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Systematic study 
on the dependence 
of the warm‑start quantum 
approximate optimization 
algorithm on approximate 
solutions
Ken N. Okada 1*, Hirofumi Nishi 2,3, Taichi Kosugi 2,3 & Yu‑ichiro Matsushita 2,3,4

Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum‑classical 
algorithm to solve combinatorial optimization problems in the era of noisy intermediate‑scale 
quantum computers. Recently it has been revealed that warm‑start approaches can improve the 
performance of QAOA, where approximate solutions are obtained by classical algorithms in advance 
and incorporated into the initial state and/or unitary ansatz. In this work, we study in detail how the 
accuracy of approximate solutions affects the performance of the warm‑start QAOA (WS‑QAOA). We 
numerically find that in typical MAX‑CUT problems, WS‑QAOA achieves higher fidelity (probability 
that exact solutions are observed) and approximation ratio than QAOA as the Hamming distance of 
approximate solutions to the exact ones becomes smaller. We reveal that this could be quantitatively 
attributed to the initial state of the ansatz. We also solve MAX‑CUT problems by WS‑QAOA with 
approximate solutions obtained via QAOA, having higher fidelity and approximation ratio than QAOA 
especially when the circuit is relatively shallow. We believe that our study may deepen understanding 
of the performance of WS‑QAOA and also provide a guide as to the necessary quality of approximate 
solutions.

The last decade has seen significant technological progress in manufacturing hardware platform of quantum 
 computers1. The current pace of scale-up in quantum devices raises a hope that quantum processors with hun-
dreds or thousands of physical qubits could be available within the next decade. These near-term quantum com-
puters are referred to as noisy intermediate-scale quantum (NISQ)  computers2 in that they are classically intrac-
table, but still not sufficiently large to implement quantum error correction. As the NISQ era approaches, there 
have been an increasing number of researches that develop algorithms to efficiently leverage NISQ  devices3–5. 
They are designed to solve quantum many-body problems in chemistry and physics as well as classical problems 
in combinatorial optimization and machine learning. Most of these studies employ hybrid quantum-classical 
approaches, primarily variational quantum  algorithms6,7. In these algorithms, variational quantum states are 
created via parametrized quantum circuits on a quantum computer, whereas the parameters are updated on a 
classical computer to optimize the objective function calculated with the measurement outcomes. Since vari-
ational quantum algorithms generally take a relatively low number of gate operations, they are considered as 
suitable to gain quantum advantage on NISQ computers.

Quantum approximate optimization algorithm (QAOA)8, a representative example of variational quantum 
algorithms, solves combinatorial optimization problems in a spirit analogous to adiabatic quantum annealing 
(QA)9–11. The variational state (ansatz) of QAOA can be deduced by applying the Trotter decomposition to the 
time evolution of QA and allowing the time step of each term to vary. Despite some numerical demonstrations 
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of its efficacy in small-size  problems12,13, it has been a subject of discussions whether QAOA could practically 
outperform the best classical  algorithms14,15. Several kinds of variants have been proposed to improve upon the 
original version of  QAOA16–22. To name a few, Farhi et al. proposed a variant of the ansatz by allowing different 
parameters for each rotation  gate16. Hadfield et al. extended the ansatz by generalizing mixer operations, which 
could be suitable to optimization problems with  constraints19.

A promising variant that our work will focus on is the warm-start QAOA (WS-QAOA) proposed by 
Egger et al.21 and Tate et al.22. The warm-start approach adjusts the distribution of bit strings in the initial state 
of the ansatz away from the equal superposition for standard QAOA to increase the amplitude of a classically-
obtained approximate solution. Both of Refs.21  and22 showed enhancement of the solution quality relative to the 
original version of QAOA particularly for small depth. Egger et al. encode rounded/unrounded semidefinite 
programming solutions into the initial state as well as the mixer term in the  ansatz21. They numerically showed 
improvement in the optimized energy and fidelity compared to standard QAOA in portfolio optimization prob-
lems by warm-starting QAOA with classically-obtained continuous solutions. They also solved MAX-CUT 
problems by WS-QAOA with rounded solutions produced by the Goemans-Williamson algorithm and observed 
maximum cuts more often than standard QAOA in the recursive procedure developed in Ref.15. Tate et al. also 
encode semidefinite programming relaxations into the initial state, but not the unitary  circuit22. They observed 
improvement in the approximation ratio relative to standard QAOA for MAX-CUT problems on weighted and 
unweighted graphs by using WS-QAOA with relaxed solutions obtained by the Burer-Monteiro algorithm. We 
also mention that a similar warm-start approach has been independently studied in  QA23. Meanwhile, it has 
been reported that WS-QAOA typically shows no improvement if the initial state is strictly a classical  string24.

