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Comparative analysis 
of radiomics and deep‑learning 
algorithms for survival prediction 
in hepatocellular carcinoma
Felix Schön 1,6*, Aaron Kieslich 2,6*, Heiner Nebelung 1, Carina Riediger 3, 
Ralf‑Thorsten Hoffmann 1, Alex Zwanenburg 2,4,5, Steffen Löck 2,7 & Jens‑Peter Kühn 1,7

To examine the comparative robustness of computed tomography (CT)‑based conventional radiomics 
and deep‑learning convolutional neural networks (CNN) to predict overall survival (OS) in HCC 
patients. Retrospectively, 114 HCC patients with pretherapeutic CT of the liver were randomized into a 
development (n = 85) and a validation (n = 29) cohort, including patients of all tumor stages and several 
applied therapies. In addition to clinical parameters, image annotations of the liver parenchyma and 
of tumor findings on CT were available. Cox‑regression based on radiomics features and CNN models 
were established and combined with clinical parameters to predict OS. Model performance was 
assessed using the concordance index (C‑index). Log‑rank tests were used to test model‑based patient 
stratification into high/low‑risk groups. The clinical Cox‑regression model achieved the best validation 
performance for OS (C‑index [95% confidence interval (CI)] 0.74 [0.57–0.86]) with a significant 
difference between the risk groups (p = 0.03). In image analysis, the CNN models (lowest C‑index [CI] 
0.63 [0.39–0.83]; highest C‑index [CI] 0.71 [0.49–0.88]) were superior to the corresponding radiomics 
models (lowest C‑index [CI] 0.51 [0.30–0.73]; highest C‑index [CI] 0.66 [0.48–0.79]). A significant risk 
stratification was not possible (p > 0.05). Under clinical conditions, CNN‑algorithms demonstrate 
superior prognostic potential to predict OS in HCC patients compared to conventional radiomics 
approaches and could therefore provide important information in the clinical setting, especially when 
clinical data is limited.

Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor, accounting for approxi-
mately 75% in  total1. Overall, primary liver tumors are the second leading cause of cancer deaths worldwide with 
a 5-year survival rate of 18.1%2. The Barcelona Clinic Liver Cancer (BCLC) staging system is the most widely used 
algorithm in western countries to recommend prognostic prediction and first-line treatment based on tumor 
burden, liver function and health status of the  patient3. Nevertheless, BCLC classification remains controversial 
and has limited predictive  power4,5.

In recent years, the focus of medical research and clinical practice has shifted towards individualized medi-
cine. Therefore, prediction of overall survival (OS) in HCC patients is of increasing importance to individually 
adapt potential therapy patterns and their influence on OS. Rapid advances in technology have made conven-
tional, feature-based radiomics and deep-learning-based approaches particularly suitable for attaining these 
goals. Previous studies reported positive results for predicting OS of HCC patients using conventional radiomics 
and deep-learning  algorithms6,7. Nevertheless, the suitability for clinical routine is questionable and despite the 
great potential of these technologies, a prospective transfer into clinical routine remains challenging. Patients may 
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have received imaging for initial tumor staging in different medical centers, resulting in a large heterogeneity of 
acquisition parameters. Currently, there are no models for predicting OS across all HCC tumor stages and thera-
pies. Moreover, to the best of our knowledge, it is uncertain which modelling approach, conventional radiomics or 
deep-learning-based approaches, is robust against the heterogeneity often encountered in clinical settings. There 
is evidence that conventional radiomics approaches seem more susceptible to interference, while deep-learning 
approaches might be more  robust8. In our exploratory study, we therefore aimed to examine the comparative 
robustness of computed tomography (CT)-based conventional radiomics and deep-learning convolutional neural 
networks (CNN) algorithms to predict OS in HCC patients against two important sources of heterogeneity in 
real-world clinical settings: varied acquisition parameters and diverse tumor stages and treatments.

Materials and methods
Ethical aspects
The study was approved by the local ethics committee (EK 39012022) and conforms to the Declaration of Hel-
sinki. The informed consent was waived by the ethics committee due to the retrospective nature of the study.

Study population
A total of 343 patients with initial diagnosis of HCC were discussed between January 2010 and October 2021 
in the tumor board of our University Hospital. Subsequently, patients were selected according to the following 
inclusion criteria:

(1) HCC patients who received a contrast-enhanced CT scan of the liver (consisting of at least an arterial 
and venous contrast phase) before therapy initiation; (2) the diagnosis of HCC had to be confirmed by a second 
imaging modality (e.g. ultrasound or magnetic resonance imaging) showing typical HCC changes, or by histo-
pathological findings, according to the German HCC  guideline9; (3) initial therapy and at least one follow-up 
imaging was carried out at our hospital.

