  scaling32. KNN calculates distances 
between instances to determine their similarity. If features have different scales, those with larger values can 
dominate the distance calculation, leading to biased results. It is essential to normalize or scale the features 
appropriately before applying KNN. However, KNN can adapt to changes in the training data without requiring 
complete retraining of the model, which is why it was selected for our analysis.

All four algorithms were ensembled using the Soft Voting Classifier, the class with the highest average prob-
ability of success was chosen as the final prediction. By combining each algorithm in this manner, the positives 
are accentuated while neutralizing the downsides for each algorithm.

Ethical approval and consent to participate
Informed consent was obtained from all subjects. All human samples were used in accordance with relevant 
guidelines and regulations, and all experimental protocols were approved by the Institutional Review Board.

Results
Building suitable cohorts
Substantiating our approach towards discovering disease-relevant biomarkers effectively to predict patients’ diag-
nostic status necessitated creating a comprehensive dataset to represent our patient cohort. The cohort consisted 
of 61 CVD patients, including 40 males and 21 females, aged 45–92. The participants self-identified their race 
as follows: 42 were white, 7 were black or African American, 1 was Asian, and 11 were of unknown race. These 
individuals were clinically diagnosed with CVDs, specifically Heart Failure (HF), and Atrial Fibrillation (AF). 
In addition, we constructed a control group comprising 10 healthy individuals, evenly split between males and 
females. Among them, 9 identified as white, and 1 did not disclose their race. The age range of this group was 
28–78 years. A persistent challenge in multi-genomic data analysis lies in the integration and standardization of 
large volumes of sequence  data2. Currently, processed gene expression and variant data available through genomic 
pipelines are not available in AI/ML ready  formats2. With its availability as AI/ML input, it can be used directly 
for predictive  analysis2,34,35. To address this challenge, we propose the Clinically Integrated Genomics and Tran-
scriptomics (CIGT) format, which integrates heterogeneous clinical, demographic, genomic and transcriptomic 
patient data. Due to the limited clinical history of our cohort, we focused on patient information such as age, 
gender, racial, and ethnic background, and gene expression data derived from RNA-seq. These attributes have 
shown their effectiveness in the development of genotype–phenotype  studies34. In the future, attributes in the 
CIGT dataset could be expanded to integrate variant data as well as include more clinical attributes including 
but not limited to medications and risk factors such as smoking and alcohol consumption.

All procedures involving human participants were in accordance with the ethical standards of the institution 
and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All human 
samples were used in accordance with relevant guidelines and regulations, and all experimental protocols were 
approved by the Institutional Review Board (IRB) of Rutgers. Utilizing our proposed CIGT format, we integrated 
transcriptomics, clinical, and demographics data of each patient (Supplementary Material 1). Data pre-processing 
increased our cohort’s strength through the elimination of non-ubiquitous patient attributes; features present in 
80% of the cohort were included and the less occurring were eliminated from the CIGT dataset to avoid extrapo-
lation from ML classifiers downstream. Resulting from this filtration, 751 transcriptomic and clinical biomarkers 
remained suitable. The CIGT dataset was subset into training and testing sets, with a testing size of 30%.

Discovering supported biomarkers
Statistical algorithms were applied on the training dataset to retrieve highly significant biomarkers. To assess 
the differences in expression levels and clinical characteristics across CVD patients and healthy individuals, 
we employed a convergence of four statistical algorithms: (I) Recursive Feature Elimination (RFE), (II) Pear-
son Correlation, (III) Chi-Square, and IV) Analysis of Variance (ANOVA) (Fig. 2). To ascertain the statistical 
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significance of each algorithm, we conducted a p value significance test and recorded the obtained p values in 
a list together with the raw scores generated by each algorithm (Supplementary Material 2). We exercised the 
scientific standard of 0.05 as a threshold for our statistical significance test and utilized the logarithmic function, 
with a base of 10, for easier interpretation.

RFE systematically eliminated the least informative features, which enabled the identification of the strongest 
correlations between biomarkers and CVD. The RFE algorithm assigned scores to each feature, reflecting their 
relative importance, with higher scores indicating lesser significance. These scores were then utilized to rank the 
features based on their relevance to CVD diagnosis (Fig. 2A). Next, the Pearson correlation test was applied to 
quantitively assess the magnitude of linear association between biomarkers and CVD. In our study, we observed 
the correlation coefficient, which ranges from − 1 to 1, with larger absolute values indicating a more pronounced 
association. However, to assess the statistical significance of the findings, we also examined the negative logarithm 
of the p value for both transcriptomic and clinical features (Fig. 2B). Notably, higher bars in the graph indicate 
greater significance to CVD diagnosis.

We applied the chi-square test to investigate the independence among categorical factors on CVD detection 
and discern any significant relationships that may exist (Fig. 2C). We calculated the chi-square statistic to quan-
tify this independence (Supplementary Material 2). We utilized the ANOVA test to discern the difference in the 
distribution of gene expression patterns between healthy individuals and those afflicted with CVD (Fig. 2D). We 
computed the F-statistic to measure this variability (Supplementary Material 2). We found 313 biomarkers to 
be supported across three of our algorithms (Pearson correlation, chi-square test, and ANOVA). The presence 
of high outliers, such as genes HBA1 and HBA2, which are beneficial in traditional selection methods but detri-
mental to predictive model training, diminishes importance within our RFE classifications. To counterbalance 
precursory approaches to subset our biomarkers, we implemented RFE. Biomarkers classified within the top 
10% were endorsed for further predictive analysis (Table 1).