In this paper, we examine how the performance of WS-QAOA depends on quality of approximate solutions to 
make a deep understanding of its efficacy. In Refs.21,22, the authors solved problems with WS-QAOA by acquir-
ing approximate solutions by classical algorithms. Meanwhile, it remains unclear how accurate approximate 
solutions should be for WS-QAOA to outperform QAOA. Here we deduce the ansatz of WS-QAOA starting 
from QA with a bias  field23 and carefully study how the performance of WS-QAOA depends on the quality of 
approximate solutions by numerical simulations on the MAX-CUT problem. We find out that WS-QAOA shows 
higher fidelity and approximation ratio than QAOA as the Hamming distance of the approximate solutions to the 
exact ones becomes smaller. We also reveal that the observation could be partially attributed to the initial state of 
the ansatz. Finally, we solve the MAX-CUT problem with WS-QAOA after obtaining approximate solutions by 
QAOA and have higher fidelity and approximation ratio than QAOA especially when the circuit depth is small.

The rest of the paper is organized as follows. In Sect. 2, we formulate WS-QAOA in the context of QA. Then, 
in Sect. 3, we numerically study the performance of WS-QAOA on the MAX-CUT problem for various approxi-
mate solutions in terms of the Hamming distance to the exact solutions as well as for different strengths of the 
bias field. In Sect. 4, we solve the MAX-CUT problem by combining WS-QAOA with QAOA and compare its 
efficacy to QAOA. Finally, in Sect. 5, we summarize our results.

Formulation
MAX‑CUT problem
As a prototypical combinatorial optimization problem, we consider the MAX-CUT problem, which is known as 
NP-hard. It is defined on a graph G = (V ,E) , where V represents a set of vertices, and E represents a set of edges 
between the vertices. We denote the number of vertices in G as n. The MAX-CUT problem is to find a partition 
of V into two subsets that maximizes the total number of edges between one subset and the other. In a general 
case that each edge is associated with a real-valued weight wij , one evaluates the weighted sum of those edges. 
The problem is formulated as maximization of the following objective function

where xi denotes a binary variable associated with vertex i (xi = 0, 1) . We note that bit strings {xi} and {xi} 
( xi ≡ 1− xi ) give the same value of C. In the following, we denote {xsoli } and {xsoli } as the single pair of solutions.

In the language of physics, the MAX-CUT problem is encoded in finding the ground state of the correspond-
ing Ising Hamiltonian, which is obtained by replacing xi for (1− Zi)/2 (Z: the Pauli Z matrix) in the objective 
function C and changing the whole sign. The Hamiltonian reads

where the constant term

is left off.

QAOA
QAOA searches for the ground state of the Hamiltonian HC using a QA-inspired ansatz with 2p variational 
parameters for depth p8. The ansatz is constructed by alternating applications of the driver operation UC and 
mixer operation UT to the equal-weight superposition state |+�⊗n . It is written down with variational parameters 
βs and γs (1 ≤ s ≤ p) as

(1)C({xi}) =
∑

(i,j)∈E

wij(xi(1− xj)+ xj(1− xi)),

(2)HC =
∑

(i,j)∈E

wij

2
ZiZj ,

(3)D = −
∑

(i,j)∈E

wij

2
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Here the driver and mixer are defined as UC(γs) = e−iγsHC and UT(βs) = e−iβsHT , respectively, where 
HT = −

∑

i Xi (X: the Pauli X matrix) represents a transverse-field term. One can deduce the ansatz 
∣

∣�QAOA

〉

 
via the Trotter decomposition of the QA procedure and parametrization of each time step. In QA, the wave 
function evolves under the Hamiltonian

with a schedule function u(t) ( u(0) = 0 and u(T) = 1).