The exclusion criteria were: (1) incomplete CT scans (missing arterial or venous contrast phase); (2) CT scans 
with severe artifacts; (3) patients with another active tumor disease (defined as tumor diagnosis or therapy within 
2 years prior to inclusion in the present study).

Based on these criteria (Fig. 1), a total of 114 patients were retrospectively enrolled and divided into a develop-
ment (n = 85) and a validation (n = 29) cohort by stratified randomization, with stratification being performed on 
the initial therapy concept. Overall, the diagnosis of HCC was confirmed histopathologically in 60/114 patients, 
with the remaining 54/114 HCCs confirmed by imaging patterns.

Clinical variables and radiological characteristics
Demographic data and routine lab tests were obtained for all patients. This included age, gender, time to death 
or follow-up time, as well as the serological parameters [alpha-fetoprotein (AFP), alanine-aminotransferase 
(ALAT), aspartate-aminotransferase (ASAT), albumin, total bilirubin, creatinine, gamma-glutamyltransferase 
(GGT) and International Normalized Ratio (INR)].

Tumor characteristics (number of lesions, presence of metastases, volume and density values of the largest 
HCC lesion), imaging features (status of liver cirrhosis and ascites) and initial therapy concepts [surgical resec-
tion (RES), radiofrequency ablation (RFA), liver transplantation (TRANS), transarterial chemoembolization 
(TACE), radiotherapy (RT), systemic therapy (ST) and best supportive care (BSC)] were recorded in addition. 
The ALBI-, Child–Pugh-, MELD-Score and the BCLC stage were calculated using the respective established 
formulae and flow  charts3,10–13. The Child–Pugh Score was only evaluated in patients with suspected cirrhosis. 
Status of liver cirrhosis (present/absent) was assessed on CT by two residents (2 and 3 years of experience in liver 
imaging) analogously to Nebelung et al.14 using the following criteria: hypertrophy of the liver segments I/II/III 
with concomitant atrophy of the segments VI/VII, surface and parenchymal nodularity of the liver, heterogene-
ous density values, portal vein enlargement, and ascites. Ascites was classified as absent, mild or moderate. In 
case of disagreement, the final decision was made by a senior radiologist with more than 15 years of experience 

Figure 1.  Study population. After applying inclusion and exclusion criteria, 114 patients were included and 
divided into a development and validation cohort by stratified randomization.
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in liver imaging. Hepatic encephalopathy was not considered since its assessment is subjective and was not 
adequately documented.

Overall survival
Overall survival was calculated as the period from the initial CT scan to the time of either death or last contact 
to our hospital (e.g. follow-up examination or discharge from inpatient stay).

Imaging protocol and annotation
The CT scans were acquired on a total of 24 different scanners at 21 medical centers. Seventy-eight patients (68%) 
received their initial CT at our hospital. External CT scans of the remaining 36 patients (32%) were transmitted 
to our institution as part of routine clinical practice. Common contrast media methods (for arterial contrast: 
bolus tracking or approximately 25 to 35 s after contrast agent injection; for venous contrast: approximately 60 
to 70 s after contrast agent injection) were applied for image acquisition. See Supplementary Table S1 for the 
variability of more scan parameters.

A resident with two years of experience in liver imaging contoured the liver parenchyma and the largest 
HCC-lesion in both contrast phases using the open-source software 3D Slicer (http:// www. slicer. org)15. All 
segmentations were verified by the same resident 4 weeks later. An example of segmentation is shown in Sup-
plementary Fig. S1.

Standardization of the CT datasets
Variations in the circulatory capacity of patients, contrast medium injection parameters, and imaging time con-
tribute to interindividual flood points of contrast  agent16. The resulting differences across patients may influence 
the radiomics data derived from these  scans17. To address this, a self-developed standardization procedure was 
performed.

For each patient, the mean CT number (CTNmean) in a circular segmentation within the aorta at the level of 
the coeliac trunk in the arterial and venous phase was recorded. The mean CTN for each phase (CTNmean,cohort) 
was used to scale the CTN of each patient (CTNmean,i) using the formula CTNnew,i = CTNold,i ×

CTNmean,cohort

CTNmean,i
.