Figure 2.  Feature selection of biomarkers. This figure presents the statistical significance test to determine the 
importance of each gene according to the algorithm used. The y-axis represents the p values as a logarithmic 
expression while the x-axis displays distinct biomarkers. Features are displayed from (A) Recursive Feature 
Elimination; (B) Pearson Correlation; (C) Chi-Squared test; and (D) Analysis of Variance.
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Predicting cardiovascular disease
Transcriptomic attributes serve as our predictive engine’s training dataset. This engine consists of five unique 
classifiers to forecast case/control predictions for our testing dataset: Random Forest (RF), Support Vector 
Machine (SVM), Xtreme Gradient Boost (XGBoost), k-Nearest Neighbor (k-NN), and Soft Voting Classifier 
(SVC). Metrics, including weighted-average F1 scores and receiver operating characteristic curves (ROC), were 
calculated for each classifier. Weighted-average F1 scores evaluate models in circumstances where categorical 
predictors are not balanced. ROC-AUC provides an additional approach to ML performance evaluation, showing 
a probability of a binary classifier to make true predictions rather than false positives. Values approaching 1.0 in 
each measure suggest high performance. Exact metrics such as accuracy, ROC-AUC and weighted average F1 
scores for each algorithm are provided in Supplementary Material 3.

RF has demonstrated practical usage within  transcriptomics23. Optimizing RF with GridSearchCV (Fig. 3A), 
using dataset-standard parameters, the decision tree classifier made the most accurate predictions. RF selected 
case/control correctly in 95% of testing patients. Important features involved in RF prediction include RN7SL593P, 
LILRA2, and HLA-B (Fig. 3A). ROC-AUC for our RF classifier was 0.95. The weighted-average F1 score was 
0.96. SVM, a classifier suited for single-diagnosis case/control predictions, performed satisfactorily. Optimized 
using GridSearchCV using dataset-standard parameters (Fig. 3B), the SVM classifier succeeded with 91% of 
predictions. MTRNR2L1, GPX1, and AP003419.11 are the SVM classifier’s most essential features. This model’s 
ROC-AUC was the highest, 0.99. The SVM classifier’s weighted-average F1 score was 0.91. XGBoost, another 
decision tree-based approach, provides an accessible approach to classification. The performance of XGBoost 
rivals our SVM classifier, scoring 91% on predictions. XGBoost was optimized with GridSearchCV using dataset-
standard parameters (Fig. 3C). XGBoost’s best tree functioned using MTRNR2L1 as its sole feature. XGBoost’s 
ROC-AUC was 0.94. The XGBoost classifier’s weighted-average F1 score is 0.91. k-NN’s performance was feeble 
compared to RF, SVM, and XGBoost. Tuned with GridSearchCV using dataset-standard parameters (Fig. 3D), 
the k-NN classifier hit 91% of predictions. This pairs with 0.85 ROC-AUC and 0.91 weighted-average F1 score. 
k-NN is a resource-intensive algorithm, producing worse performance at extended runtimes compared to our 
previous classifiers. k-NN used MTRNR2L1, BRK1, and ARPC4 most when forming predictions.

RF and XGBoost classifiers proved most applicable to transcriptomic datasets. SVM performance is suf-
ficient for case/control classifications, but diverse problems engaging multiple diseases and disorders will lead 
to substantial performance  declines5. k-NN is the least appropriate for such datasets. MTRNR2L1 was the best 
transcriptomic marker for CVD predictions, with top-three importance for our SVM, XGBoost, and k-NN 
classifiers. We employed hyperparameter tuning to each algorithm and combined them through a Soft Vot-
ing Classifier to create a robust predictive engine capable of accurately classifying data based on user-defined 
criteria. Our ensemble model was able to accurately classify seventeen individuals as CVD patients and three 
individuals as healthy. It also had two incorrect classifications where one was a false positive and the other a false 
negative (Fig. 3E). Identifying the intersectionality between the four classifiers’ (RF, SVM, XGBoost and k-NN) 
most important biomarkers, we generated a non-traditional Venn diagram (Fig. 3F). The five most significant 
biomarkers were extracted from each classifier. Methods that relied on less than five biomarkers (RF, 4; XGBoost, 

Table 1.  Statistical analysis of significant biomarkers. Table 1 includes rankings based on Recursive Feature 
Elimination scores, Pearson correlation, chi-square, and Analysis of Variance test. All raw scores for are 
included (correlation co-efficient, chi-square statistic, and f-statistic) as well as p values that were utilized in the 
visualization and artificial intelligence/machine learning (AI/ML) analysis of the data.

Ensembl ID
Recursive feature 
elimination score

Correlation 
coefficient

Pearson correlation 
(p value) Chi-square statistic

Chi-square test (p 
value) F-statistic

Analysis of variance 
(p value)