WS‑QAOA
QA has had considerable success in solving combinatorial optimization  problems9–11. However, when gap clos-
ing occurs during the annealing, it often gets stuck at suboptimal solutions. Reverse QA is an effective variant 
to circumvent this challenge, which incorporates in the annealing process an approximate solution obtained in 
 advance25. In this procedure, the state adiabatically evolves from the approximate solution at the beginning to the 
exact solution at the end, driven by quantum fluctuations of a transverse field with a mountain-like time profile. 
The dynamics is described by the Hamiltonian HRQA(t) = (1− t/T)HI + h(t)HT + (t/T)HC (0 ≤ t ≤ T) , where 
HI yields the approximate solution as the ground state, and h(t) is a concave function with h(0) = h(T) = 0 . It 
was shown that the performance of reverse QA is largely dominated by the Hamming distance of the approximate 
solution from the exact  one25.

Recently Graß23 proposed a similar but simpler QA procedure to make use of an approximate solution, which 
introduces a longitudinal bias field that favors the approximate solution. The procedure, which we call biased 
quantum annealing (BQA) hereafter, is governed by the Hamiltonian

where HL represents a site-dependent longitudinal field defined as

Here x0i  represents the i-th bit in the bit string of an approximate solution {x0i } , and α denotes strength of the 
bias field. The author numerically showed that BQA achieves higher fidelity than QA in small instances of the 
exact-cover problem when one prepares approximate solutions that are close enough to the exact solutions in 
terms of the Hamming  distance23.

Here we formulate a QAOA version of BQA, which actually corresponds to WS-QAOA21,22. One can derive 
the ansatz via the Trotter decomposition of BQA under the Hamiltonian HBQA(t) and parametrization of each 
time step in the same manner as one deduces 

∣

∣�QAOA

〉

 from HQA(t) . Then the WS-QAOA ansatz is represented as

where UL is defined as UL(βs) = e−iβsHL . The initial state |�0� is written down as

RY (θ) = ei(θ/2)Y (Y: the Pauli Y matrix) represents a θ-rotation around the y-axis. For α = 0 , 
∣

∣�WS−QAOA

〉

 cor-
responds to the QAOA ansatz 

∣

∣�QAOA

〉

 . The WS-QAOA ansatz 
∣

∣�WS−QAOA

〉

 is almost identical to that in Ref.21 
except a small difference in representation of the mixer; the latter implements e−iβs(HT+HL) with three layers of 
rotation gates, whereas the former uses a decomposed form e−iβsHTe−iβsHL with two layers.

Numerical simulations
In this section, we examine how the WS-QAOA performance varies with choice of approximate solutions {x0i } . 
For that purpose, we numerically study the MAX-CUT problem on weighted 3-regular (w3R)  graphs13,26. In 
w3R graphs, each vertex is connected to three others chosen at random, and each edge has weight wij randomly 
set from [0, 1). We employ a fast quantum circuit simulator  Qulacs27.

For optimization of the parameters, we use two methods, random initialization (RI) and an interpolation-
based heuristic termed  INTERP13. In RI, we take the best sample out of 50 randomizations of the initial values. 
Given the translational symmetry of the ansatz 

∣

∣�WS−QAOA

〉

 , initial values of βs are set from [−π
4 ,

π
4 ) for α = 0 , 

[−π
2 ,

π
2 ) for α = 1 , and [−π ,π) otherwise, whereas those of γs are set from [−2π , 2π) . On the other hand, in 

INTERP, the parameters are optimized incrementally from depth 1 to depth p. Here initial values of the param-
eters at depth p, βs[p] and γs[p] (1 ≤ s ≤ p) , are uniquely determined via an interpolation of the optimized values 
at depth p− 1 as βs[p] = s−1

p−1βs−1[p− 1] +
(

1− s−1
p−1

)

βs[p− 1] ( β0[p− 1] = βp[p− 1] = 0 ). It has been 
revealed that INTERP works more efficiently than RI for QAOA on w3R  graphs13. In this work, based on our 
benchmark calculations, we choose a better method, depending on α , p. For QAOA ( α = 0 ), we use INTERP. 
For WS-QAOA, with α = 0.4 , we use INTERP, whereas, with α = 1 , we use RI at p ≤ 3 and INTERP at p = 4 . 

(4)
∣

∣�QAOA

〉

=

p
∏

s=1

UT(βs)UC(γs)|+�⊗n.

