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Conditional generative learning 
for medical image imputation
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Image imputation refers to the task of generating a type of medical image given images of another 
type. This task becomes challenging when the difference between the available images, and the 
image to be imputed is large. In this manuscript, one such application is considered. It is derived 
from the dynamic contrast enhanced computed tomography (CECT) imaging of the kidneys: given 
an incomplete sequence of three CECT images, we are required to impute the missing image. This 
task is posed as one of probabilistic inference and a generative algorithm to generate samples of the 
imputed image, conditioned on the available images, is developed, trained, and tested. The output 
of this algorithm is the “best guess” of the imputed image, and a pixel-wise image of variance in the 
imputation. It is demonstrated that this best guess is more accurate than those generated by other, 
deterministic deep-learning based algorithms, including ones which utilize additional information 
and more complex loss terms. It is also shown that the pixel-wise variance image, which quantifies 
the confidence in the reconstruction, can be used to determine whether the result of the imputation 
meets a specified accuracy threshold and is therefore appropriate for a downstream task.

Image imputation or image synthesis refers to the task of generating or synthesizing missing images using avail-
able data, which is often in the form of other types of images. In medical imaging, these techniques address tasks 
like generating images of one type (FLAIR MR image, for example) given images of a different type (T2 MR 
image), generating missing slices in a three-dimensional stack of slices of an organ, and generating an image at 
a specific time-point in a temporal sequence of images obtained from contrast-enhanced imaging modalities. 
Generally speaking, if the available images are “close” to the missing image, the image synthesis/imputation task 
is easier. For example, if the temporal sequence includes ≈ 50 images, wherein the sequential changes are small, 
then the missing image is easily approximated by a weighted sum of its neighbors in the sequence. On the other 
hand, if the available information is sparse, the image imputation task is challenging. For example, when the 
entire temporal sequence contains only a few images (say 4) and the difference between each image is significant, 
relying on neighboring images alone to infer a missing image is not an option. In this case, the image imputation 
algorithm must learn the complex dependencies between images in the sequence from an independent set of 
training data, and then apply this knowledge to the case of interest. These types of image imputation problems 
are the focus of this manuscript.

In particular, we consider the dynamic contrast enhanced computed tomography (CECT) imaging of the 
kidneys. In this modality, an intravenous contrast agent is injected into the subject and CT images are acquired 
at different time-points leading to pre-contrast, corticomedullary (30–40 s after injection), nephrographic (100 s 
after injection), and excretory (5–10 minutes after injection) phase  images1. A complete sequence consists of 
all images at all four time-points. In some cases, one or more these images may be missing and may need to be 
imputed. For instance, subject motion during the exam could blur some images rendering them of little clinical 
value, or, under a clinical protocol a subject with a renal tumor might undergo CECT imaging where the pre-
contrast image is not recorded. However, each image in the CECT sequence is important and has clinical value. 
For example, the pre-contrast, corticomedullary and nephrographic images are all required to evaluate intensity 
enhancement and washout within the tumor, kidney and other organs, which is in turn used in evaluation and 
 diagnosis2. Also, in the excretory phase, the renal pelvis is clearly visualized and its location relative to the tumor 
can be determined. This information is useful to a surgeon performing nephrectomy to remove the  tumor3,4.

Deep learning has found significant applications in tackling image synthesis/imputation problems of the type 
described above. Specifically, algorithms based on a U-net architecture that map images of one type to another 
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via convolutional layers have been remarkably successful. Among these are a class of algorithms that typically 
employ adversarial learning and are closely related to generative adversarial networks (GANs)5. This includes 
the PIX2PIX algorithm which performs image transformation using pair-wise image data and adversarial loss 
augmented with a reconstruction  term6. In  CycleGAN7 these ideas are extended by adding a cycle consistency 
loss and removing the stringent requirement of working with pairwise images. Algorithms like the  StarGAN8 
and  RadialGAN9 extend these ideas to image transformation across multiple domains with a single generator 
network that uses a specific code which carries information about each domain.  CollaGAN10 provides a similar 
mapping across multiple domains by relying on multiple consistency losses. Recently, algorithms based on the 
transformer architecture have also also been successfully applied to problems in medical  imaging11,12.

There has been a growing realization that algorithms for medical imaging should also provide some esti-
mates of the uncertainty in their outputs. Stated simply, this means that given an image of one type they should 
account for the fact that there may be an ensemble of images that are consistent with the given input image. Thus 
they should either generate this ensemble or quantify the heterogeneity within it. This has been accomplished 
for images translation of one type to  another13, de-noising of MR  images14, and enhancement of the brain MR 
 images15. Along these lines, in this manuscript, for the case of imputing CECT images, we recognize that there 
may be whole collection of likely complete sequences that are consistent with a given incomplete sequence. The 
algorithm presented in this manuscript generates this ensemble and produces a “mean” image that is shown to 
be more accurate than other comparable methods. It also produces a standard deviation image that quantifies 
the uncertainty in the prediction thus providing a measure of confidence to the user.