ENSG00000266422 8 0.573204861 1.42E−07 6099.039146 0 18.4616809 8.41E−05

ENSG00000242574 27 0.468662916 3.30E−05 1182.198479 4.51E−259 17.33140061 0.000129594

ENSG00000256618 1 − 0.498577843 8.30E−06 425.0570428 1.94E−94 15.44622846 0.000271697

ENSG00000265150 10 0.501748748 7.12E−06 5570.193207 0 14.6231818 0.000378483

ENSG00000234745 41 0.44430813 9.24E−05 21,800.54816 0 13.25033749 0.000665893

ENSG00000241553 29 0.437526155 0.000121446 967.241151 2.37E−212 12.82521109 0.000795751

ENSG00000256514 13 − 0.422350763 0.000219405 97.15855608 6.40E−23 12.5163011 0.000906631

ENSG00000231389 46 0.415749505 0.000281356 2762.649364 0 12.50820118 0.000909747

ENSG00000239998 35 0.437466127 0.000121737 467.7152611 1.01E−103 11.28761072 0.001536451

ENSG00000234741 42 0.38109307 0.000957704 250.754169 1.78E−56 10.14411903 0.002543671

ENSG00000247596 20 0.378112312 0.00105766 169.360342 1.02E−38 10.13146467 0.002558096

ENSG00000215845 66 0.318411748 0.006413323 324.0418477 1.91E−72 9.419225469 0.003526625

ENSG00000269858 5 0.393315171 0.000631198 199.9036854 2.19E−45 9.331682275 0.003670018

ENSG00000233276 43 − 0.38130551 0.000950918 286.051535 3.61E−64 6.823535203 0.011973983

ENSG00000245910 21 0.290124517 0.013431239 146.3023238 1.11E−33 6.440924863 0.01445292

ENSG00000227097 53 0.256310109 0.029761901 3696.999979 0 5.590552265 0.022150113

ENSG00000254999 14 0.271571684 0.021022304 105.5014956 9.48E−25 5.208092813 0.026955423

ENSG00000260592 11 0.314078232 0.007215015 45.01668698 1.95E−11 4.491244041 0.039268284
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1) had only those included. This visualization illustrates which classifiers relied on similar biomarkers to others 
to make their predictions.

Examining transcriptomic predictors
Validating the detected biomarkers’ relevance to our cohort’s diagnoses necessitated an in-depth inspection of 
their function in prediction and prominence in previous literature. Alongside a thorough review of previous 
scientific findings, biomarkers correlations are reported and tied to their roles in disease classification. The 
literature review revealed 14 transcriptomic biomarkers linked with CVDs and a variety of other diseases and 
disorders within our cohort. HLA-DMB and HLA-B are associated with cardiomyopathy. RN7SL2 and GPX1 
are associated with stroke. ARPC4 and LILRA2 are associated with atherosclerosis. Transcriptomic markers 

Figure 3.  Results of predictive analysis. This figure presents results of AI/ML based predictive analysis and 
that include, (A) Random Forest decision tree; (B) Support vector machine feature importance; (C) XGBoost 
decision tree; (D) k-Nearest neighbors; (E) soft voting classifier predictions confusing matrix; and (F) Venn 
diagram detailing the counts of overlapping between the top five biomarkers from each classifier.
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(Fig. 4A) found within the supported list are also associated with various types of chronic diseases) and disor-
ders (cancers, rheumatoid arthritis, and diabetes. Visualizations displaying clustered profiles of transcriptomic 
expression (Fig. 4B) and their associations with biomarker’s intercorrelation (Fig. 4C) indicate the mechanisms 
of disease classification. This correlation metric was supported using literature as well. Genes TWF2 and ARPC4 
scored perfect correlations.

Pseudogene MTRNR2L1 was the observed feature in all three classifiers: SVM, XGBoost, and k-NN. 
MTRNR2L1 presented fluctuating expression across patients and failed to surpass a correlation above 0.5 with 

Figure 4.  Significant biomarkers. This figure presents results of the statistical analysis and that include, (A) 
Biomarker expression; (B) Biomarker correlations; and (C) Biomarker pairwise relationships.
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other transcriptomic biomarkers. GPX1, AP003419.11, and CTA-363E6.6 were the three most important features 
of the SVM classifier beside the previously mentioned MTRNR2L1. MTRNR2L1 and GPX1 have been linked 
to CVDs, while AP003419.11 and CTA-363E6.6 have not been previously reported. These three transcriptomic 
markers are the least correlated with each other, the most independent function biomarkers within our list. The 
SVM classifier, more than others, is reliant upon independent-acting transcriptomic factors whose expression is 
not tied to that of another biomarker within the selected list. A cluster of highly correlated biomarkers identified, 
RPS28P7, SNHG6, and TSTD1, did not perform well with SVM classifier. The k-NN classifier did not display 
similar patterns regarding the correlation of transcriptomic biomarkers.

The XGboost classifier was reliant solely on MTRNR2L1, indicating the strongest association to CVDs of 
any transcriptomic biomarker. This algorithm ties the under expression of the lncRNA with CVD status. The 
RF classifier relied most prominently on the RN7SL593P biomarker, classifying patients below the threshold 
of 825.66 TPM as CVD cases. The overexpression of RN7SL593P has been linked to normal platelet function, 
a non-direct implication with CVDs. The RF classifier also placed heavy importance on LILRA2, HLA-B, and 
GPX1 with direct links to CVDs. The decision tree algorithms contained only elements previously associated 
with CVDs within their optimized tree using our hyperparameter tuning metrics.

MTRNR2L1, RN7SL593P, LILRA2, and HLA-B showed the most distinct variety in their importance through-
out the different classifiers. MTRNR2L1, scored the most important across three classifiers, but was not found 
in RF’s decision tree. LILRA2 and HLA-B scored a correlation of 0.9, near perfect. HLA-B ranked as the fifth 
most important feature in our k-NN classifier and the second least important in the SVM classifier. LILRA2 
placed as the sixth most important feature in our SVM classifier and last in our k-NN classifier. RN7SL593P, 
the workhorse of random forest, served average throughout the remaining classifiers. These incongruencies are 
algorithmically dependent but may offer some understanding of underlying biological interactions between 
these biomarkers and CVD.