To compensate for different slice thicknesses, all CT images were interpolated to an isotropic voxel size of 1.0 
 mm3. An anti-aliasing filter was applied, and contours were re-segmented to density values between − 200 and 
500 Hounsfield units (HU). Details see Supplementary Table S2.

Conventional radiomics risk modelling
Radiomics features were extracted from the segmentations of the liver and HCC in the arterial (_art) und venous 
(_ven) phase. The extraction was implemented according to the recommendations by the Image Biomarker 
Standardization Initiative (IBSI) using the publicly available open-source Medical Image Radiomics Processor 
(MIRP)18,19. Feature values obtained from the venous phase images were subtracted from the corresponding 
arterial phase values to quantify differences between both phases (_diff). In summary, six feature subgroups were 
extracted (HCC_art, HCC_ven, HCC_diff, liver_art, liver_ven, liver_diff), resulting in 1146 imaging features per 
patient.

To develop conventional radiomics models, the “Fully Automated Machine Learning with Interpretable 
Analysis of Results” (FAMILIAR, version 1.2.0) framework (https:// github. com/ alexz wanen burg/ famil iar) was 
 used20. The utilized settings for feature extraction and model building can be found in Supplementary Table S3. 
Three primary models were constructed to predict OS, consisting of a clinical model, an image-based radiomics 
model and a combined model of clinical and imaging data. Four supplementary models analyzing the imag-
ing segmentations separately were additionally created to compare the predictive power for OS in the different 
contrast phases and imaging components (whole liver parenchyma vs. HCC).

For each model, feature importance was evaluated using a 15-times repeated threefold cross-validation 
scheme, resulting in 45 internal models in total. In each iteration, multiple feature processing steps were applied: 
missing value imputation, feature transformation, filtering and clustering. The overall importance of a feature 
was assessed by its occurrence within the top five highest ranked features in all 45 internal models. The sig-
nature size was assigned as the median signature size of all 45 internal models. The features with the highest 
importance were used to create a Cox proportional hazards model for the prediction of OS. Subsequently, the 
models were validated on the validation cohort. Details of feature processing and model development are given 
in Supplementary Table S3.

Deep‑learning‑based risk modelling
All segmentations of the liver and the HCC were considered. To accommodate for the large range of sizes 
observed for liver and HCC lesions across the image datasets, a cropping procedure was applied: all images 
were cropped to the 95th percentile of the distribution of liver or HCC sizes in each direction. In addition, all 
images were resampled to a voxel size of 2 × 2 × 2  mm3. The resulting image dimensions were 64 × 64 × 64 and 
132 × 144 × 132 voxels for the HCC and the liver segmentations, respectively. The voxel intensities were rescaled 
to the interval [0, 1]. To avoid overfitting on characteristics outside of the ROI, these regions were masked by 
setting all voxel intensities outside the ROI to zero.

For clinical data, missing values were imputed using the median value over all patients. If the percentage of 
missing features for one patient exceeded 30%, the patient was excluded. All clinical data were converted to a 
numerical scale. The features were transformed using Yeo-Johnson normalization and Z-standardization and 

http://www.slicer.org
https://github.com/alexzwanenburg/familiar
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mapped linearly to the interval 0 to 1 based on the development cohort. Transformation parameters were applied 
to the validation cohort unchanged.

Four primary deep-learning-based models were constructed to predict OS, consisting of a clinical model, two 
image-based models (based on the HCC and liver segmentations) and a combined model of clinical and HCC 
imaging data. As deep-learning algorithms require significantly more computing power, it was not possible to 
create an imaging model consisting of all CT data as in the conventional radiomics approach. Four supplemen-
tary models analyzing the imaging segmentations separately were additionally created to compare the predictive 
power for OS in the different contrast phases and imaging components (whole liver parenchyma vs. HCC).

All models were implemented using the Python-based deep-learning library  Pytorch21. The general architec-
ture of the networks was designed after Hosny et al., Starke et al., and Nie et al. and is illustrated in Supplementary 
Fig. S222–24. For example, the proposed image-based model consists of four convolutional layers and three fully 
connected layers. To regulate the model, batch normalization and dropout layers are incorporated. CT images 
of both arterial and venous phases form the input of the model. They are processed through the convolutional 
layers before being concatenated and further processed by the fully connected layers. According to Katzman 
et al., the loss function is set to the negative log of the Cox partial likelihood with  regularizations25. Therefore, 
the final output is a single value representing the predicted hazard of the model. Details regarding the utilized 
hyperparameters can be found in Supplementary Table S4.