In the probabilistic framework described in this work, we treat both the incomplete and complete image 
sequences as random vectors. Then, using data which consists of complete sequences and their incomplete coun-
terparts (generated by decimating an image at random), we train a conditional generative adversarial (cGAN) 
 network16–18. This network takes samples from the joint distribution of two random vectors and learns to effi-
ciently sample from the conditional distribution. That is, given an instance of one of these vectors, it generates 
samples of the other vector conditioned on that instance (see Fig. 1). In our case, the “instance” is the incomplete 
CECT image sequence and the samples generated are the complete CECT sequences that are consistent with 
this incomplete sequence. From these samples we extract the desired imputed image, and compute the pixel-
wise mean and standard deviation. The mean imputed image provides our best guess for the missing image, and 
the standard deviation image quantifies the uncertainty in our prediction. Through rigorous testing we show 
that the mean image is generally more accurate than images produced by methods that do not account for the 
probabilistic nature of the problem. We also demonstrate that the standard deviation image is correlated with 
the error in the imputation and can be used to quantify the confidence in the imputed image.

Deep learning-based image imputation techniques have recently been used for imputing and synthesizing 
CT images. This includes generating CT images for data augmentation to eventually improve the performance 
of a CT-image based  classifier19–21. It also includes algorithms for generating CECT images at a single time 
point for the  lungs22, and the  kidneys23, where the latter study uses the concept of neural transfer for improved 
performance. Recently, several GAN-based approaches were implemented and tested for imputing renal CECT 
images at different time-points24. The approaches tested (in the present work) include several standard algorithms 
and two novel methods, ReMIC and DiagnosisGAN, which were shown to be the most accurate. In  ReMIC25, 
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Figure 1.  A schematic diagram of the imputation algorithm. In this illustration, we have assumed that the 
corticomedullary image is missing from the sequence ( j = 2 ). The first step involves constructing a linear 
regression-based guess of the missing image through the operator Rj . This approximate sequence, and a 
sequence of random vectors z(i) , are used as input to the fully-trained generator, G∗ . The generator produces an 
ensemble of likely complete sequences wherein each member is denoted by xG,(i) . These are use to calculate the 
pixel-wise mean and standard deviation (SD) images. The best guess to the imputed image is extracted from the 
former and the latter is used to determine the confidence in the imputation.
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a representational disentanglement scheme for multi-domain image completion was used to improve the per-
formance of the algorithm, whereas in  DiagnosisGAN24 in addition to the CECT images themselves, other 
sources of information, like segmentation mask for the tumor, and the knowledge cancer sub-type, were used to 
improve the performance of the method. In the “Results” section of this manuscript we compare our algorithm 
with these methods and conclude that our method is more accurate, and at the same time provides estimates of 
confidence in the imputation task.

We remark that in an earlier  work26 we presented a probabilistic method for imputing CECT images where 
we utilized GANs to learn the prior  distribution27,28 of a complete sequence of CECT images. This prior was 
combined with a likelihood term driven by a measured incomplete sequence to set up a Bayesian estimate for the 
probability distribution of the complete sequence. This inference problem was then solved by advanced Markov-
Chain Monte Carlo (MCMC) methods. In the present approach, in contrast to this, we utilize a conditional 
GAN to directly learn and sample from the conditional distribution. This leads to an algorithm that is much 
more efficient. As a result, it can be applied to reconstructing slices that include the tumor, the kidney, and the 
surrounding tissue, whereas the earlier work was limited to segmented images of only the tumor. Thus the work 
presented in the study differs in methodology (cGAN to directly learn the conditional distribution in contrast 
to GAN to learn the prior) and is more numerically efficient and widely applicable.

The remainder of this manuscript is organized as follows. In the following section, we present the results 
obtained by applying  our algorithm to incomplete sequence of CECT images. Thereafter, we discuss these results 
and their medical relevance. Finally, in the “Methods” Section we describe our algorithm in detail.

Results
Patient data
The study population consists of patients who had renal masses diagnosed on abdominal CECT scans and 
underwent resection at USC between May 2007 and September 2018. The pathology of the masses was con-
firmed after resection, and the patients were identified through a query of a surgical database. Patients without 
evaluable preoperative imaging or missing any of the four time-points of the CECT study were excluded. The 
final cohort included 370 patients, and three-dimensional regions of interest of the renal masses were manually 
segmented by two senior radiologists using Synapse 3D  software29. The original images were 512× 512 pixels 
with a pixel size of 0.9765 mm in each direction. These images were cropped to a size of 128× 128 by selecting 
a square centered on the tumor centroid. From the total data, 296 subjects were used for training (around 80%), 
37 subjects were used for validation (around 10%), and 37 subjects were used for testing the algorithm (around 
10%). The training data was augmented by rotating each image by ±10 , ±20 and ±30 degrees and by shifting it 
in the horizontal and vertical directions. This yielded at most eleven images for each original image. Data from 
Hounsfield units (within the range (−3024, 3071) ) was normalized to the range (−1, 1) by first clipping values 
below -150 and above 1000 and then linearly transforming the Hounsfield scale to the normalized range.