Discussion
A persistent challenge in genomic data analysis lies in the handling and integration of large volumes of sequenc-
ing  data36. With the implementation of our novel CIGT AI/ML ready dataset, we have begun to make significant 
progress to standardize heterogenous data types (genomic and clinical) for more accurate and reliable data 
analysis and  interpretation37. Our novel AI/ML methodology uncovered eighteen transcriptomic biomarkers to 
be linked to CVDs, three of which were novel (RN7SL593P, AP003419.11, and CTA-363E6.6) and will require 
further analysis to understand the correlation between them and disease etiology. To further investigate gene-
disease relationships for these significant biomarkers, we performed a literature review correlating these genes 
to CVDs and developed a gene-disease network (created using the ‘igraph’ Python  package38) (Fig. 5). Genes 
such as HLA-DMB39, HLA-B40, and GPX141 were found to be profoundly expressed in cardiomyopathy. While 
other biomarkers such as RN7SL242, LILRA243, GAS544, TWF245, EGLN246, SNHG647–49, and BRK150 have all been 
previously associated with phenotypic variations linked to CVD, there is limited literature associating protein-
coding genes such as RPS28P7 and CTA-363E6.6 to other known CVDs. No direct links were recorded between 
RN7SL593P and AP003419.11 and known CVDs as well as other non-CVD-related diseases. Additional validation 
of these biomarkers was conducted utilizing the patients’ clinical records to elaborate on the associations between 
secondary diseases and their possible effect on CVD prognosis. Upregulation in RN7SL2 can lead to ischemic 
 stroke42 and an increase in LILRA2 expression can lead to coronary atherosclerosis heart disease (CAD) due to 
suppression of the immune response contributing to chronic inflammation, a hallmark sign of  CAD43. GAS5 
regulates the proliferation, cell cycle and proliferation of myocardial infarction (MI) cells and its overexpres-
sion can lead to increased susceptibility to  MI44. TWF2 is strongly expressed in cardiac muscles and binds actin 
which contributes to the morphology of  cardiomyocytes45. Additionally, the overexpression of EGLN2 can lead 
to erythrocytosis; however, the mechanism by which it impacts the pathways is still  unknown46. SNHG6 can 
aggravate hypoxia/reoxygenation induced  cardiomyocytes47–49, while another significant biomarker, BRK1, is 
associated with heart development and its under expression can lead to obstructive heart  defects50. A significant 
number of biomarkers were associated to other diseases diagnosed reported for CVD patients’ clinical records. 
We created a network of overlapping diseases linked to the eighteen biomarkers in the highly diagnosed condi-
tions from EHRs (Electronic Health Records) as well as those reported earlier in our comparative review (Fig. 5). 
We observed that most genes were interconnected through a CVD including but not limited to cardiomyopathy, 
stroke, and atherosclerosis. The most common non-CVD diagnosis within our patient cohort was breast cancer, 
and we found GAS551, TSTD152, EGLN253, SNHG654, BRK155, and MTRNR2L156 to be indicative biomarkers. 
As stated earlier, cardiomyopathy was the next prevalent disease in our network corroborating our claims that 
our innovative AI/ML model can accurately predict CVDs. Other diseases that were shared between the genes 
included coronary artery disease, myocardial infarctions, lung cancer, and type 1 diabetes among others (Fig. 5 
and supplementary material 4).

In this study, we analyzed the complete transcriptome of patients based on the RNA-seq drive gene expression 
values allowing for an unbiased exploration of gene expression patterns, uncovering unexpected gene associations 
and novel biomarkers that might have been missed with a more targeted approach. While small sample sizes 
can prevent generalizability, statistical significance (p value) should be considered when interpreting a study’s 
 results57. Recent AI/ML analyses have focused on utilizing high-quality datasets as input for their predictive 
 models58,59. A previous study comparing various ML algorithms for the identification of high-risk genes in colon 
cancer utilized transcriptomic, age and gender data from a cohort of 62 individuals (40 patients and 22 healthy 
controls)58. Similar to our analysis, this study followed a two-level investigation: feature selection for biomarker 
identification and choosing an optimum ML classifier to accurately stratify patients. Additionally, another novel 
framework identified gene markers for the precise and targeted treatment of acute myeloid leukemia (AML)59. 
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Gene expression data was collected from 30 AML patients for this analysis and the model was accurately able to 
organize genes based on their potential to drive  cancer59. Similarly, our study introduces a novel methodology 
that has the potential to be extrapolated to larger and more diverse datasets. Additionally, we performed a two-
tiered cross-validation on our findings through literature review as well as clinical records collected from patients 
in our cohort. Our small sample size does not limit the validity of our model as we have employed a nexus of 
statistical and ML algorithms that aided in managing the restrictions that could emerge from single algorithms. 
For instance, SVMs play a crucial role in ML systems when the dataset is constrained; however, k-NN provides 
more accurate predictions on larger cohort  sizes2. Utilizing these approaches, we have ensured that our model 
can handle complex and rare disease predictions by accounting for sample size disparities.

We believe that synergistic use of multiple AI algorithms provides more accurate results, draws insightful 
conclusions, and precise predictions about real-world problems compared to single AI algorithm on its own. 