The number of training epochs was determined through a 15-times repeated threefold cross-validation, result-
ing in 45 internal models in total. Each model was trained for 500 epochs on the training fold and monitored for 
testing fold performance after every epoch. Model performance was assessed by the average performance of the 
last five epochs to reduce statistical noise. Finally, for validation, 45 models were trained on the entire develop-
ment cohort using the number of epochs with the highest cross-validation performance. The final prediction 
for a patient was established by taking the average prediction of all 45 models.

Evaluation of prognostic performance
Prognostic performance was evaluated by the concordance index (C-index) and the ability to stratify patients 
into risk groups based on the model predictions. The C-index measures the agreement between the actual OS 
and the model predictions. A C-index of 0.5 indicates no prognostic value, while a value close to 1 indicates 
perfect prediction. Patients were allocated into a low- or high-risk group for death based on the hazard values 
predicted by the models. The median value of these predictions was used as a cutoff on the development cohort. 
Patients with a predicted hazard exceeding the cutoff were assigned to the high-risk group. The difference between 
the low- and high-risk group was assessed using the log-rank test. The significance level was set to α = 0.05. The 
confidence intervals (CI) for the internal cross-validation were calculated by analyzing the distribution of the 45 
model performances. To estimate the CIs for the validation, the percentile bootstrap method was  performed26. 
To compare the prognostic performance of two models, a two-sample bootstrap test was employed: The differ-
ence in C-indices was computed for 1000 bootstrap samples of the validation cohort. The smaller proportion 
of bootstrap samples in which the C-index difference was either greater than 0 or less than 0 was multiplied by 
2 to obtain the p-value.

Results
Study population
Development and validation cohort were balanced in terms of clinical parameters and baseline demographics 
(p > 0.05; Table 1).

Conventional radiomics approach
Three primary models were developed: a clinical model, a radiomics model including all imaging features and 
a model combining clinical and imaging data. In addition, four supplementary radiomics models (HCC_art; 
HCC_ven; liver_art; liver_ven) were developed based on the individual image segmentations.

The median signature sizes were three, six and seven for the clinical, image-based, and combined model, 
respectively, and ranged between two and five for the supplementary models. For the clinical model, six patients 
(four in development cohort and two in validation cohort) were excluded from the analysis due to missing 
values > 30%. The final Cox-regression models are reported in Table 2 for the primary analyses and in Sup-
plementary Table S5 for the supplementary analyses. The results of the internal cross-validation are shown in 
Supplementary Table S6.

In independent validation (Table 3), the clinical model showed the best result with a C-index [95% CI] of 
0.74 [0.57–0.86], outperforming the image-based and combined model significantly (p = 0.016 and p = 0.034, 
respectively). The best supplementary model (HCC_art) clearly outperformed the primary image-based model, 
which showed a performance close to random prediction (C-index [95% CI] 0.66 [0.48–0.79] vs. C-index [95% 
CI] 0.51 [0.30–0.73]). The risk stratification into high- and low-risk groups showed significant differences in OS 
only for the clinical model (p = 0.031; Fig. 2).

Deep‑learning approach
Four primary models were developed: a clinical model, two image-based models (HCC_art + HCC_ven and 
liver_art + liver_ven) and a model combining clinical data and HCC imaging data. Additionally, four supplemen-
tary image-based models were established (HCC_art; HCC_ven; liver_art; liver_ven). The results of the internal 
cross-validation for all primary and supplementary models are shown in Supplementary Table S7. The obtained 
number of epochs was 430, 39, 14 and 383 for the clinical model, the HCC-based model, the liver-based model 
and the combined model, respectively.
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In validation (Table 4), the image-based HCC model showed the best performance of all primary models 
(C-index [95% CI] 0.69 [0.44–0.84]), while the clinical model was the worst (C-index [95% CI] 0.58 [0.40–0.76]). 
Overall, the supplementary image-based model HCC_art performed even slightly better than the primary HCC 
model (C-index [95% CI] 0.71 [0.49–0.88]). Risk stratification in groups at high and low risk of death revealed 
no significant results in the validation cohort (p > 0.05).

Comparison of the conventional radiomics and the deep‑learning approach
The deep-learning approach outperformed the conventional radiomics approach, with a significant improve-
ment for the liver_ven model (p = 0.032). Figure 3 highlights the differences of the C-indices in the validation 
cohort between the conventional radiomics and deep- learning models. Figure S3 shows the calibration plots of 
the best performing image-based models from both the conventional radiomics and deep-learning approaches.

