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Multi‑wavelength interference 
phase imaging for automatic breast 
cancer detection and delineation 
using diffuse reflection imaging
Alaaeldin Mahmoud * & Yasser H. El‑Sharkawy 

Millions of women globally are impacted by the major health problem of breast cancer (BC). Early 
detection of BC is critical for successful treatment and improved survival rates. In this study, we 
provide a progressive approach for BC detection using multi‑wavelength interference (MWI) phase 
imaging based on diffuse reflection hyperspectral (HS) imaging. The proposed findings are based 
on the measurement of the interference pattern between the blue (446.6 nm) and red (632 nm) 
wavelengths. We consider implementing a comprehensive image processing and categorization 
method based on the use of Fast Fourier (FF) transform analysis pertaining to a change in the 
refractive index between tumor and normal tissue. We observed that cancer growth affects tissue 
organization dramatically, as seen by persistently increased refractive index variance in tumors 
compared normal areas. Both malignant and normal tissue had different depth data collected from it 
that was analyzed. To enhance the categorization of ex‑vivo BC tissue, we developed and validated 
a training classifier algorithm specifically designed for categorizing HS cube data. Following the 
application of signal normalization with the FF transform algorithm, our methodology achieved 
a high level of performance with a specificity (Spec) of 94% and a sensitivity (Sen) of 90.9% for the 
632 nm acquired image categorization, based on preliminary findings from breast specimens under 
investigation. Notably, we successfully leveraged unstained tissue samples to create 3D phase‑
resolved images that effectively highlight the distinctions in diffuse reflectance features between 
cancerous and healthy tissue. Preliminary data revealed that our imaging method might be able to 
assist specialists in safely excising malignant areas and assessing the tumor bed following resection 
automatically at different depths. This preliminary investigation might result in an effective "in‑vivo" 
disease description utilizing optical technology using a typical RGB camera with wavelength‑specific 
operation with our quantitative phase MWI imaging methodology.

BC is the most prevalent type of cancer in the world and the main reason why women die from  cancer1. This 
disease was contributing for almost 570 thousand deaths in the last five  years2. Furthermore, with 2.3 million 
newly diagnosed cases on average have been with malignant tumors  annually3,4. Invasive BC tumor cell that 
can expand to various parts of the body such as the brain, liver, bone, and lungs, indicating its  severity5. Conse-
quently, one of the critical clinical challenges in BC management is the need for precise intraoperative margin 
assessment during BC surgery. This challenge arises from the complex nature of breast tissue, where ensuring 
cancer-free margins is essential to minimize the risk of recurrence and improve patient outcomes. Due to the 
lack of adequate operational tumor edge assessment techniques, complete tumor evacuation is  tough6. As a 
result, a tumor is discovered at the resected edge of the excised specimen, and upwards to 37% of female patients 
undergoing breast-conserving surgeries are affected by this  problem7. This considerable amount of tumor is still 
present in the patient, increasing the threat of a tumor recurrence and decreasing the likelihood of long-term 
disease-specific  survival8. For efficient treatment and better results, early detection and correct diagnosis, it is 
crucial to develop new quantitative approaches that combine imaging and processing that can provide a more 
accurate diagnosis of BC. Many techniques have been developed to achieve this based on the light interaction 
with different specimens. Although phase contrast  microscopy9 alleviated the issue of delivering in-focus phase 
contrast image, phase cannot be distinguished from intensity in the generated imaging; hence the method is 
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not quantifiable. In order to resolve such constraints, significant work has been committed in past few years to 
creating quantitative imaging based on phases approaches, in which light path information all over a specimen 
is quantified. It has been demonstrated that the specifics of the relationship between light and tissue may be fully 
understood by considering the phase and amplitude of an optical field transmitted through tissues, including 
scattering properties. Many traditional coherent interference techniques like holography are used to quantify 
phase. However, interferometric devices are frequently massive, necessitate a complex optical system, and struggle 
from noise and diffraction  limitations10.There is also a non-interferometric setup solution, quantitative phase 
 imaging11–17, which has less stringent experimental requirements than interferometric methodologies. Using 
polychromatic radiation, highly structured samples can be precisely phase characterized. However, this method 
necessitates sample displacement through the focus and extensive computations, which may limit its applicability 
to interactive biomedical research. This solution has also the drawback of requiring a lot of measurements. These 
limitations might be overcome by applying HS imaging, which doesn’t require making contact with the tissue or 
the use of exogenous contrast chemicals. HS imaging can quickly quantify the whole resection edge at specific 
 wavelengths18. This technique enables non-invasive identification of BC by analyzing the spectral properties of 
the tissue. Compared to traditional diagnostic methods, HS imaging can provide a more comprehensive view of 
the tissue. By examining the spectral data, we could obtain information on characteristics of the tissue, which 
can be used to distinguish between healthy and malignant areas. Moreover, this approach is highly sensitive 
and specific, allowing for early detection of cancerous growths and an accurate diagnosis of the disease. There 
are many researchers who have applied HS imaging for breast malignant tissue early diagnosis. Researchers 
 in19 explore the evolution of medical imaging from traditional anatomical visualization to advanced molecular 
imaging techniques. They confirmed the importance of the use of diffuse reflectance spectroscopy (DRS) in the 
context of intraoperative BC margin assessment using HS imaging. In Ref.20, the study aims to use a HS camera 
to capture the spectral signatures of malignant and normal breast tissue in the 400–1000 nm range for therapeutic 
and diagnostic purposes. The system measures the tissue’s diffuse reflectance and light transmission through 
two exploratory modes. In Ref.21, K-means clustering approach was employed to group the BC location based 
on the amplitude computations. Another study employed HS imaging data from stimulated BC specimens to 
identify malignancies by observing changes in fluorescence characteristics when compared to normal  tissue22. 
The research study in Ref.23 investigates the use of DRS to distinguish malignant breast tissue from healthy tis-
sue, comparing an extended wavelength range (450–1550 nm) to the standard range (450–900 nm). The results 
indicate that extended-wavelength DRS, with a Sen of 94% and a Spec of 91%, reflects the superiority of apply-
ing diffuse reflectance modalities. Multi-wavelength interference, a prospective BC detection technique, makes 
advantage of the interference pattern produced by dividing a light beam into a reference beam and a sample 
 beam24,25. By detecting the phase distinction between the two beams, BC and other tissue properties may be 
 identified26,27. Our study demonstrates that the phase difference between the specimen and reference beams is 
determined by analyzing the interference patterns between different light wavelengths in MWI using the cap-
tured cube image by HS imaging. With the use of this phase information, 3D maps of the tissue’s thickness and 
refractive index may be created, which can reveal the existence of tumors. For instance, since tumors have higher 
refractive indices than healthy  tissue28, increases in the refractive index of breast tissue may be a sign of breast 
cancer. Furthermore, the utilization of various wavelengths can provide details about the tissue’s absorption and 
scattering characteristics, which can be utilized to differentiate between various tissue kinds and structures with 
high-sensitivity outcomes.