(5)HQA(t) = (1− u(t))HT + u(t)HC

(6)HBQA(t) = (1− u(t))(HT +HL)+ u(t)HC,

(7)HL = −α
∑

i

(

1− 2x0i
)

Zi .

(8)
∣

∣�WS−QAOA

〉

=

p
∏

s=1

UT(βs)UL(βs)UC(γs)|�0�,

(9)|�0� =

n
∏

i=1

⊗RY

(

−
π

2
+

(

1− 2x0i
)

tan−1 α

)

|0�.
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We note that, regardless of α( = 0) , we use RI when {x0i } corresponds to the exact solution. In large instances of 
practical interest where exact solutions are unknown, one would choose either of the methods only according 
to α and p. In both methods, parameters are updated via a gradient descent until the gradient becomes lower 
than a certain threshold value.

In WS-QAOA, we set approximate solutions {x0i } by flipping d bits randomly selected from n bits in the solu-
tion {xsoli } . In other words, d represents the Hamming distance of {x0i } to {xsoli } . Figure 1 show the optimized 
parameters of QAOA (α = 0) , and WS-QAOA with α = 0.4, 1 for d = 1 on 50 graph instances of n = 10 . Fig. 1a,d 
show that in QAOA, βs ( γs ) decreases (increases) with s, which resembles the process of  QA13. We observe a 
similar trend in WS-QAOA with α = 0.4 in Fig. 1b, e. Meanwhile, when α = 1 , the parameters are not mono-
tonic against s, which may reflect that the property of QA declines as α becomes larger. Moreover, the optimized 
parameters do not seem transferable between instances for α = 1 (Fig. 1c,f) in comparison to those for QAOA 
(Fig. 1a,d) and α = 0.4 (Fig. 1b,e). We think that further studies would be needed on parameter  transferability28,29 
for WS-QAOA.

We compare the performance of WS-QAOA to that of QAOA. As a performance indicator, we use the fidelity 
of the optimized ansatz 

∣

∣�WS−QAOA

〉

 . We define the fidelity of a wave function |�� as

Later, we also discuss our results in terms of approximation ratio, defined as r = −(��|HC|�� + D)/C({xsoli }) . In 
Fig. 2a, F of WS-QAOA with α = 0.4 at p = 3 is plotted against that of QAOA on 50 graph instances of n = 14 . 

(10)F = |

〈

{xsoli }|�

〉

|2 + |

〈

{xsoli }|�

〉

|2.
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Figure 1.  Optimized βs and γs of (a,d) QAOA and WS-QAOA with (b,e) α = 0.4 and (c,f) α = 1 for d = 1 on 
50 instances of w3R graph ( n = 10 ). The ansatz depth is p = 3 . The parameters are optimized by INTERP in 
(a,b,d,e) and RI in (c,f).
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In the following, we focus on α = 0.4, 1 . We refer to Sect. I of SM for a closer look at α dependence. Figure 2a 
indicates that the relative performance of WS-QAOA against QAOA is dominated by the Hamming distance 
d. Importantly, FWS−QAOA becomes higher as d decreases. We find that WS-QAOA outperforms QAOA in all 
cases for d ≤ 2 and in most cases for d = 3 (Fig. 2a). We note that FWS−QAOA is always almost unity for d = 0 . 
The enhanced fidelity with the decrease in d has also been observed in  BQA23.

Success of WS-QAOA with small d is also manifested in the bit string with highest probability, {xhpi } , in the 
optimized ansatz. Figure 2b shows the histogram over d and the Hamming distance of {xhpi } to {xsoli } , dhp , on 50 
instances of n = 14 . One can see that the closer the approximate solution is to the exact solution, the more likely 
{x

hp
i } is to correspond with the exact solution ( dhp = 0 ) (Fig. 2b). It is notable that for d = 4 , the optimized ansatz 

still yields the solution as the highest-probability string in about a half of the instances.
We proceed to study the graph size dependence. In Fig. 3a,c, the averaged fidelity of WS-QAOA at p = 3 

is shown against the number of vertices n, together with that of QAOA ( α = 0 ). Figure 3a,c correspond to 
α = 0.4 and α = 1 , respectively. We present the entire data for p = 1− 4 in Sect. II of SM. In both WS-QAOA 
and QAOA, F shows a nearly exponential decay with n, but importantly it decreases less steeply in WS-QAOA 
than in QAOA. As a result, with larger n, WS-QAOA outperforms QAOA with even larger d. We also compare 
α = 0.4 and α = 1 . Figure 3a,c indicate that as d increases incrementally, fidelity decreases roughly by a constant 
multiplicative factor (aside from d = 0 → 1 ) and that the factor is smaller for α = 0.4 than for α = 1 . These 
features seem to stem from the initial state at least in part. In Fig. 3b,d, we present the fidelity of |�0� for α = 0.4 
and α = 1 , which is derived from Eqs. (10) and (9) with |�� = |�0� as