Table 1.  Patient characteristics of the development and validation cohort. The variables describing the CTN, 
and volume refer to the largest HCC lesion. P-values were obtained by using Chi-square homogeneity tests and 
two-sided Mann–Whitney U tests for categorical and numerical variables, respectively. AFP alpha-fetoprotein, 
ALAT alanine-aminotransferase, ASAT aspartate-aminotransferase, BCLC Barcelona clinic liver cancer; 
BSC best supportive care, CTN computed tomography number, GGT  gamma-glutamyltransferase, HCC 
hepatocellular carcinoma, INR international normalized ratio, RES surgical resection, RFA radiofrequency 
ablation, RT radiotherapy, ST systemic therapy, TACE transarterial chemoembolization, TRANS liver 
transplantation.

Variable

Development cohort (n = 85) Validation cohort (n = 29)

p-valueMedian Range Missing (%) Median Range Missing (%)

Time to death of dead patients, years 1.65 0.01–6.20 n/a 1.83 0.29–3.70 n/a 0.36

Follow up time of patients alive, years 1.63 0.32–9.54 n/a 1.99 0.41–9.53 n/a 0.62

Age, years 71.11 48.17–82.12 0 (0) 70.08 39.60–84.27 0 (0) 0.84

AFP, ng/ml 8.6 0.9–707,760.0 10 (12) 5.6 1.0–22,169.6 3 (10) 0.15

ALAT, μmol/s L 0.58 0.19–4.89 3 (4) 0.57 0.27–1.78 1 (3) 0.47

ASAT, μmol/s L 0.78 0.19–3.17 5 (6) 0.71 0.38–3.33 1 (3) 0.12

GGT, μmol/s L 3.04 0.29–28.17 3 (4) 2.28 0.53–14.58 1 (3) 0.40

Albumin, g/L 39.9 22.7–48.2 7 (8) 39.9 29.3–47.0 4 (14) 0.68

Bilirubin, μmol/L 15.2 4.5–122.1 5 (6) 12.3 2.5–81.6 1 (3) 0.37

INR 1.16 0.91–2.91 4 (5) 1.14 0.93–3.15 2 (7) 0.56

Creatinine, μmol/L 79 45–162 3 (4) 87 53–141 1 (3) 0.28

MELD Score 10 7–20 7 (8) 10 7–21 2 (7) 0.88

HCC Volume arterial phase,  cm3 18.9 0.6–1339.2 0 (0) 12.8 0.8–1473.9 0 (0) 0.83

HCC Volume venous phase,  cm3 18.3 0.5–1246.8 0 (0) 14.0 1.0–2000.8 0 (0) 0.88

HCC Mean CTN arterial phase, HU 69.5 32.1–154.2 0 (0) 63.1 35.9–111.1 0 (0) 0.37

HCC Mean CTN venous phase, HU 74.9 34.8–124.6 0 (0) 74.5 43.1–115.5 0 (0) 0.49

HCC Variance CTN arterial phase,  HU2 365 84–1881 0 (0) 358 127–1748 0 (0) 0.98

HCC Variance CTN venous phase,  HU2 318 103–974 0 (0) 292 123–714 0 (0) 0.74

Number of patients (%) Missing (%) Number of patients (%) Missing (%)

Patients lost in follow-up 40 (47) n/a 17 (59) n/a 0.45

Died from treatment-related causes 1 (1) n/a 1 (3) n/a 0.43

Sex, male/female 67/18 (79/21) 0 (0) 27/2 (93/7) 0 (0) 0.14

Therapy concept, curative/palliative 49/36 (58/42) 0 (0) 17/12 (59/41) 0 (0) 1.00

Therapy, BSC/ST/RES/RFA/RT/TACE/
TRANS 5/8/25/26/6/14/1 (6/9/29/31/7/16/1) 0 (0) 2/3/8/9/2/5/0 (7/10/28/31/7/17/0) 0 (0) 1.00

Liver Cirrhosis, present/absent 60/25 (71/29) 0 (0) 21/8 (72/28) 0 (0) 1.00

Ascites, absent/mild/moderate 61/13/11 (72/15/13) 0 (0) 19/8/2 (66/28/7) 0 (0) 0.34

Child–Pugh score, 0/A/B/C 25/35/15/3 (29/31/18/4) 7 (8) 8/12/5/1 (28/41/17/3) 3 (10) 1.00

BCLC stage, A/B/C/D 29/36/17/3 (34/42/20/4) 0 (0) 12/6/10/1 (41/21/34/3) 0 (0) 0.17