In this study, we provide an automated method for BC detection using MWI phase imaging based on diffuse 
reflection HS imaging. Meanwhile, after being exposed to polychromatic uniform light, we measured the depth 
of variation of dispersed light intensity and the associated phase shift at fluctuation frequency. The difference in 
refractive indices between two media affects how quickly light travels through them. The extracted phase shift 
change is reliant on the optical path differential variance between normal and malignant tissue. Due to the fact 
that refractive indices tend to drop as light wavelengths rise, more penetration of longer wavelength light (λ) than 
 smallest29,30. We were able to find the tumor at various levels of the specimen using our MWI imaging techniques 
and the 3-D image the HS camera captured. Our findings show that the use of blue light can help to reduce scat-
tering in the tissue, which can improve image quality, while the use of red light can provide deeper penetration 
into the tissue. By combining the two wavelengths, a more comprehensive view of the tissue can be obtained.

Our primary contribution lies in the utilization of HS camera, a cutting-edge technology that offers a wealth 
of information for biomedical applications. HS imaging provides us with a cube image containing 128 frames, 
each captured at different reflected wavelengths. These distinct wavelengths correspond to varying velocities of 
light as it interacts with examined breast tissue. As light travels through tissue, it creates interference patterns 
relative to a white paper reference, which serves as a critical benchmark for our measurements. The key to our 
approach is recognizing that the refractive index of tissue varies between tumor and normal breast tissue. Lev-
eraging this variance, we employ an advanced algorithm based on FF transform to extract the phase information 
embedded within the interference patterns. This phase information becomes instrumental in our ability to dif-
ferentiate between tumor and normal breast tissue. Moreover, we could harness the power of utilizing the cube 
image obtained from our HS camera. We employ this image to construct MWI patterns relative to the white 
paper reference, which acts as a stable and well-characterized surface. Subsequently, we deploy the FF transform 
algorithm to meticulously extract the phase information, thus enabling the differentiation of tumor and normal 
breast tissue. This innovative approach empowers us to aiding in the identification and delineation of BC. The 
significance of the white paper reference in this context cannot be overstated. It serves as a critical point of refer-
ence for our phase measurements, ensuring consistency and accuracy. By referencing all our measurements to 
this standardized surface, we effectively eliminate systematic errors and provide a basis for quantitative phase 
analysis. The use of a white paper reference allows us to quantitatively analyze the phase information relative to 
a known and consistent surface. This is essential for our research, as it enables us to differentiate between the 
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phase shifts caused by the tissue samples and those caused by the reference surface. These phase differences pro-
vide valuable insights into the properties of the examined breast tissue. Furthermore, the white paper reference 
allows for reproducibility, comparison across different specimens, and the removal of confounding factors, thus 
playing a pivotal role in our methodology’s success.