Figure 5.  Gene-disease network. This figure presents a gene-disease network including linked ICD-9 and ICD-
10 codes.
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Recently, we published a study in the Briefing in Bioinformatics (Oxford)2, evaluating and comparing various 
ML approaches using the gene-variant and expression data for statistical and predictive analysis of a wide variety 
of disorders. Our study concluded that SVM and RF are the most applied and successful ML algorithms used to 
make high-accuracy predictions and solve regression and classification problems. The major differences between 
these two include adjusting hyperparameters (a parameter whose value is used to control the learning process) 
in SVM to prevent over and underfitting compared to no adjustment in  RF2. SVM has been implemented to 
distinguish genetic susceptibility factors and identify previously unknown features that corresponded to common 
 disease57,60 when RF has been applied to identify differentially expressed genes that played an important role in 
disease prognosis by acting as a potential  biomarker61–63. We also established that a multitude of other predic-
tive ML algorithms are employed but less utilized including but not limited to k-NN and  XGBoost2. Alternative 
AI/ML approaches exist, however, their adoption for the analysis of multi-genomic data remains  limited2. Our 
approach combines the best aspects of multiple machine learning algorithms into a single model. It does not only 
hold the potential for personalized early detection of common and rare diseases in individuals, but also opens 
avenues for broader research using novel ML methodologies, ultimately leading to personalized interventions 
and novel treatment targets. A limitation of our current study is that experimental validation is needed to support 
the outcomes of our AI/ML model. We addressed this constraint by utilizing clinical records and comparative 
literature to support our findings. Currently, our methodology only suits binary disease prediction. Prospective 
multiclass classification tasks require novel methodologies; integrating patient demographics, transcriptomics, 
variants, and epigenomics can facilitate an unsupervised clustering approach that will allow mapping diseases 
onto patients through the extraction of these clusters’ most important features.

We have proposed a unique combination of classical statistical methods and state-of-the-art ML algorithms 
to identify novel biomarkers and predict diseases. By integrating these approaches, we outperformed single 
algorithms, resulting in deeper insights and more precise predictions, essential for personalized early disease-risk 
detection in  individuals63. Our AI/ML model can be implemented in the clinical setting to aid in early disease 
diagnosis and improve prognosis. It has the potential to be generalized to investigate non-CVDs with intricate 
characteristics such as breast cancer, diabetes, and Alzheimer’s disease among many others. To foster these 
downstream applications, we have made source code openly available and freely accessible. This cutting-edge 
technology enhances the precision of diagnoses and empowers clinicians to tailor personalized treatment plans, 
ultimately leading to more effective and targeted healthcare interventions. Our findings validate the effective-
ness and reliability of the model in the medical domain, offering promising prospects for improved healthcare 
outcomes. In the future, we look forward to advancing our methodology by curating an unsupervised learning 
study that removes the labels to indicate status of health and allows the algorithm to cluster data points based on 
integrated gene expression and variant data along with clinical, demographics, and longitudinal data.

Data availability
We anticipate that this study will serve as a future resource for the genomics community. The dataset, list of 
biomarkers, classifier metrics, gene-disease-ICD codes, and exploratory analysis details are attached in the sup-
plementary material.

Code availability
All source code used to compute the results described in the study and generate the figures are available at: https:// 
github. com/ drzee shana hmed/ AI_ ML_ Analy sis_ Source_ Code.

Received: 13 October 2023; Accepted: 21 December 2023

References
 1. Ahmed, Z., Mohamed, K., Zeeshan, S. & Dong, X. Artificial intelligence with multi-functional machine learning platform develop-

ment for better healthcare and precision medicine. Database https:// doi. org/ 10. 1093/ datab ase/ baaa0 10 (2020).
 2. Vadapalli, S., Abdelhalim, H., Zeeshan, S. & Ahmed, Z. Artificial intelligence and machine learning approaches using gene expres-

sion and variant data for personalized medicine. Brief. Bioinform. 23(5), bbac191. https:// doi. org/ 10. 1093/ bib/ bbac1 91 (2022).
 3. O’Donnell, C. J. & Nabel, E. G. Genomics of cardiovascular disease. N. Engl. J. Med. 365(22), 2098–2109. https:// doi. org/ 10. 1056/ 

NEJMr a1105 239 (2011).
 4. Ganesh, S. K. et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: A scientific state-

ment from the American Heart Association. Circulation 128(25), 2813–2851. https:// doi. org/ 10. 1161/ 01. cir. 00004 37913. 98912. 
1d (2013).

 5. Seo, D., Ginsburg, G. S. & Goldschmidt-Clermont, P. J. Gene expression analysis of cardiovascular diseases: Novel insights into 
biology and clinical applications. J. Am. Coll. Cardiol. 48(2), 227–235. https:// doi. org/ 10. 1016/j. jacc. 2006. 02. 070 (2006).

 6. Lee, D. S. et al. Association of parental heart failure with risk of heart failure in offspring. N. Engl. J. Med. 355(2), 138–147. https:// 
doi. org/ 10. 1056/ NEJMo a0529 48 (2006).

 7. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6(2), 
95–108. https:// doi. org/ 10. 1038/ nrg15 21 (2005).

 8. Ahmed, Z., Renart, E. G. & Zeeshan, S. Genomics pipelines to investigate susceptibility in whole genome and exome sequenced 
data for variant discovery, annotation, prediction and genotyping. PeerJ 9, e11724. https:// doi. org/ 10. 7717/ peerj. 11724 (2021).

 9. Roger, V. L. et al. Heart disease and stroke statistics–2011 update: A report from the American Heart Association. Circulation 
123(4), e18–e209. https:// doi. org/ 10. 1161/ CIR. 0b013 e3182 009701 (2011).