In Fig. 3b,d, one can observe similar behaviors to Fig. 3a,c, although the magnitude of the fidelity is significantly 
improved by the optimized circuit.

We also present the n dependence of approximation ratio r with p = 1− 4 in Fig. 4. Figure 4a–d correspond 
to α = 0.4 , and Fig. 4e–h to α = 1 . As in the case of fidelity F (Fig. 3), WS-QAOA has higher r than QAOA 
when the Hamming distance d is sufficiently small. r of WS-QAOA also decreases as d increases. Notably, r of 
WS-QAOA tends to increase with n as opposed to F.

The calculations above indicate how close approximate solutions should be to the exact solutions for WS-
QAOA to outperform QAOA. From the graph size dependence of the fidelity (Fig. 3a,c, and S2) as well as the 
approximation ratio (Fig. 4), we estimate the critical Hamming distance of {x0i } , dc , which determines whether 
WS-QAOA outperforms QAOA or not. For example, we estimate dc = 3 for n = 12,α = 0.4 from the fidelity 
data in Fig. 3a. Figures 5a and 5b show dc scaled by the graph size n for α = 0.4 and α = 1 , respectively. The blue 

(11)
F0 = cos2d
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π
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Figure 2.  Performance of WS-QAOA with α = 0.4 at p = 3 on 50 instances of w3R graph ( n = 14 ). d 
represents the Hamming distance between the approximate solution {x0i } and exact one {xsoli } . (a) Fidelity of 
WS-QAOA ( FWS−QAOA ) versus that of QAOA ( FQAOA ). The dotted line corresponds to FWS−QAOA = FQAOA . 
(b) Histogram over d and dhp . dhp is the Hamming distance of {xhpi } to {xsoli } . The dotted line corresponds to 
dhp = d.
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(red) points represent dc/n for fidelity (approximation ratio). For fidelity, dc/n ranges within [0.2, 0.3) for α = 0.4 , 
whereas it hovers from 0.1 to 0.25 for α = 1 . For approximation ratio, dc/n is smaller, mostly within [0.1, 0.25) 
for α = 0.4 and [0.05, 0.2] for α = 1 . The important implication with respect to scalability is that the Hamming 
distance d could be allowed to scale linearly with n when d/n is below those threshold values.

We also theoretically derive dc/n for the fidelity of the initial state |�0� starting from F0(α) = F0(α = 0) (see 
Sect. III of SM), which reads
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Figure 3.  (a,c) Graph size dependence of the average fidelity obtained by WS-QAOA with different d compared 
to QAOA ( α = 0 ) for p = 3 . (a) corresponds to α = 0.4 and (c) to α = 1 . The fidelity is averaged over 50 
instances for n ≤ 14 , 20 for n = 16 , 15 for n = 18 , and 10 for n = 20 . The error bar represents standard error of 
the mean. (b,d) Calculated fidelity for the initial state of the ansatz, Eq. (11). (b) corresponds to α = 0.4 , (d) to 
α = 1 and black lines to QAOA ( α = 0).
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We draw the curve of Eq. (12) in Figs. 5. One can see that in both α , dc/n estimated from the actual fidelity is 
smaller than the theoretical curve for the initial state. This indicates that QAOA gains more fidelity by the opti-
mized unitary circuit than WS-QAOA.

We also study how much or whether WS-QAOA improves approximation ratio as compared to approximate 
solutions employed in WS-QAOA. Figure 6 display the graph size dependence of approximation ratio r for 
WS-QAOA as well as approximate solutions employed {x0i } with d = 0− 5 . Fig. 6a–f correspond to α = 0.4 and 
Fig. 6g–l to α = 1 . In most cases, WS-QAOA yields higher approximation ratio on average than approximate 
solutions for d ≥ 2 with p ≥ 1 (Figs. 6c–f, 6i–l) and d = 1 with p ≥ 2 (Fig. 6b, 6h). This makes it clear that WS-
QAOA helps to improve upon the approximate solutions obtained in advance.