Image imputation results
Figures 2, 3 and 4 display the results of the image imputation algorithm for six subjects selected from among 
the 37 test subjects. These subjects were selected to highlight the diversity of the type of renal CECT images that 
the algorithm can be applied to. Results for all 37 subjects are available  in30. Each figure represents results from 
two subjects, and for each subject, the first row displays true images, the second row contains the mean imputed 
images generated by the cGAN, and the third row contains the images of the pixel-wise standard deviation gen-
erated by the cGAN. The columns represent the four time-points of the CECT exam. The mean imputed image 
may be interpreted as the “best guesss” generated by the cGAN, while the standard deviation image represents 
the spatial distribution in the uncertainty in this imputation.

To generate the imputed images, the algorithm assumes that the true image for a specific time-point is missing 
and needs to be predicted by making use of the images at the three other time-points. For example, for a given 
subject, images in the first column in rows 2 and 3 are generated by assuming that the true image for the pre-
contrast time-point is missing and needs to be imputed by using the true images at the other three time-points. 
Similarly, images in the second, third, and fourth columns are obtained by imputing missing images for the 
corticomedullary, nephrographic, and excretory time-points, respectively, while making use of the true images 
from complementary set of time-points. Therefore, each figure demonstrates the capacity of the cGAN algorithm 
to impute images for the four distinct CECT time-points.

In Table 1, we perform a quantitative comparison of the performance on the cGAN with an improved variant 
of the popular  PIX2PIX6 algorithm (described in the “Methods” Section) which may be thought of as a deter-
ministic version of the cGAN approach. We implement this method, training and testing it using the same image 
data used for the cGAN. From this Table it is clear that the cGAN method outperforms the PIX2PIX algorithm 
for all time-points. It is also interesting to note that it is most accurate in imputing pre-contrast images and least 
accurate in imputing corticomedullary images.

In the same table, we compare the performance on the cGAN and PIX2PIX algorithms implemented in 
our study with the performance of the two top-performing algorithms reported in a recent CECT renal image 
imputation  study24. These algorithms are 

1. DiagnosisGAN24, which is a generative adversarial algorithm like the cGAN. However unlike the cGAN 
approach, it does not provide any information regarding the confidence in the imputation and further it 
requires segmented tumor images to improve its performance.

2. ReMIC25, which relies on a representational disentanglement scheme for multi-domain image completion. 
When compared with the cGAN approach, the ReMIC algorithm is more complex and relies on different 
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types of losses which include image and latent domain consistency losses, adversarial losses, and reconstruc-
tion losses. In contrast to the cGAN approach, the ReMIC approach is also a deterministic approach and 
does not yield any information regarding confidence in the imputed images.

The interested reader is referred to the “Methods” section and the original references for further details on these 
methods. From Table 1, which reports the values of the normalized mean squared error (NMSE), the structural 
similarity index measure (SSIM) and the peak signal-to-noise ratio (PSNR) averaged over all time-points and 
all subjects, we conclude that for both these metrics the cGAN approach is the most accurate.

Standard deviation and uncertainty
While the cGAN-based method provides accurate imputation results, its distinguishing feature is the ability to 
draw an ensemble from the posterior distribution rather than just a single most likely sample. This ensemble 
can be utilized to compute statistics that offer insight into the confidence in the imputed image. We demonstrate 
this by computing the estimated pixel-wise standard deviation in the imputed images in Figures 2, 3 and 4 (last 
row). These images offer a spatial depiction of the level of uncertainty present in the imputed results. The higher 
the value of standard deviation in zone of pixels, the larger the ensemble variation and uncertainty in that zone.

Figure 2.  True and imputed images for Subjects 1 and 2.
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We investigate the relation between the standard deviation computed by our algorithm and the true error of 
the image imputed by the cGAN. If a positive correlation is identified, then the standard deviation may be utilized 
as an indicator of the error in the imputed image, thus serving as a powerful tool for the end-user to eliminate 
imputed images that are likely to be inaccurate. In particular, we determine whether the total value of standard 
deviation (summed over all pixels) can be used to classify a given imputed image as being acceptable. We set a 
threshold of NMSE = 0.1 as a criterion and bin each imputed image into “acceptable” and “not acceptable” classes. 
Thereafter, we quantify the performance of the total standard deviation as a surrogate for performing this clas-
sification. The results are summarized in the receiver operating characteristic (ROC) curve shown in Fig. 5. For 
this curve, the corresponding the area under the curve (AUC) value is 0.8825. Based on this we conclude then 
that the total standard deviation is predictive of whether a given imputation is sufficiently accurate.

Discussion
In images for Subject 1 (Fig. 2) we observe a well marginated tumor which is predominantly endophytic (grow-
ing within the kidney rather than protruding out) and has density similar to that of soft tissue. This tumor was 
a surgically proven renal cell carcinoma. The generated images demonstrate the lesion and the margins at each 
time-point. The subtle nodular peripheral enhancement noted in the true corticomedullary and nephrographic 

Figure 3.  True and imputed images for Subjects 3 and 4.
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phases is also clearly seen in the generated images. In addition, in the imputed excretory phase image the loca-
tion of the adjacent calyx (arrow) where urine collects from that portion of the kidney is anatomically consistent 
with the true image. We note that the depiction of the tumor, its margins and its relationship with the calyx and 
other intra-renal structures are important for surgical planning. All these features are well reproduced in the 
imputed images.