 10. Ahmed, Z., Zeeshan, S. & Liang, B. T. RNA-seq driven expression and enrichment analysis to investigate CVD genes with associ-
ated phenotypes among high-risk heart failure patients. Hum. Genomics 15(1), 67. https:// doi. org/ 10. 1186/ s40246- 021- 00367-8 
(2021).

 11. Roth, G. A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 
70(1), 1–25. https:// doi. org/ 10. 1016/j. jacc. 2017. 04. 052 (2017).

https://github.com/drzeeshanahmed/AI_ML_Analysis_Source_Code
https://github.com/drzeeshanahmed/AI_ML_Analysis_Source_Code
https://doi.org/10.1093/database/baaa010
https://doi.org/10.1093/bib/bbac191
https://doi.org/10.1056/NEJMra1105239
https://doi.org/10.1056/NEJMra1105239
https://doi.org/10.1161/01.cir.0000437913.98912.1d
https://doi.org/10.1161/01.cir.0000437913.98912.1d
https://doi.org/10.1016/j.jacc.2006.02.070
https://doi.org/10.1056/NEJMoa052948
https://doi.org/10.1056/NEJMoa052948
https://doi.org/10.1038/nrg1521
https://doi.org/10.7717/peerj.11724
https://doi.org/10.1161/CIR.0b013e3182009701
https://doi.org/10.1186/s40246-021-00367-8
https://doi.org/10.1016/j.jacc.2017.04.052


12

Vol:.(1234567890)

Scientific Reports |            (2024) 14:1  | https://doi.org/10.1038/s41598-023-50600-8

www.nature.com/scientificreports/

 12. Doran, S. et al. Multi-omics approaches for revealing the complexity of cardiovascular disease. Brief. Bioinform. 22(5), bbab061. 
https:// doi. org/ 10. 1093/ bib/ bbab0 61 (2021).

 13. Krittanawong, C. et al. Artificial intelligence and cardiovascular genetics. Life 12(2), 279. https:// doi. org/ 10. 3390/ life1 20202 79 
(2022).

 14. Leopold, J. A. & Loscalzo, J. Emerging role of precision medicine in cardiovascular disease. Circ. Res. 122(9), 1302–1315. https:// 
doi. org/ 10. 1161/ CIRCR ESAHA. 117. 310782 (2018).

 15. Leopold, J. A., Maron, B. A. & Loscalzo, J. The application of big data to cardiovascular disease: Paths to precision medicine. J. 
Clin. Investig. 130(1), 29–38 (2020).

 16. Antman, E. M. & Loscalzo, J. Precision medicine in cardiology. Nat. Rev. Cardiol. 13(10), 591–602. https:// doi. org/ 10. 1038/ nrcar 
dio. 2016. 101 (2016).

 17. Baumgart, D. C. & Sandborn, W. J. Crohn’s disease. Lancet 380(9853), 1590–1605. https:// doi. org/ 10. 1016/ S0140- 6736(12) 60026-9 
(2012).

 18. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474(7351), 307–317. https:// 
doi. org/ 10. 1038/ natur e10209 (2011).

 19. Pearce, L. Breast cancer. Nurs. Stand. 30(51), 15. https:// doi. org/ 10. 7748/ ns. 30. 51. 15. s16 (2016).
 20. Cappell, M. S. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol. Clin. N. Am. 37(1), 1–v. 

https:// doi. org/ 10. 1016/j. gtc. 2007. 12. 002 (2008).
 21. Eratne, D. et al. Alzheimer’s disease: Clinical update on epidemiology, pathophysiology and diagnosis. Australas. Psychiatry 26(4), 

347–357. https:// doi. org/ 10. 1177/ 10398 56218 762308 (2018).
 22. Venkat, V., Abdelhalim, H., DeGroat, W., Zeeshan, S. & Ahmed, Z. Investigating genes associated with heart failure, atrial fibrilla-

tion, and other cardiovascular diseases, and predicting disease using machine learning techniques for translational research and 
precision medicine. Genomics 115(2), 110584. https:// doi. org/ 10. 1016/j. ygeno. 2023. 110584 (2023).

 23. Patel, K. K. et al. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure suscep-
tibility. Hum. Genomics 17(1), 47. https:// doi. org/ 10. 1186/ s40246- 023- 00498-0 (2023).

 24. Díaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinform. 
7, 3. https:// doi. org/ 10. 1186/ 1471- 2105-7-3 (2006).

 25. Benesty, J., Chen, J., Huang, Y. & Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing 37–40 (Springer, 
2009).

 26. McHugh, M. L. The chi-square test of independence. Biochem. Med. 23(2), 143–149. https:// doi. org/ 10. 11613/ bm. 2013. 018 (2013).
 27. Kaufmann, J. & Schering, A. G. Analysis of variance ANOVA. Wiley Encyclopedia of Clinical Trials. https:// doi. org/ 10. 1002/ 97811 

18445 112. stat0 6938 (2007).
 28. Kwak, S. K. & Kim, J. H. Statistical data preparation: Management of missing values and outliers. Korean J. Anesthesiol. 70(4), 

407–411. https:// doi. org/ 10. 4097/ kjae. 2017. 70.4. 407 (2017).
 29. Chen, Z., Huang, H. & Ng, H. K. Design and analysis of multiple diseases genome-wide association studies without controls. Gene 

510(1), 87–92. https:// doi. org/ 10. 1016/j. gene. 2012. 07. 089 (2012).
 30. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20(3), 273–297 (1995).
 31. Mucherino, A. et al. K-nearest neighbor classification. Data Min. Agric. https:// doi. org/ 10. 1007/ 978-0- 387- 88615-2_4 (2009).
 32. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 785–794. https:// doi. org/ 10. 1145/ 29396 72. 29397 85 (2016).
 33. Wilczewski, C. M. et al. Genotype first: Clinical genomics research through a reverse phenotyping approach. Am. J. Hum. Genet. 