The proposed method relies on the assessment of the interference pattern between the blue and red wave-
lengths and the use of 2-D FF transform analysis to extract the phase information. The advantages of this tech-
nique include its non-invasive nature, high sensitivity, and ability to provide real-time imaging which could be 
classified between the tumor and the surrounding normal tissue. Our MWI imaging technique, combined with 
our FF transform approach, supports current efforts to achieve more objective tumor resection margin accu-
racy. With our method, pathologist might result in improvements to automatic optical BC diagnosis.

Light interaction with tissues
It is necessary to utilize intensity measurements to compute the phase differences of the light. Phase variations 
are essential for surface profiling, particularly in biomedical imaging because they provide important details 
about an object’s structure. A portion of the light that strikes a tissue’s surface is absorbed by the tissue, while the 
remaining portion is scattered several times. Bulk scattering is a crucial factor in the dispersion of a significant 
portion of radiation in the backward direction, whereas multiple scattering and absorbance are accountable for 
the widening and eventual decay of a light beam as it passes through a  tissue31.This will finally manifest as a dif-
fuse reflectance signal that emanates from the tissue surface and conveys data on the structure and biochemistry 
of the  tissue32,33.The refractive indices of the various tissue elements are not uniform, which causes light to be 
deflected. When light passes from one medium to another, its velocity changes proportionally to the refractive 
index variances between the  two34,35. The median refractive index nm of a tissue is determined by the volume con-
centration of the scatterers (csc), the refractive indices of the ground matter (ng) and its scattering centers (nsc)36,

The scattering coefficients (µsc) in a standard mono-disperse modeling of scattered dielectric spheres could 
be determined based on their relationship to the refractive index  as37,

where  VS is the sphere volume density, λ is the wavelength and, r is the radius of sphere. Each of the tumor, 
normal, and reference diffuse reflected spectra had magnitude and phase angle variations, as illustrated in Fig. 1 
and in accordance with the EM wave  theory38. Both constructive and destructive waveform interferences are 
formed depending on how the wave interacts with the specimen. A positive interference happens if the waves 
are in phase. The interference is entirely destructive when two interfering waves be phase-shifted to maximize 
when one wave has reached its  lowest39. Figure 2 shows light penetration into breast tissue demonstrating the 
difference in depth penetration with regard to wavelengths.

As depicted in Fig. 1, a refractive index difference exists between malignant and normal breast tissue. This 
variance leads to the presence of delayed scattered rays, which are light rays that have experienced a delay or 
phase shift due to their interaction with the tissue samples. These rays undergo a phase change as they traverse 
the tissue, and we leverage this phase information in our MWI technique to distinguish between tumor and 
normal breast tissue. Figure 2 illustrates how the difference in depth penetration between wavelengths directly 
contributes to the 3D phase shift data that we employ in our analysis.

Materials and methods
Between October 2019 and February 2020, the investigation took place at the "Kobri El Koba Military Complex 
Hospital." The work received ethical approval from the Faculty of Medicine at Ain Shams University in Egypt and 
complied with the Declaration of Helsinki’s Ethical Principles for Medical Research Involving Human Subjects. 

(1)nm = cscnsc + (1− csc)ng .

(2)µsc = 3.28πr2VS[2πr/�]
0.37

(

nsc

ng
− 1

)2.09

,

Figure 1.  Phase wavefront change due to the change in optical path difference between normal tissue and 
tumor.
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P.T.REC/009/003156 is the reference number. Before data collection started, each respondent read and agreed 
to two copies of written agreement. Ten females who had breast cancer growth underwent a breast-conserving 
surgery. Following the rigorous procedure, the patients were randomly selected, and breast tumor samples were 
obtained for neurological evaluation. The tumors were prepared for HS imager from the removed breasts after 
breast concealment. Breast tumor HS images were collected. These experimental breast tissue samples were 
sliced and placed in an ice box with deionized saline with measurements of (200 mm × 300 mm) and sample 
thickness of 3 ~ 5 mm. This extracted biopsy consists of normal tissue and the tumor. Analysis was conducted at 
25 °C, a standard sample temperature of 23 to 25 degrees Celsius predicted before each preparatory and kept in 
the fridge up to − 70 °C. It was generally accepted that the region 50–100 mm away from the tumor was healthy, 
and pathology results supported this belief.