In images for Subject 2 (Fig. 2), we observe a patient with an exophytic (protruding out of the kidney) tumor 
which was an angiomyolipoma. The imputed images reproduce the density of the tumor and its relationship with 
the kidney very well. The depiction of the density of the tumor, viz. a density that is predominantly the same as 
the density of fat tissue, enables the accurate diagnosis of this specific tumor via imaging.

The tumor in Subject 3 is a complex cystic (with roughly the density of a fluid) mass with multiple irregular 
nodular enhancing septations within it (Fig. 3). The complexity, nodularity of the septations are important 
diagnostic features used by radiologists to characterize cystic tumors using the Bosniak scoring  system31–34. This 
was a Bosniak 4 tumor indicating (and proven) malignant cystic renal carcinoma. We note that these important 
features are reproduced in the imputed images.

Subject 4 is another example of a complex cystic tumor where the nodular peripheral enhancement from the 
anterior margin of the tumor leads to the radiologic characterization of this tumor as cystic renal carcinoma. 

Figure 4.  True and imputed images for Subjects 5 and 6.
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We note that this enhancement is reproduced faithfully in the corticomedullary and nephrographic imputed 
images (Fig. 3). Subject 5 displays a complex cystic tumor where the thickened margin is well seen in the imputed 
images (Fig. 4).

Subject 6 displays a tumor that is a predominantly hypo-dense (low density compared to the adjacent normal 
renal tissue) with multiple internal components (arrow) which are well seen in the imputed images (Fig. 4). This 
is a specific type of renal carcinoma, viz. papillary renal cell carcinoma where the density of the tumor is key to 
the diagnosis and is faithfully reproduced in the imputed images.

One of the distinguishing features of the method developed in this study is its ability to produce a distribu-
tion of imputed images conditioned on the images available at other time-points. This allows us to compute an 
image of the pixel-wise standard deviation for each imputed image. At the local level, the standard deviation 
image (shown in third row for each subject) highlights the regions where the uncertainty in the imputation is 
high. We note that the regions of high uncertainty tend to be at the interface between the kidney and abdominal 
cavity, and between other organs and the abdominal cavity.

The total intensity of the standard deviation image also contains useful information. In particular, as shown 
in Fig. 5 we note that this value is good indicator of whether the NMSE of an imputed image is small or large. 
We note that it can be used to classify (AUC = 0.88825) whether the NMSE for an imputed image will be above 
or below a threshold value of 0.1. This is particularly useful for downstream clinical tasks where imputed images 
with large standard deviation, and hence low-confidence, can be disregarded by the clinician. In addition, the 
standard deviation images themselves may be used to communicate to the clinician the regions where the 
uncertainty in the imputation is the largest. If these regions correspond to regions that are important in reach-
ing a clinical decision (the tumor and its vicinity, for example), then a clinician may ascribe a lower confidence 
to their final decision.

Finally, we note that even though the main feature of our approach is to quantify the confidence in the imputa-
tion results, it produces images with less error than other state-of-the-art methods. In Table 1, its performance 
is compared with an enhanced PI2PIX approach that uses the same training and test data. For each time-point 
and in all three metrics we observe that the cGAN based approach incurs smaller errors. In the same table, it is 
also compared with other leading methods, albeit on different training and test data. Here too, it quite clearly 
outperforms the other methods, even though these methods utilize additional information (like tumor segmented 
images) and contain losses that are more complex. We believe that primary reason for the better performance 
of our approach is its stochastic nature. By virtue of this, the mean imputed image averages over any predictions 
that are outliers and does not let them strongly influence the final estimate.

Methods
Data for this study was extracted from an Institutional Review Board (IRB) approved Kidney Mass Data and 
Specimen Collection project. Informed consent for the repository was obtained by the USC IRB consistent 
with §45 CFR 46.116(f). The study was conducted in accordance with USC policies, IRB policies, and federal 
regulations. Subject privacy and confidentiality were protected according to applicable HIPAA, and USC IRB 
policies and procedures.

We begin by introducing some mathematical notation. Define the product space RN
4 := R

N×N×N×N , where 
N = 128× 128 is the size/resolution of each image. Let x = [x1, x2, x3, x4] ∈ �X ⊂ R

N
4  be the sequence of CECT 

images for a patient at the four time-points. Let ŷ[j] ∈ �
j
Y ⊂ R

N
3  be the patient’s CECT image sequence with the 

Table 1.  Performance of the cGAN and PIX2PIX algorithms on test data (values averaged over 37 subjects). 
Also included is the performance of DiagnosisGAN and  ReMIC24, as reported by the authors. The metrics 
considered include Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and 
Normalized Mean Square Error (NMSE). Note that the cGAN and PIX2PIX algorithms were trained on 
different data set than the DiagnosisGAN and ReMIC algorithms. Further, for these two algorithms the 
authors did not provide PSNR values for each phase and NMSE values for any phase. The best algorithm for 
each metric for each image type is shown in bold font.