110(1), 3–12 (2023).
 34. Mhatre, I. et al. Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure 

and other cardiovascular diseases. Sci. Rep. 13(1), 16769 (2023).
 35. Bacchetti, P. Small sample size is not the real problem. Nat. Rev. Neurosci. 14(8), 585 (2013).
 36. Tang, L. Informatics for genomics. Nat. Methods 17(1), 23. https:// doi. org/ 10. 1038/ s41592- 019- 0709-z (2020).
 37. Abdelhalim, H. et al. Artificial intelligence, healthcare, clinical genomics, and pharmacogenomics approaches in precision medicine. 

Front. Genet. 13, 929736. https:// doi. org/ 10. 3389/ fgene. 2022. 929736 (2022).
 38. Isakov, O., Dotan, I. & Ben-Shachar, S. Machine learning-based gene prioritization identifies novel candidate risk genes for inflam-

matory bowel disease. Inflamm. Bowel Dis. 23(9), 1516–1523 (2017).
 39. Ji, X. et al. Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and 

stress cardiomyopathy. Front. Immunol. 14, 1078731. https:// doi. org/ 10. 3389/ fimmu. 2023. 10787 31 (2023).
 40. Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious 

diseases. Genome Biol. 18(1), 76. https:// doi. org/ 10. 1186/ s13059- 017- 1207-1 (2017).
 41. Lei, C., Niu, X., Wei, J., Zhu, J. & Zhu, Y. Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. 

Clin. Chim. Acta 399(1–2), 102–108. https:// doi. org/ 10. 1016/j. cca. 2008. 09. 025 (2009).
 42. Iwasa, N. et al. Gene expression profiles of human cerebral organoids identify PPAR pathway and PKM2 as key markers for oxygen-

glucose deprivation and reoxygenation. Front. Cell. Neurosci. 15, 605030. https:// doi. org/ 10. 3389/ fncel. 2021. 605030 (2021).
 43. Peng, W., Sun, Y. & Zhang, L. Construction of genetic classification model for coronary atherosclerosis heart disease using three 

machine learning methods. BMC Cardiovasc. Disord. 22(1), 42. https:// doi. org/ 10. 1186/ s12872- 022- 02481-4 (2022).
 44. Zhang, Y. et al. lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. J. Cell. Biochem. 120(11), 

18678–18688. https:// doi. org/ 10. 1002/ jcb. 29156 (2019).
 45. Li, Q. et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. 

J Cell Sci. 123(Pt 14), 2444–2452. https:// doi. org/ 10. 1242/ jcs. 067165 (2010).
 46. Camps, C. et al. Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies 

new mutations. Haematologica 101(11), 1306–1318. https:// doi. org/ 10. 3324/ haema tol. 2016. 144063 (2016).
 47. Lang, Z. et al. Silencing of SNHG6 alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by modulating miR-135a-5p/

HIF1AN to activate Shh/Gli1 signalling pathway. J. Pharm. Pharmacol. 73(1), 22–31. https:// doi. org/ 10. 1093/ jpp/ rgaa0 64 (2021).
 48. Tørring, P. M. et al. Long non-coding RNA expression profiles in hereditary haemorrhagic telangiectasia. PloS One 9(3), e90272. 

https:// doi. org/ 10. 1371/ journ al. pone. 00902 72 (2014).
 49. Chu, P. M., Yu, C. C., Tsai, K. L. & Hsieh, P. L. Regulation of oxidative stress by long non-coding RNAs in vascular complications 

of diabetes. Life 12(2), 274. https:// doi. org/ 10. 3390/ life1 20202 74 (2022).
 50. Edwards, J. J. et al. Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart 

defects. Basic Transl. Sci. 5(4), 376–386. https:// doi. org/ 10. 1016/j. jacbts. 2020. 01. 012 (2020).
 51. Zhao, Z., Chen, C., Liu, Y. & Wu, C. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing 

MALAT-1 RNA level. Biochem. Biophys. Res. Commun. 445(2), 388–393. https:// doi. org/ 10. 1016/j. bbrc. 2014. 02. 006 (2014).
 52. Ansar, M. et al. Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer. Front. 

Oncol. 12, 1004261. https:// doi. org/ 10. 3389/ fonc. 2022. 10042 61 (2022).
 53. Zheng, X. et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. 