The suggested imaging mechanism consists of a source light (Derungs, 20 P SX, Germany) having a wave-
length region of 380–980 nm with line scanning and a HS camera (Surface Optics, SOC710, USA) with a VIS/NIR 
spectral region (380–1050 nm)40. The camera’s installed lens is (Schneider, 400–1000 nm, Germany). Figure 3a 
provides a schematic illustration of the HS configuration. With a spatial resolution of under 40 microns and a 
spectral resolution of 5 nm, each collected cube picture included 128 spectral frames. As a result, the system was 
lit, and every component was fixed for the duration of the study times. The utilized optical lens had a field of 
view (FOV) of 10°, capturing a picture with dimensions of 6 cm × 8 cm at 50 cm, which is appropriate for a high 
focusing for the HS camera and the analyzed samples. Figure 3b illustrates the lab setup for our BC diagnosis 
to detect the malignant regions using the proposed phase analysis approach with HS images. The chart image 
recognition route that produced our promising benefits, analysis, and final finding is shown in Fig. 3c. A device 
(laptop) that runs software (HS-Analysis TM Data Analysis) managed the linear scanner’s motors, adjusted 
exposure, and gathered the diffuse reflection characteristics data.

Using our FF transform approach, we completely converted the normalized spectral image to the phase 
domain, as shown in our suggested imaging approach in Fig. 3c. Our method is quicker and maintains all the 
raw data since it does waveform interpretation with less computation. Before converting the output spectrum 
images to the frequency domain, our preprocessing approach plays a pivotal role in ensuring the accuracy and 
reliability of the subsequent data analysis. The specific steps within this preprocessing sequence, which includes 
histogram equalization, image normalization, and the application of a moving average (MA) filtering, are strategi-
cally designed to enhance the quality of the data and prepare it for further analysis. Histogram  equalization41,42 
method’s fundamental principle is to disperse the image’s intensity values over a wider range to make the features 
in darker areas more obvious. Image normalization is a crucial component of our preprocessing approach, as it 
serves to standardize the data. The complex raw data from the cube image is transformed into a consistent 256-bit 
 format42. This normalization process ensures that the data is ready for further analysis and that any variations in 
intensity are removed, allowing for more robust quantitative phase measurements. In order to further denoise 
and reconstruct the image, the following formula was applied to our MA filtering in the following  phase41,43,

where the operation is performed via a size of ‘n x m’, the recovered image is denoted by F(x,y), NI is the noisy 
image ", and ’z’ and ’k’ stands for the window’s ‘w’ column and row coordinates, respectively. This spatial fil-
tering step is designed to enhance the quality of the cube image by reducing spatial noise and improving the 
overall data quality, which is crucial for our phase data clustering approach. The spectral aspects of our data are 
processed separately to extract the necessary phase information, and the MA filtering does not interfere with 
this spectral analysis. We may then use our Inv FF transform approach to get our original processed pictures 
in the time domain. After this, we obtained image information for phase using characteristics calculations. 
For the purpose of detecting tumors, phase shift outcomes are computed effectively. We could make a plotting 
for the studied breast specimens and track the BC for successive layers related to different depths according to 

(3)F
(

x, y
)

=
1

n×m
+

∑∞

(k,z)∈w
NI(k, z),

Figure 2.  Longer wavelength light penetrated deeper into tissue than shorter wavelength light.
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the diffuse reflected spectra of both tumor and normal tissue using MWI approach with HS imager setup. The 
image processing algorithm sequencing was mostly based on the DADiSP 6.5 (DSP Development Corporation, 
USA) tool. By contrasting the results with the findings of the histology examinations, the effectiveness of the 

Figure 3.  (a) Prototype of an HS optical image acquisition; (b) The HS benchtop arrangement used for the 
BC characterization; (c) Diagram of procedures for image processing and tool modules for this investigation 
utilizing the HS system.
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system analysis techniques offered is demonstrated. Equations (4), (5), and (6) illustrate three numerical values 
that may be assessed to examine the proposed MWI phase analysis technique based on the outcomes of these 
comparisons: Sen, Spec, and  accuracy21,41.

whereas False Negative (FN) occurrences are those in which the framework uncovers previously undetected 
masses, False Positive (FP) instances are those that the system under consideration identified incorrectly as 
abnormal mass but were actually normal occurrences, True Positive (TP) cases are those in which the current 
proposal correctly identified them as existing masses (BC), True Negative (TN) cases are those in which the 
proposed system incorrectly identified them as abnormal masses but which are actually normal occurrences.