Pre-contrast Corticomedullary Nephrographic Excretory Combined

SSIM

 cGAN 0.7262 0.6232 0.6353 0.6607 0.6614 (0.0845)

 PIX2PIX 0.7022 0.6057 0.5992 0.6111 0.6295 (0.0927)

  DiagnosisGAN24 0.6105 0.6549 0.6408 0.6210 0.6243 (0.1045)

  ReMIC24 0.6260 0.6453 0.6252 0.6368 0.6333 (0.1012)

PSNR

 cGAN 28.43 26.66 26.95 25.16 26.80 (2.91)

 PIX2PIX 27.25 25.84 26.02 23.89 25.75 (3.05)

  DiagnosisGAN24 – – – – 20.07 (2.06)

  ReMIC24 – – – – 20.33 (2.02)

NMSE

 cGAN    0.1043 0.1302 0.1297 0.1587 0.1307

 PIX2PIX    0.1184 0.1472 0.1457 0.1832 0.1486
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j-th image in the sequence missing. The missing image is replaced by a simple linear reconstruction using the map 
Rj : �

j
Y → �Y ⊂ R

N
4  , with a mapping existing for each 1 ≤ j ≤ 4 (see Supplementary Note 1). Note that the lin-

ear reconstruction of the missing image only serves as an initial guess, and is typically unable to represent several 
desired features and intensity variations of the true image. We use the notation y = [y1, y2, y3, y4] ∈ �Y ⊂ R

N
4  

to denote the final measurement where an incomplete sequence has been filled in with the linear approximator. 
We are interested in finding an appropriate x given the measurement y.

To accommodate for the fact the reconstructed x may not be unique, we consider a Bayesian formulation 
where sequences x and y are modelled using random variable X and Y, respectively. We are thus interested in 
finding the conditional probability distribution PX|Y given an incomplete measurement Y = y , and generating 
samples from this distribution. Furthermore, we want to learn this distribution by only working with a finite set 
of paired samples {x(i), y(i)} drawn from the joint probability distribution PXY . This is achieved using a cGAN 
which comprises two networks, namely the generator G and the critic D. The generator is given by the mapping 
G : �Z ×�Y → �X with xG = G(z, y) , where z is a realization of the NZ-dimensional latent random variable 
Z defined on �Z . The latent vector is typically chosen to follow a simple distribution PZ , such as a multivariate 
Gaussian, which is easy to sample from. The role of the G is to generate samples (given Y = y ) from the learned 
distribution PGX|Y  which are similar to samples from the true conditional. The critic is given by the mapping 
D : �X ×�Y → R , with its role being to distinguish between true joint samples (x, y) ∼ PXY and fake joint 
samples (xG , y) where xG is a fake sample generated by G.

We consider a particular cGAN variant, known as the Wasserstein  cGAN17, which makes use of the follow-
ing loss function

The two networks are trained simultaneously by solving the following minmax problem

(1)
L (D,G) := E

(x, y) ∼ PXY
z ∼ PZ

[
D(x, y)− D(G(z, y), y)

]
.

Figure 5.  ROC curve for classifying a given imputed image as acceptable.
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Under the assumption that the critic is 1-Lipschitz and that the maximization problem is solved perfectly, it can 
be shown that finding the optimal generator is equivalent to minimizing the mean (with respect to the marginal 
distribution PY ) Wasserstein-1 distance between PX|Y and PGX|Y17

where W1 is Wasserstein-1  metric35. The Lipschitz constraint on the critic can be weakly imposed using a gradient 
penalty term while training D17,18 (also see Supplementary Note 3).

In practice, we do not know the exact form of PXY , however, we assume access to samples {x(i)}Ki=1 of com-
plete image sequences drawn from the marginal PX of X. For each of these samples, we drop the j-th image in 
the sequence and use the linear reconstructor Rj to construct the corresponding y. Note that four such y’s can 
be constructed for each x. This leads to the dataset S = {(x(i), y(i))}Mi=1 with M = 4K  samples, where each 
pair can be seen as a sample from the joint distribution PXY . Using these samples, the expectations in (1) are 
approximated by empirical averages.

Once the cGAN is trained, given a new incomplete measurement ỹ[j] , we can use the trained G∗ to generate 
an ensemble of probable x’s and evaluate their pixel-wise statistics

for any continuous, bounded function f on �X . By setting f (x) = x in (3) we can evaluate the mean prediction 
denoted by x , which serves as our best guess for the complete sequence. Choosing f (x) = (x − x)2 in (3), we 
can evaluate the pixel-wise variance of the learned posterior distribution. This variance (or rather the standard 
deviation) can be used to quantify the uncertainty in the reconstructed sequence. The schematic of the recon-
struction algorithm is shown in Fig. 1. Note that if the j-th image is missing, we are typically only interested in 
statistics of the j-th images of the generated ensemble.

cGAN architecture
The architecture of the generator and critic is based on those considered  in18. The generator G has a U-Net 
architecture, as shown in Figure 6a, taking as input the measured sequence y (after linear reconstruction of the 

(2)D∗(G) = argmax
D

L (D,G), G∗ = argmin
G

L (D∗(G),G).