ALBI score, 1/2/3 44/30/4 (52/35/5) 7 (8) 15/10/0 (52/34/0) 4 (14) 0.51

Number of HCC lesions, 1/2/3/ > 3 53/13/3/16 (62/15/4/19) 0 (0) 17/5/4/3 (59/17/14/10) 0 (0) 0.19

Lymph nodes metastases, present/absent 1/84 (1/99) 0 (0) 1/28 (3/97) 0 (0) 1.00

Distant metastases, present/absent 2/83 (2/98) 0 (0) 2/27 (7/93) 0 (0) 0.57
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Discussion
In the present study, we investigated whether conventional radiomics and deep-learning algorithms can predict 
OS in HCC patients based on CT data regardless of tumor stage or applied therapy and compared both methods 
for superiority. Overall, deep-learning algorithms outperformed conventional radiomics features and could help 
to predict OS. Still, the clinical Cox-regression model showed the best performance in the presented setting.

To the best of our knowledge, our study is the first radiomics analysis of CT scans for OS of HCC patients 
across all tumor stages and common therapies. Previous studies have focused on specific therapies or tumor 
stages. In addition, analyses were often based on only one contrast phase and rarely used the combination of 
HCC and liver parenchyma.

To date, the predictive power of deep-learning algorithms on CT images for predicting OS of HCC patients 
has not been comprehensively evaluated. Wang et al. reported a C-index of 0.58 for patients undergoing ste-
reotactic  radiotherapy27. Better results were observed in patients who received a TACE alone (C-indices = 0.65 
and 0.73) or a combination of TACE and sorafenib (C-index = 0.72)28–30. The C-indices of 0.63–0.71 obtained in 
the present study are in line with the listed values and thus show the potential for outcome prediction even in 
HCC patients receiving different therapeutic approaches, although no significant risk stratification was possible.

Conventional radiomics models for predicting OS of HCC patients have been evaluated more commonly 
so far. C-indices from literature range between 0.63–0.78 and 0.60–0.67 for HCC patients undergoing surgery 
or TACE,  respectively31–35. However, validation on holdout or external datasets was not always performed and 
risk stratification was not always possible. Here, the majority of our conventional radiomics models showed a 
performance close to random prediction. With a C-index of 0.66, only the best model (HCC_art) showed a value 
comparable to the literature.

Table 2.  Final signatures of the primary clinical, image-based, and combined multivariate Cox-regression 
models and their respective parameters. The hazard ratio (HR) [95% CI] and the corresponding p-values of 
the regression are shown based on the development cohort. AFP alpha-fetoprotein, art arterial phase, diff 
difference, CI confidence interval, GGT  gamma-glutamyltransferase, HCC hepatocellular carcinoma, ven 
venous phase. *Statistically significant (p < 0.05).

Primary conventional models Variables Hazard ratio [95% CI] p-value

Clinical model

GGT 1.61 [1.15–2.27] 0.01*

AFP 1.24 [0.92–1.67] 0.15

volume HCC_ven 1.17 [0.81–1.68] 0.41

Image-based model

stat_rms_liver_ven 0.72 [0.52–0.99] 0.05

szm_szhge_3d_fbn_n32_liver_diff 1.71 [1.17–2.52] 0.01*

morph_moran_i_liver_diff 0.69 [0.49–0.96] 0.03*

dzm_lde_3d_fbn_n32_liver_diff 1.26 [0.90–1.78] 0.18

morph_pca_least_axis_liver_art 1.66 [1.13–2.45] 0.01*

morph_pca_least_axis_liver_diff 1.31 [0.92–1.87] 0.14

Combined model

GGT 1.58 [1.11–2.23] 0.01*

stat_p90_liver_ven 0.88 [0.61–1.28] 0.51

szm_szhge_3d_fbn_n32_liver_diff 1.70 [1.11–2.60] 0.02*

dzm_lde_3d_fbn_n32_liver_diff 1.18 [0.83–1.67] 0.35

stat_max_HCC_diff 1.30 [0.92–1.83] 0.14

ih_min_grad_fbn_n32_liver_ven 0.92 [0.62–1.36] 0.56

morph_pca_least_axis_liver_diff 1.17 [0.80–1.72] 0.42

Table 3.  Final performance of the Cox-regression models in development and independent validation: 
C-indices [95% CI] and p-values for risk stratification. art arterial phase, CI confidence interval, HCC 
hepatocellular carcinoma, ven venous phase. *Statistically significant (p < 0.05).