Ethics approval and consent to participate
The participants gave written informed consent before the collection of specimens. The protocol was approved 
by the Faculty of Medicine at Ain Shams University in Egypt and complied with the Declaration of Helsinki’s 
Ethical Principles for Medical Research Involving Human Subjects. (No. P.T.REC/009/003156).

Results
These studies are intended to show that the HS method can detect and categorize the tumor tissue based on their 
MWI reflectance spectra and dissociate from healthy tissues. The specimens were illuminated by a source of 
white polychromatic bulb (380–980 nm). After imaging setup  calibration30, the ex-vivo HS imaging investigation 
included a total of 30 breast samples. We divide the tumor into a single group of HS pictures to train our classi-
fier by analyzing already stained samples. A new round of HS images is processed using the learned algorithm. 
Automated tumor classification using the latest HS images. The trained algorithm’s output is the outcome of 
the classification of both malignant and healthy tissue in the image. The methodology of the HS images tissue 
categorization approach is shown in Fig. 4a. The proposed trained imaging approach flowchart is depicted in 
Fig. 4b. Figure 5 illustrates our imaging approach capability to get descriptive statistical measures represented 
in Histogram, mean and standard deviation (SD) for the tested samples.

According to the proposed algorithm in Fig. 4b, our phase imaging processing method incorporates a criti-
cal step of signal normalization. This normalization is essential to eliminate system dependencies arising from 
amplitude fluctuations, ensuring that our analysis is focused primarily on phase information, which is crucial 
for our research. Furthermore, it is important to emphasize that our proposed clustering approach for grouping 
malignant breast tissue in the context of BC detection relies heavily on quantitative phase measurements. These 
measurements are derived from the MWI patterns obtained from the cube image relative to the white reference. 
By quantifying phase differences, we are able to accurately differentiate between malignant and normal tissue, 
and this forms the core of our innovative approach for BC assessment. In our trained algorithm, we employed 
a dataset consisting of 30 samples, with all samples confirmed to contain malignant regions through pathology 
examination. Specifically, each of these samples was pathologically verified to have malignant tissue. While all 
the samples included malignancy, we placed emphasis on ten of them, which were stained by pathologists. The 
staining of these ten samples allowed us to provide a comprehensive assessment of our work, highlighting the 
success of our trained algorithm based on MWI and the cube images captured with the HS camera. Our classifi-
cation algorithm was designed based on HS and the phase measurements obtained from the cube images using 
the HS camera. The classifier was trained on this subset of ten stained samples, and each sample was run three 
times to account for variability and ensure the robustness of our classifier. This approach helped the algorithm 
learn the characteristics of malignant and healthy tissue regions based on the MWI phase measurements. The 
training process allowed our algorithm to identify patterns and features indicative of BC in the images using our 
automatic image processing approach based on FF transform methodology. Once the classifier was trained, we 
employed it to evaluate the remaining unstained samples. The outcome of this evaluation was compared to the 
pathology findings. Our robust validation process, involving all 30 samples, including ten stained samples, and 
twenty unstained samples, clearly illustrated the effectiveness of our MWI-based classification approach for BC 
detection. Employing our MWI approach for BC detection, which utilizes blue and red images in relation to a 
white paper reference, we were able to analyze interference patterns using the FF transform method. This method 
provided us with depth-resolved information about the tissue, enabling the effective detection and characteriza-
tion of breast tumors. Figure 6a–c illustrate the average diffuse reflected signals from the white paper reference, 
the tumor region, and the normal region. It highlights variations in the signals, presents the signals from the 
three regions after signal normalization, clearly revealing the phase shift differences between them. Additionally, 
it showcases the absolute phase shift change measurement between normal and malignant tissue, assessing the 
variance in phase measurements relative to the white reference, respectively.

According to Fig. 6, we could emphasize how signal normalization enhances the visibility of phase shifts 
between the signals. The phase shift between these signals becomes more apparent, providing essential data for 
subsequent analysis. Moreover, we confirmed the absolute phase shift change measurements between normal and 

(4)Sen =
TP

TP + FN
,

(5)Spec =
TN

TN + FP
,

(6)accuracy =
TP + TN

TP + TN + FP + FN
,
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malignant tissue. The variance in phase measurements relative to the white reference is assessed, highlighting 
the differences between these tissue types. This data is crucial for our proposed phase-based clustering approach 
for BC detection. Figure 7 shows the outcomes of utilizing our phase change strategy and image preparation 
method to the stained sample #5 for algorithm training purposes using the blue and red images at 446.6 nm and 
632 nm, respectively. The output measured phase shift information is plotted to show the variance between the 

Figure 4.  (a) The hyperspectral images tissue categorization technique methodology; (b) Flowchart illustrating 
the proposed trained imaging approach.