G∗ = argmin
G

E

y ∈ PY

[
W1

(
PX|Y (.|y),P

G
X|Y (.|y)

)]

(3)E

x ∼ PGX|Y

[
f (x)

]
≈

1

S

S∑

i=1

f
(
G∗

(
z(i),Rj(ỹ[j])

))
, z(i) ∼ PZ

Figure 6.  Architecture of generator and critic used in the conditional GAN.
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missing phase) and the latent variable z. The latent information is injected at every scale of the contracting and 
expanding branches of the U-Net using conditional instance normalization (CIN)36, which has two advantages: i) 
the latent dimension NZ can be chosen independently of NX or NY , thus allowing for significant dimension reduc-
tion, and ii) stochasticity is introduced at all scales of the U-Net, which overcomes the issue of mode  collapse18.

It is typical to use residual blocks to introduce non-linearity in the U-Net, which is what was also done  in18. 
However, in the present work, we make use of dense blocks since they lead to superior performance compared 
to residual blocks while reducing the number of trainable  parameters37. In Fig. 6, the dense blocks are denoted 
by DB(k, n), where n corresponds to the number of sub-blocks in the dense block, while k denotes the number 
of output features in all but the last sub-block. Down(p, q, k, n) denotes a down-sampling block, which coarsens 
the input spatial resolution by a factor of p, while increasing the number of channels by a factor of q. The param-
eters k, n correspond to the dense block used in the down-sampling block. Similarly, Up(p, q, k, n) denotes the 
up-sampling block, which refines the spatial resolution by a factor of p and decreases the number of channels 
by a factor of q. Further details about the constitutive blocks of the U-Net are given in the Supplemental Note 2.

Another difference between the present architecture as compared to the U-Net  in18 is the use of an outer skip 
connection, which adds the output of the U-Net to the measurement sequence y. Thus, the U-Net’s output can 
be interpreted as a pixel-wise perturbation �xG of all the images in the sequence, which is added to the input 
measurement y to predict a complete sequence xG . Such skip connections are routinely used in U-Nets trained 
for image de-noising  applications38,39.

As shown in Fig. 6b, the architecture of the Critic D comprises dense block-based down-sampling, followed by 
fully connected network that gives a scalar output. Since the latent variable is not used to evaluate the critic, CIN 
is replaced by layer  normalization40. The original Wasserstein  cGAN17 used a more complicated and specialized 
critic to overcome the mode collapse. However, as discussed and demonstrated  in18, the injection of sufficient 
stochasticity in the generator via CIN allows the use of a simpler critic architecture.

PIX2PIX: a deterministic algorithm
To demonstrate the benefits of a stochastic imputation model, we compare the results of the proposed cGAN 
with a PIX2PIX  GAN6. This is considered the standard model to use in image-to-image translation. The PIX-
2PIX model in our paper is modified to resemble our cGAN model for a fair comparison. The generator of the 
PIX2PIX approach is required to not only fool the critic but to also make a prediction that is (point-wise) close 
to the ground truth. This motivated the augmentation of l1 distance term in the generator  loss6, which is the 
approach we follow as well. The generator for the PIX2PIX model is given by the map G : �Y → �X and does 
not use a latent variable. Thus, a single xG is generated for a given y, unlike our cGAN model. The loss function 
for PIX2PIX is given by

To train PIX2PIX, the following minmax problem is solved

The architectures of the networks will be similar those used in the cGAN approach with the exception that batch 
 normalization41 is used instead of CIN in the generator.

Other generative models
We briefly describe two existing deep generative models that have been developed for medical image imputation 
tasks. The first is  DiagnosisGAN24, which is a specialized GAN model that can simultaneously generate missing 
image in CT sequences and classify the cancer subtype. In this model, the generator takes an incomplete multi-
phase CT sequence as input and generates a synthesized volume for the missing phase. The training objective 
function is composed of several loss terms, including the adversarial loss, a reconstruction loss, a lesion segmen-
tation loss, and cancer subtype classification loss.

Another approach is known as the Representational disentanglement scheme for Multi-domain Image 
Completion  (ReMIC25), which is a multi-domain completion and segmentation framework. The ReMIC model 
consists of a content encoder, which is shared across all domains (FLAIR or MRI for example). There are also 
domain-specific style encoders, and generators. In addition to an adversarial loss, the framework includes an 
image consistency loss for visible domains, latent consistency loss, and reconstruction loss for the generated 
images. Additionally, the framework employs a representational learning approach, where a segmentation gen-
erator follows the content code for a unified image generation and segmentation.

We remark that compared to these two models, the proposed cGAN has a much simpler architecture and 
objective function. Further, the cGAN generator is capable of generating an ensemble of possible missing images 
for an incomplete CT sequence instead of a single reconstructed image. The ensemble statistics enable us to 
quantify the uncertainty in the reconstruction.