Genes Dev. 28(13), 1429–1444. https:// doi. org/ 10. 1101/ gad. 242131. 114 (2014).
 54. Jafari-Oliayi, A. & Asadi, M. H. SNHG6 is upregulated in primary breast cancers and promotes cell cycle progression in breast 

cancer-derived cell lines. Cell. Oncol. 42(2), 211–221. https:// doi. org/ 10. 1007/ s13402- 019- 00422-6 (2019).

https://doi.org/10.1093/bib/bbab061
https://doi.org/10.3390/life12020279
https://doi.org/10.1161/CIRCRESAHA.117.310782
https://doi.org/10.1161/CIRCRESAHA.117.310782
https://doi.org/10.1038/nrcardio.2016.101
https://doi.org/10.1038/nrcardio.2016.101
https://doi.org/10.1016/S0140-6736(12)60026-9
https://doi.org/10.1038/nature10209
https://doi.org/10.1038/nature10209
https://doi.org/10.7748/ns.30.51.15.s16
https://doi.org/10.1016/j.gtc.2007.12.002
https://doi.org/10.1177/1039856218762308
https://doi.org/10.1016/j.ygeno.2023.110584
https://doi.org/10.1186/s40246-023-00498-0
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.11613/bm.2013.018
https://doi.org/10.1002/9781118445112.stat06938
https://doi.org/10.1002/9781118445112.stat06938
https://doi.org/10.4097/kjae.2017.70.4.407
https://doi.org/10.1016/j.gene.2012.07.089
https://doi.org/10.1007/978-0-387-88615-2_4
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/s41592-019-0709-z
https://doi.org/10.3389/fgene.2022.929736
https://doi.org/10.3389/fimmu.2023.1078731
https://doi.org/10.1186/s13059-017-1207-1
https://doi.org/10.1016/j.cca.2008.09.025
https://doi.org/10.3389/fncel.2021.605030
https://doi.org/10.1186/s12872-022-02481-4
https://doi.org/10.1002/jcb.29156
https://doi.org/10.1242/jcs.067165
https://doi.org/10.3324/haematol.2016.144063
https://doi.org/10.1093/jpp/rgaa064
https://doi.org/10.1371/journal.pone.0090272
https://doi.org/10.3390/life12020274
https://doi.org/10.1016/j.jacbts.2020.01.012
https://doi.org/10.1016/j.bbrc.2014.02.006
https://doi.org/10.3389/fonc.2022.1004261
https://doi.org/10.1101/gad.242131.114
https://doi.org/10.1007/s13402-019-00422-6


13

Vol.:(0123456789)

Scientific Reports |            (2024) 14:1  | https://doi.org/10.1038/s41598-023-50600-8

www.nature.com/scientificreports/

 55. Limaye, A. J. et al. In silico optimized stapled peptides targeting WASF3 in breast cancer. ACS Med. Chem. Let. 13(4), 570–576. 
https:// doi. org/ 10. 1021/ acsme dchem lett. 1c006 27 (2022).

 56. Zhou, K., Arslanturk, S., Craig, D. B., Heath, E. & Draghici, S. Discovery of primary prostate cancer biomarkers using cross cancer 
learning. Sci. Rep. 11(1), 10433. https:// doi. org/ 10. 1038/ s41598- 021- 89789-x (2021).

 57. Maniruzzaman, M. et al. Statistical characterization and classification of colon microarray gene expression data using multiple 
machine learning paradigms. Comput. Methods Progr. Biomed. 176, 173–193 (2019).

 58. Lee, S. I. et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 
9(1), 42 (2018).

 59. Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006).
 60. Kegerreis, B. et al. Machine learning approaches to predict lupus disease activity from gene expression data. Sci. Rep. 9(1), 9617 

(2019).
 61. Zhao, S. et al. Identification of diagnostic markers for major depressive disorder using machine learning methods. Front. Neurosci. 

15, 645998 (2021).
 62. Schaack, D., Weigand, M. A. & Uhle, F. Comparison of machine-learning methodologies for accurate diagnosis of sepsis using 

microarray gene expression data. PloS One 16(5), e0251800 (2021).
 63. Degroat, W. et al. IntelliGenes: A novel machine learning pipeline for biomarker discovery and predictive analysis using multi-

genomic profiles. Bioinformatics 39, btad755 (2023).

Acknowledgements
We appreciate great support by the Department of Medicine, Rutgers Robert Wood Johnson Medical School 
(RWJMS); Rutgers Institute for Health, Health Care Policy, and Aging Research (IFH); Rutgers Biomedical and 
Health Sciences (RBHS), at the Rutgers, The State University of New Jersey. We thank members and collabora-
tors of Ahmed Lab at Rutgers (RWJMS and IFH) for their support, participation, and contribution to this study.

Author contributions
Z.A. designed and led this study. Z.A. participated in sample collection, cohort building, and RNA-seq data 
generation. Z.A. performed processing, quality checking, and gene-disease data annotation and expression 
analysis. Z.A. generated AI/ML ready dataset and supported W.D. in designing methodology and implementing 
AI/ML techniques. W.D., H.A., D.M., and S.Z. supported the pre- and post-computational analysis, evaluation of 
results and preparation of the supplementary material. H.A. and Z.A. drafted the manuscript. All authors have 
participated in writing and review and have approved it for publication.

Funding
This study was supported by the Department of Medicine / Cardiovascular Disease and Hypertension, Division 
of General Internal Medicine, Rutgers Robert Wood Johnson Medical School, and Institute for Health, Health 
Care Policy and Aging Research which is the part of Rutgers Biomedical and Health Sciences at Rutgers, The 
State University of New Jersey.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 50600-8.

Correspondence and requests for materials should be addressed to Z.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1021/acsmedchemlett.1c00627
https://doi.org/10.1038/s41598-021-89789-x
https://doi.org/10.1038/s41598-023-50600-8
https://doi.org/10.1038/s41598-023-50600-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine
	Material and methods
	Identification of significant biomarkers
	Implementation of a nexus AIML models for predictive analysis
	Ethical approval and consent to participate

	Results
	Building suitable cohorts
	Discovering supported biomarkers
	Predicting cardiovascular disease
	Examining transcriptomic predictors

	Discussion
	References
	Acknowledgements