Figure 5.  Average computed SD, Mean, and Histogram of the observed data for the examined breast tissue 
samples.
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malignant tissue and the normal tissue relative to the white reference effect using the resulted processed images 
at the horizontal line # 200 for the two as shown in Fig. 8.

Figure 6.  (a) The average diffuse reflected signals from white paper reference, tumor region, and normal 
region; (b) Phase shift analysis after signal normalization; (c) Absolute phase shift change measurement between 
normal and malignant tissue.
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Using the FF transform model and the inverse (Inv) FF transform, Fig. 7 shows how to apply our phase shift 
technique to the spectra pictures (446.6 nm and 632 nm). Figure 7c shows the calculated white reference effect 
that was used with deconvolution algorithm. As illustrated in Fig. 7d and e, we employed our unique preproc-
essing approach, which combines histogram equalization and MA filtering, to highlight and define the tumor 
for the two chosen spectral images. Figure 7f demonstrates how the deep tumor is not distinguished from the 
normal tissue regions using the 0.4466 µm spectral image. Figure 7g depicts thetumor determination from the 
normal regions using a 0.632 µm spectral image. According to the difference in penetration depth between the 
blue and red pictures and the white reference, shown in Fig. 8c, we could certainly define the phase shift data. 
One instance of the original stained breast and the categorization outcome are shown in Fig. 9. The pathology-
stained sample’s HS pictures were categorized using our approach. A pathologist stained the cancerous tissue. 
The tumor location was clearly discernible using the HS classification method. High Spec and Sen are required 
for the test, with the response assessed at a wavelength that goes into the tissue depths. Diagnosing breast cancer 
is a delicate procedure that has to be handled cautiously. After measuring the absolute phase shift on the original 
stained sample, we were approximately able to overlay the 632 nm picture successfully.

According to our trained algorithm, explained in Fig. 4, and the proposed phase MWI imaging approach, we 
were successful in detecting the tumor with a minor FN region and nearly small FP area (Sample # 5). The pro-
cedure of diagnosing BC is delicate and must be handled with care, hence the test’s Sen and Spec levels should be 
high using the binary classification  approach44–47. By computing the TP, TN, FP, and FN values for the evaluation 
at 632 nm, pixel accuracy is assessed. If a pixel was a malignant pixel in the histology examinations constructed 
map but was not recognized as such, the detection was regarded as a FN. If a pixel was mistakenly identified as 
cancerous tissue when it was discovered, the discovery was labelled as a FP. These steps are carried out for each of 
the ten stained samples separately. We conducted data acquisition three times for each of the ten stained samples 
to ensure the robustness and repeatability of our results. This multiple acquisition strategy allowed us to assess 
the consistency of our findings and the reliability of our trained algorithm across different runs. Our classifier 
achieves for this sample FN ratio, FP ratio, Sen and Spec of 8.4%, 4.8%, 91.6% and 95.2%, respectively. The Sen 
and Spec average calculation were 90.9% and 94%, respectively for the ten stained samples as displayed in Table 1.

We could apply our methodology to unstained, unknown breast samples, including breast sample #6, using 
our classifier. The results of applying our proposed technique using quantitative phase approach to the unstained, 
unknown breast biopsy that belongs to sample #6 are illustrated in Fig. 10.

Confirming our imaging approach on the suitable HS spectral response (446.6 nm and 632 nm) for tumor 
detection, we applied our MWI phase approach on sample#6. Figure 10 (a) and (c) show the selective 446.6 nm 
spectral image and the improved image quality output using our imaging algorithm. The 632 nm spectral image 
for this case study and then applying image preprocessing are clearly described in Fig. 10b and d, respectively. 
Figure 10f and g show the use of our MWI phase imaging technique to achieve tumor and normal tissue grouping 
based on the two selective spectral images (446.6 nm and 632 nm). In Fig. 11c, the variation between the healthy 

Figure 7.  Findings of using the quantitative phase approach with image-preparation methods on stained 
sample #5 (a) The picture acquired at 446.6 nm by the HS imager;(b) The picture acquired at 632 nm 
by the HS imager;(c) The polychromatic light source’s white reference response;(d) The 446.6 nm image 
after implementing preprocessing methodology ;(e) The 632 nm image after implementing preprocessing 
methodology,(f) Absolute phase shift calculations at the 446.6 nm image; (g) Absolute phase shift calculations at 
the 632 nm image (blue spot).
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tissue and the malignant tissue in relation to the white reference effect is displayed using the output measured 
phase shift information from Fig. 11a and b at the horizontal line # 300. We overlaid the 632 nm image on the 
unknown breast sample image after detecting the absolute phase shift between normal and malignancy tissue 
as depicted in Fig. 12. Figure 12c shows the outcomes of applying our proposed 3D phase imaging method to 
sample #6, clustering the malignant regions.