Once the cGAN is trained, generating samples for a given sequence of incomplete images is relatively inexpen-
sive. In particular, for the problem considered in this manuscript, the generation of 800 images took 100 seconds 
of wall clock time on two p100 GPUs. Correspondingly, the deterministic approach (PIX2PIX) takes only a small 
fraction of this time since it generates only a single image. We note that even though the stochastic approach 
generates many more images and therefore takes more time to produce the results, the overall computational 

(4)L (D,G) = E

(x, y) ∼ PXY

[
D(x, y)] − D(G(y), y)

]
.

(5)D∗(G) = argmax
D

L (D,G), G∗ = argmin
G

(
L (D∗(G),G)+ �1 E

(x, y) ∼ PXY

[
�G(y)− x�1

])
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burden in both approaches (stochastic and deterministic) was dominated by the time spent for training the 
network, which took around 90 hours in both cases.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 28 April 2023; Accepted: 21 December 2023

References
 1. Lee, W.-K. et al. Imaging of renal cell carcinoma. Société Internationale d’Urologie J. 3, 407–423 (2022).
 2. Campbell, S. C. et al. Renal mass and localized renal cancer: Evaluation, management, and follow-up: Aua guideline: Part i. J. Urol. 

206, 199–208 (2021).
 3. Tsili, A. C. et al. The role of imaging in the management of renal masses. Eur. J. Radiol. 141, 109777 (2021).
 4. Abou Elkassem, A. M. et al. Role of imaging in renal cell carcinoma: A multidisciplinary perspective. Radiographics 41, 1387–1407 

(2021).
 5. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).
 6. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. in 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)https:// doi. org/ 10. 1109/ cvpr. 2017. 632 (2017).
 7. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. in 

Proceedings of the IEEE international conference on computer vision, 2223–2232 (2017).
 8. Choi, Y. et al. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. in Proceedings of the 

IEEE conference on computer vision and pattern recognition, 8789–8797 (2018).
 9. Yoon, J., Jordon, J. & Schaar, M. Radialgan: Leveraging multiple datasets to improve target-specific predictive models using genera-

tive adversarial networks. in International Conference on Machine Learning, 5699–5707 (PMLR, 2018).
 10. Lee, D., Kim, J., Moon, W.-J. & Ye, J. C. Collagan: Collaborative gan for missing image data imputation. in Proceedings of the IEEE/

CVF conference on computer vision and pattern recognition, 2487–2496 (2019).
 11. Dalmaz, O., Yurt, M. & Çukur, T. Resvit: Residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. 

Imaging 41, 2598–2614 (2022).
 12. Liu, J. et al. One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation. IEEE Trans. 

Med. Imaging (2023).
 13. Upadhyay, U., Chen, Y. & Akata, Z. Robustness via uncertainty-aware cycle consistency. Adv. Neural. Inf. Process. Syst. 34, 28261–

28273 (2021).
 14. Upadhyay, U., Chen, Y., Hepp, T., Gatidis, S. & Akata, Z. Uncertainty-guided progressive gans for medical image translation. in 

Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 
September 27–October 1, 2021, Proceedings, Part III 24, 614–624 (Springer, 2021).

 15. Tanno, R. et al. Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI. 
Neuroimage 225, 117366 (2021).

 16. Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv: abs/ 1411. 1784 (2014).
 17. Adler, J. & Öktem, O. Deep bayesian inversion, https:// doi. org/ 10. 48550/ ARXIV. 1811. 05910 (2018).
 18. Ray, D., Ramaswamy, H., Patel, D. V. & Oberai, A. A. The efficacy and generalizability of conditional GANs for posterior inference 

in physics-based inverse problems. Numer. Algebra Control Optim.https:// doi. org/ 10. 3934/ naco. 20220 38 (2022).
 19. Frid-Adar, M. et al. Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. 

Neurocomputing 321, 321–331 (2018).
 20. Lee, H. et al. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information aug-

mented patches and synthetic data augmentation. Med. Phys. 48, 5029–5046 (2021).
 21. Toda, R. et al. Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability 

for type classification. Int. J. Comput. Assist. Radiol. Surg. 16, 241–251 (2021).
 22. Liu, J. et al. Dyefreenet: Deep virtual contrast CT synthesis. in Simulation and Synthesis in Medical Imaging: 5th Intl. Workshop, 

SASHIMI 2020, Lima, Peru, Oct. 4, 2020, Proceedings 5, 80–89 (Springer, 2020).
 23. Seo, M. et al. Neural contrast enhancement of CT image. Proceedings of the IEEE/CVF Winter Conference on Applications of 

Computer Vision, 3973–3982 (2021).
 24. Uhm, K.-H., Jung, S.-W., Choi, M. H., Hong, S.-H. & Ko, S.-J. A unified multi-phase CT synthesis and classification framework for 

kidney cancer diagnosis with incomplete data. IEEE J. Biomed. Health Inform. 26, 6093–6104. https:// doi. org/ 10. 1109/ jbhi. 2022. 
32191 23 (2022).

 25. Shen, L. et al. Multi-domain image completion for random missing input data. IEEE Trans. Med. Imaging 40, 1113–1122. https:// 
doi. org/ 10. 1109/ tmi. 2020. 30464 44 (2021).