Development cohort Validation cohort

C-index [95% CI] p-value C-index [95% CI] p-value

Primary conventional models

Clinical model 0.69 [0.58–0.78] 0.045* 0.74 [0.57–0.86] 0.031*

Image-based model 0.75 [0.68–0.81]  < 0.001* 0.51 [0.30–0.73] 0.66

Combined model 0.75 [0.65–0.83]  < 0.001* 0.55 [0.40–0.69] 0.89

Supplementary conventional models

HCC_art 0.63 [0.53–0.73] 0.58 0.66 [0.48–0.79] 0.69

HCC_ven 0.62 [0.52–0.71] 0.24 0.53 [0.36–0.71] 0.57

liver_art 0.65 [0.54–0.76] 0.14 0.54 [0.30–0.74] 0.46

liver_ven 0.71 [0.61–0.80] 0.013* 0.46 [0.23–0.67] 0.62
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Each deep-learning image-based model outperformed its conventional radiomics counterpart with statisti-
cally significance for the venous liver model (liver_ven), leading us to the conclusion that deep-learning may 
offer an enhanced prognostic utility. The main reason for the limited performance of the conventional radiomics 
approach may be the heterogeneous study cohort. Previous studies reported lack of reproducibility of hand-
crafted radiomics features between different CT scanners, acquisition and reconstruction  parameters8,36–39. As we 
used CT data from 24 different scanners, acquisition parameters were heterogeneous, which may have negatively 
affected reproducibility of radiomics features. In contrast, features extracted from deep-learning may be more 
 robust40. This observation aligns with findings from a comparative study on head and neck cancer OS predic-
tion, which demonstrated that deep learning models exhibit superior generalizability across different institutions 
compared to conventional radiomics  approaches41. Overall, the clinical model based on Cox-regression was 
superior to all imaging approaches with significantly different OS between the stratified risk groups suggesting 
a high importance of clinical factors for generalized prediction models. The parameters of the final signature, 
consisting of GGT, AFP and the HCC volume, have a known impact on the prognosis of affected patients. 
Elevated GGT levels may indicate liver damage, such as chronic hepatic parenchymal remodeling or  HCC42, 
and are associated with OS in  HCC43,44. AFP is the most common serum marker in HCC, with higher AFP levels 
associated with poorer  OS45,46. HCC volume is associated with tumor malignancy and infiltrative  behavior47. 
Wu et al. point out that tumor size at diagnosis is an independent prognostic factor for OS, irrespective of tumor 
grade, stage, or treatment  selected48. Our results support these findings. However, other parameters, such as the 
MELD-Score were not included in the clinical model. Although this factor has been identified as predictor of 
HCC  prognosis49, within the scope of our multi-step machine learning workflow and the heterogeneity of our 
patient cohort, the inclusion of additional clinical parameters did not give benefit to the predictive performance 

Figure 2.  Kaplan–Meier survival curves of patients stratified into risk groups (cutoff value = 1.024 years) by the 
clinical model in the development and validation cohort. Differences in OS between low- and high-risk groups 
were evaluated by the log-rank test.

Table 4.  Final performance of the deep-learning-based models in development and independent validation: 
C-Indices [95% CI] and p-values for risk stratification. art arterial phase, CI confidence interval, HCC 
hepatocellular carcinoma, ven venous phase. *Statistically significant (p < 0.05).

Development cohort Validation cohort

C-index [95% CI] p-value C-index [95% CI] p-value

Primary deep-learning models

Clinical model 0.74 [0.69–0.81]  < 0.001* 0.58 [0.40–0.76] 0.92

Image-based model HCC (HCC_
art + HCC_ven) 0.60 [0.50–0.69] 0.45 0.69 [0.44–0.84] 0.42

Image-based model liver (liver_art + liver_
ven) 0.72 [0.63–0.80]  < 0.001* 0.65 [0.37–0.86] 0.40

Combined model 0.65 [0.57–0.72] 0.029* 0.62 [0.41–0.81] 0.18

Supplementary deep-learning models

HCC_art 0.60 [0.50–0.70] 0.54 0.71 [0.49–0.88] 0.42

HCC_ven 0.66 [0.57–0.75] 0.078 0.63 [0.39–0.83] 0.18

liver_art 0.73 [0.62–0.81]  < 0.001* 0.63 [0.43–0.79] 0.86

liver_ven 0.68 [0.58–0.80] 0.037* 0.65 [0.39–0.80] 0.17
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and its generalizability. As lack of clinical data continues to be a non-negligible problem in patient care in some 
cases, the development of image parameter-based deep-learning and conventional radiomics models is essen-
tial. Therefore, further studies in larger patient groups are essential to further explore the comparative potential 
between image-based algorithms and clinical models.