Figure 11 shows that because of the difference in absorption coefficient in both the blue and red signals, we 
could in fact define the phase shift data at different layers from tissue. According to Fig. 12, our classifier could 
automatically identify and cluster the tumor location in the breast samples using the MWI phase shift informa-
tion and build a 3D phase imaging for the tissue clustering the BC regions from the normal tissue. Examiners’ 
preliminary judgments may be improved by our procedures.

Discussion
In this study, we developed and evaluated the MWI approach for BC detection by utilizing cube images obtained 
from HS imaging. Our approach involves the implementation of an automatic image processing method rooted 
in quantitative phase imaging. Our phase analysis approach, when combined with developing imaging modali-
ties, provides a wide variety of potential medicinal applications. This method might help physicians provide 
preliminary estimations for cancer patients. Early cancer detection and therapy increase the likelihood that a 
patient will survive and the possibility of a full recovery. In addition to the low expense and great responsiveness 
associated with the lack of staining, the prospect of a highly automated method may have a significant influence 
on pathology on a worldwide market. Cancerous tissue is identified pixel by pixel using the suggested MWI 
phase classification technique. Because the identification of one diseased pixel is independent of surrounding 
pixels, it has the potential to identify invasive malignant tissue of various sizes and forms. A surgical biopsy needs 
to be collected and transported to a pathology lab for processing and evaluation by a pathologist. MWI phase 
imaging may be able to save significant time throughout surgery; that could clearly be a huge gain given that the 
entire process can take hours. As compared to typical interferometric imaging setups, this imaging approach has 
several advantages. Most importantly, the necessity for expensive and accurate optical components is eliminated. 
There is also a significant amount of computing capability to separate the amplitude and phase information in 
the produced cube pictures. So, in order to engage with the specimens, we constructed a practical HS framework 
where the SOC710 HS system has been lit using a white polychromatic lamp source. We used our optical diag-
nosis method to examine thirty breast samples, detecting the optimum surface and deep wavelengths to apply 
our MWI approach. Our initial findings found that red light at 632 nm is able to penetrate deeper into biological 
tissue due to its lower scattering coefficients. This makes it more effective for imaging deeper tumors in breast 
tissue. In the meantime, we observed that blue light at 446.6 nm is more easily absorbed by biological tissue and 
can be useful for imaging superficial structures or detecting changes in tissue morphology or cellular structure. 
By analyzing the interference pattern between these two wavelengths relative to the white reference effect, we 

Figure 8.  (a) The 446.6 nm image phase calculation at horizontal line = 200; (b) The 632 nm image phase 
calculation at horizontal line = 200; (c) The absolute phase-shift change between the 446.6 nm spectral image 
(blue line) and the 632 nm spectral image (red line) for sample #5.
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were able to calculate the phase difference between them. This phase difference was then used to calculate the 
tissue refractive index, which can provide information about its composition and structure.

Since the BC index of refraction is higher than the normal tissue refractive  index48–51, and because the scat-
tering characteristics of tissue cause light to disperse throughout the tissue, which ultimately results in a decrease 
in energy density as depth is  increased52,53, So, we built our algorithm to be able to identify cellular and subcel-
lular components within specimens based on the arrangement of refractive  index54,55. Breast biopsies’ refractive 
index maps pinpoint the areas of abnormal cells, which are helpful for BC evaluation and future prediction. 
The malignant areas in breast biopsies correspond with the spatial changes in refractive index recorded by our 
proposed MWI phase imaging approach. The advantage of using MWI is that it allows for a more accurate and 
detailed analysis of tissue properties compared to single-wavelength techniques. By using multiple wavelengths 
(446.6 nm and 632 nm), we can obtain information about both the tissue’s scattering and absorption character-
istics. Additionally, the use of interference patterns allows for precise measurements of phase differences, which 
can reveal details regarding the composition and structure of tissues. Finally, by using FF transform method to 
analyze the interference pattern, it may get a high-resolution spectral picture of the tissue sample, allowing for 
detailed analysis of its optical properties. Figure 13a–c depict our promising proposed MWI phase approach for 

Figure 9.  The HS image classification with automatic cancer tissue diagnosis on pathology specimen# 5. (a) 
The cancer is visible in the original stained sample. (b) Automatic phase computations found the majority of the 
malignant tissue.

Table 1.  Average Sen and Spec of MWI phase categorization for ten stained samples at 632 nm (based on three 
runs per sample).