 26. Raad, R. et al. Probabilistic medical image imputation via deep adversarial learning. Eng. Comput. 38, 3975–3986 (2022).
 27. Patel, D. V. & Oberai, A. A. Gan-based priors for quantifying uncertainty in supervised learning. SIAM/ASA J. Uncertain. Quantif. 

9, 1314–1343 (2021).
 28. Patel, D. & Oberai, A. A. Bayesian inference with generative adversarial network priors. Preprint at arXiv preprintarXiv: 1907. 09987 

(2019).
 29. Synapse 3d, https:// healt hcare solut ions- us. fujifi lm. com/ enter prise- imagi ng/ synap se- 3d.
 30. Conditional GAN medical imputation. https:// github. com/ Raghe bRaad 400/ Condi tional- GAN- Medic al- Imput ation/.
 31. Israel, G. M. & Bosniak, M. A. How i do it: Evaluating renal masses. Radiology 236, 441–450. https:// doi. org/ 10. 1148/ radiol. 23620 

40218 (2005).
 32. Israel, G. M. & Bosniak, M. A. An update of the Bosniak renal cyst classification system. Urology 66, 484–488. https:// doi. org/ 10. 

1016/j. urolo gy. 2005. 04. 003 (2005).
 33. Silverman, S. G. et al. Bosniak classification of cystic renal masses, version 2019: An update proposal and needs assessment. Radiol-

ogy 292, 475–488. https:// doi. org/ 10. 1148/ radiol. 20191 82646 (2019).
 34. Warren, K. S. & McFarlane, J. The Bosniak classification of renal cystic masses. BJU Int. 95, 939–942. https:// doi. org/ 10. 1111/j. 

1464- 410x. 2005. 05442.x (2005).
 35. Villani, C. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften (Springer, 2008).
 36. Dumoulin, V., Shlens, J. & Kudlur, M. A learned representation for artistic style. Preprint at arXiv: 1610. 07629 (2017).
 37. Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) (2017).

https://doi.org/10.1109/cvpr.2017.632
http://arxiv.org/1411.1784
https://doi.org/10.48550/ARXIV.1811.05910
https://doi.org/10.3934/naco.2022038
https://doi.org/10.1109/jbhi.2022.3219123
https://doi.org/10.1109/jbhi.2022.3219123
https://doi.org/10.1109/tmi.2020.3046444
https://doi.org/10.1109/tmi.2020.3046444
http://arxiv.org/abs/1907.09987
https://healthcaresolutions-us.fujifilm.com/enterprise-imaging/synapse-3d
https://github.com/RaghebRaad400/Conditional-GAN-Medical-Imputation/
https://doi.org/10.1148/radiol.2362040218
https://doi.org/10.1148/radiol.2362040218
https://doi.org/10.1016/j.urology.2005.04.003
https://doi.org/10.1016/j.urology.2005.04.003
https://doi.org/10.1148/radiol.2019182646
https://doi.org/10.1111/j.1464-410x.2005.05442.x
https://doi.org/10.1111/j.1464-410x.2005.05442.x
http://arxiv.org/abs/1610.07629


12

Vol:.(1234567890)

Scientific Reports |          (2024) 14:171  | https://doi.org/10.1038/s41598-023-50566-7

www.nature.com/scientificreports/

 38. Guan, S., Khan, A. A., Sikdar, S. & Chitnis, P. V. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE 
J. Biomed. Health Inform. 24, 568–576. https:// doi. org/ 10. 1109/ JBHI. 2019. 29129 35 (2020).

 39. Gurrola-Ramos, J., Dalmau, O. & Alarcón, T. E. A residual dense u-net neural network for image denoising. IEEE Access 9, 
31742–31754. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30610 62 (2021).

 40. Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint atarXiv: 1607. 06450 (2016).
 41. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in Proceedings 

of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, 448-456 (JMLR.org, 
2015).

Acknowledgements
The support from ARO grant W911NF2010050 and the Ming-Hsieh Institute at USC is acknowledged.

Author contributions
R.R. implemented trained and tested the cGAN algorithms. D.R. developed and implemented the cGAN algo-
rithms. B.V. was responsible for creating the patient data pipeline. D.H. transformed and manipulated subject 
image data for the purpose of the study. I.G. provided expert urological guidance while formulating and writing 
the study. V.D. provided expert radiological guidance in formulating and writing the study. A.A.O. oversaw the 
development of the algorithms, the conduct of the study, and played a major role in writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 50566-7.

Correspondence and requests for materials should be addressed to A.A.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1109/JBHI.2019.2912935
https://doi.org/10.1109/ACCESS.2021.3061062
http://arxiv.org/abs/1607.06450
https://doi.org/10.1038/s41598-023-50566-7
https://doi.org/10.1038/s41598-023-50566-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Conditional generative learning for medical image imputation
	Results
	Patient data
	Image imputation results
	Standard deviation and uncertainty

	Discussion
	Methods
	cGAN architecture
	PIX2PIX: a deterministic algorithm
	Other generative models

	References
	Acknowledgements