Interestingly, the clinical deep-learning model was outperformed by the clinical Cox-regression model, 
although the difference was not statistically significant. One potential explanation for this finding is that the 
clinical deep-learning model may not have been fully optimized. Specifically, overfitting on the development 
cohort was observed, which suggests that further refinement and optimization of the model hyperparameters 
may lead to a better performance on future datasets.

The complexity of deep-learning models raises questions about their value for OS prediction. To increase the 
value of deep-learning models for OS prediction, the models should be interpretable and easily to understand and 
rely on for physicians. To improve the interpretability of the deep-learning models, their output was correlated 
with the conventional radiomics features. For the HCC model, a high correlation with the HCC volume was 
observed (Spearman R = 0.94), indicating that an increase in HCC volume corresponds to lower OS. This find-
ing is consistent with the results of the clinical Cox-regression model of this study. Similarly, predictions of the 
liver model were associated with liver volume (R = 0.86), suggesting that an increase in liver volume corresponds 
to lower OS. This finding contradicts the expectation that progressing cirrhosis is associated with a decreasing 
liver volume leading to lower  OS50. Future research should aim to better understand the complex patterns that 
deep-learning algorithms can detect.

There are some limitations of this study. First, it was a retrospective study with a small sample size of 114 
patients with limited follow-up duration. Especially for CNNs, the limited sample size increases the risk of 
overfitting and reduces result reliability. However, multiple strategies were employed to minimize the risk of 
overfitting despite the limited sample size: (i) early stopping of the training process using cross-validation; (ii) 
masking the CT image to the ROI to prevent overfitting on surrounding anatomical structures; (iii) architectural 
considerations like batch normalization, the use of dropout layers and pooling layers and data augmentation; (iv) 
ensemble prediction by averaging the output from 45 individually trained models for the final prediction. The 
small resulting differences of CNN performances between the development and validation cohort suggest that 
overfitting is unlikely, despite the limited sample size. Second, the study population has high heterogeneity in 
terms of various factors such as applied treatment, CT acquisition protocols, and HCC tumor stages. While this 
heterogeneous group reflects everyday clinical practice, it may also limit the generalizability of the findings, as 
the specific distribution of clinical characteristics and treatment approaches may differ significantly across clin-
ics. In addition, 1/85 and 1/29 patients in the development and validation cohort, respectively, were expected to 
die from treatment-related causes. Due to this minority, the impact on the developed models can be considered 
negligible. Third, not all clinical parameters were available and only the largest lesion was segmented in multifo-
cal HCC. Whole tumor burden analysis may improve the efficiency of OS prediction, although all HCC lesions 

Figure 3.  Comparison of C-indices between the conventional radiomics and the deep-learning models in the 
validation cohort. Positive values indicate better performance of the conventional approach, whereas negative 
values indicate better performance of the deep-learning approach. The whiskers represent the 95% confidence 
interval. The horizontal line within the distributions illustrates the median value. For the comparison of the 
HCC and liver models, the primary radiomics model was used. *Statistically significant (p < 0.05).
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were included as the entire liver parenchyma was additionally segmented. Fourth, in the deep-learning models, 
the analysis was conducted on the masked CT images, which may introduce bias towards the volume of the 
regarded ROI and could potentially exclude areas with prognostic value in the peritumoral  region51. However, 
the utilization of masked images may also result in the reduction of background information. This compels the 
model to prioritize important areas within the image. As a result, this approach has the potential to enhance 
both the reliability and quality of the model’s  outputs52. Moreover, this approach ensures that the conventional 
radiomics and deep-learning models are based on similar data, which enables a more equitable comparison. 
Fifth, all segmentations were derived manually by a single radiologist and subjective bias cannot be excluded. 
Therefore, further studies on a large sample size are needed to increase the reliability of the results.

In conclusion, deep-learning algorithms showed superiority over conventional radiomics for predicting OS 
in patients with HCC across a wide spectrum of therapies, tumor stages and CT acquisition protocols. In total, 
they showed comparable performance to previously presented models, which were, however, adjusted to therapy 
subgroups. The results advocate the development of deep-learning models in the clinical prognosis of HCC 
patient survival on a larger scale and may provide important information in the clinical setting, especially when 
clinical data is limited.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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