Specimen 1 2 3 4 5 6 7 8 9 10 Mean

Sen (%) 98.93 91.5 88.3 91.5 91.6 88.7 87 90.5 90.8 90.2 90.903

Spec (%) 97.3 93.5 93.5 93 95.2 92.8 94.1 94.1 93.6 93 94.01

FN ratio (%) 1.07 8.5 11.7 8.5 8.4 11.3 13 9.5 9.2 9.8 9.097

FP ratio (%) 2.7 6.5 6.5 7 4.8 7.2 5.9 5.9 6.4 7 5.99
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Figure 10.  Outcomes of applying image-preprocessing methodology and quantitative phase method on 
unstained sample #6 (a) The picture acquired at 446.6 nm by the HS imager; (b) The picture acquired at 632 nm 
by the HS imager; (c) The polychromatic light source’s white reference response; (d) The 446.6 nm image 
after implementing preprocessing methodology ;(e) The 632 nm image after implementing preprocessing 
methodology, (f) The 446.6 nm image phase calculation; (g) The 632 nm image phase calculation (blue spot).

Figure 11.  (a) The 446.6 nm image phase calculation at horizontal line = 300; (b) The 632 nm image phase 
calculation at horizontal line = 300; (c) The absolute phase-shift variance for unknown breast sample #6 between 
the 446.6 nm and 632 nm spectral images (blue and red lines, respectively).
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categorizing tumor locations based on MWI data extracted from the acquired cube images of stained samples 3 
and 5, and unstained sample 6, respectively.

Before converting the resulting spectrum image to the frequency domain, it must first be improved. Histo-
gram equalization and MA filtering techniques were all used in our imaging strategy. The FF transform method 
is the foundation of our strategy for switching to the frequency domain. Using our Inv FF transform technique, 
we were able to eventually obtain our original processed photos in the temporal domain. This technique was 

Figure 12.  HS image classification for automatic cancer tissue diagnosis on pathology specimen#6. (a) The 
cancer is unknown in the original breast sample; (b) The detection of the tumor tissue based on our automatic 
MWI phase technique; (c) The 3D phase imaging findings for this specimen showing the layers of malignancy.
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mostly based on the DADiSP 6.5 software. Our method for processing images helped to provide highly accurate 
phase measurements withsub-wavelength resolution that could be utilized to tell the tumor from the surround-
ing healthy tissue.

Our training system successfully reached high classification accuracy. Prior to running our algorithm, we 
applied it to ten stained samples. The HS classification technique enabled precise localization of the tumor. For 
Sen and Spec, the average calculation was 90.9% and 94%, respectively. On one tested stained sample, the Sen, 

Figure 13.  (a–c) Illustration of the MWI-based tumor location phase classification approach for grouping 
malignant tissue using data extracted from cube images of stained samples 3 and 5, and unstained sample 6, 
respectively.
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Spec, FN ratio, and FP ratio of our classification model were 8.4%, 4.8%, 91.6%, and 95.2%, respectively. We were 
able to correctly overlay the 632 nm picture over the original stained sample photo (stained sample #5) after 
detecting the absolute phase shift data. The MWI phase approach classifier was able to automatically detect and 
categorize the tumor location in the breast samples at depths with unstained, unidentified breast tissues. This 
automatic proposed methodology is trustworthy and may be utilized as a tool to help a surgeon during surgery 
decide and examine the resection edges in real time. Our MWI phase imaging technique, along with a captured 
image that only operates at a specific wavelength, might aid examiners in making first assessments.

Conclusion
Multi-Wavelength Interference phase imaging approach is a promising method for detecting BC that may lead 
to earlier identification and better treatment outcomes. The technique has been demonstrated to be effective 
in detecting BC both in vitro and in vivo, and it has the advantage of being non-invasive. A precise phasing 
imaging-based technique based on the FF transform was used to classify cancer tissue. The methods for quantita-
tive phase identification and MWI may be utilized to automatically identify BC, according to our methodologi-
cal approach. The proposed technique using MWI phase imaging based on diffuse reflection HS imaging has 
the potential to revolutionize BC screening and diagnosis and would enable surgeons to examine and evaluate 
a substantial portion of tissue without the need to remove any biopsy for pathological study. Moreover, our 
proposed FF transform approach provided the unique privilege of obtaining 3D plotting for the investigated 
tissue and making a trace for the malignant location. Enhancing a surgeon’s visual talents might also be a major 
benefit. One of the benefits associated with this approach is how easily phase data can be used to confirm the 
spectrum changes of different tissue types and depths. As our method permits automatic continuous inspection 
of cancer tissue that is suspected of being malignant without interfering with surgery at various depths, it may be 
used as a feasible biopsy technique. By combining our effective imaging technique during surgery with a special 
conventional RGB camera that only operates at specific wavelengths, a new and efficient method for application 
in early tumor diagnosis may be created.
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