Finally, to see the scalability of the methods, we examine the minimal depth p that reaches a target approxima-
tion ratio, pmin . Here we set the target approximation ratio as rt = 0.878 , the value guaranteed by the classical 
Goemans-Williamson algorithm for MAX-CUT  problems30. In Figs. 7a and 7b, we plot pmin as a function of 
n for WS-QAOA with α = 0.4 and α = 1 , respectively, along with that for QAOA. Figure 7 show that p can be 
smaller for WS-QAOA with d ≤ 1 than for QAOA to reach the target approximation ratio. Meanwhile, since 
our data are limited to n ≤ 20 and p ≤ 4 due to finite computational resources, it seems difficult to discuss the 
size dependence for the vanilla and warm-start approaches from Figs. 7. We expect that one could reveal the 
scalability by increasing n and p significantly.

WS‑QAOA combined with QAOA
In the previous section, we studied the dependence of the WS-QAOA performance on approximate solutions 
and revealed that their Hamming distance to the exact solutions plays a crucial role. In this section, we solve 
the MAX-CUT problem with WS-QAOA while finding approximate solutions by QAOA. This resembles the 
approach in the previous study of BQA, where approximate solutions are obtained by QA  beforehand23.

In Fig. 8, we depict a flow diagram of our procedure. We call this procedure QAOA+WS hereafter. First, we 
solve the problem using QAOA and pick up M bit strings with highest probabilities, {xmi } ( m = 0, ...,M − 1 ), 
based on the distribution PQAOA from 

∣

∣�QAOA

〉

 . Then we conduct WS-QAOA with {xmi } as an approximate 
solution and obtain the distribution PmWS−QAOA from 

∣

∣�WS−QAOA

〉

 . At the end, we obtain the final distribution 
PQAOA+WS by averaging out M distributions PmWS−QAOA.

We compare the fidelity of QAOA+WS to that of QAOA. The fidelity of QAOA+WS is calculated as the average 
over the fidelities of M runs of WS-QAOA. Figures 9 present fidelities of QAOA+WS with α = 0.4 against those 
of QAOA over 50 graph instances of n = 20 . In Fig. 9a,b, we set M = 3 and M = 8 for QAOA+WS, respectively. 
We note that if the exact solutions are included in M approximate solutions, we drop them off, considering that 
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d = 0 almost always yields the perfect fidelity (Figs. 2a, 3a). For M = 3 , QAOA+WS shows a sizable variance of 
the fidelity especially as p increases. It shows a better performance for most instances than QAOA at p = 1 , but 
not necessarily at p ≥ 2 . Meanwhile, for M = 8 , QAOA+WS shows a smaller variance and outperforms QAOA at 
p ≤ 3 for most instances. Smaller variance with larger M seems to be natural, because the approximate solutions 
are more likely to have a wide range of the Hamming distance to the exact solutions as M increases.

We also study the graph size dependence. Figure 10 present the fidelity of QAOA+WS with α = 0.4 along with 
that of QAOA plotted against the number of vertices. In Fig. 10a–d, we set p = 1− 4 , respectively. The fidelity is 
averaged over 50 graph instances for n = 10, 12, 14, 20 , 20 for n = 16 , and 15 for n = 18 . Importantly, the fidel-
ity decays more slowly with n in QAOA+WS than in QAOA for p = 1− 4 (Fig. 10). As a result, QAOA+WS on 
average outperforms QAOA for all M as n increases; for n ≥ 10 at p = 1 , n ≥ 14 at p = 2 , n ≥ 16 at p = 3 , and 
n = 20 at p = 4 . It should be also mentioned that QAOA+WS becomes more beneficial for smaller p, because 
the difference in the decay with n seems to decrease as p increases.

We also evaluate the performance of QAOA+WS by approximation ratio. As in the fidelity, the approximation 
ratio r for QAOA+WS is estimated by averaging out r for M runs of WS-QAOA. Figure 11a–d show the graph size 
dependence of r for p = 1− 4 , respectively. QAOA+WS achieves higher r than QAOA except for n = 10, p = 4 . 
As in the fidelity (Fig. 10), the difference in r increases with n and decreases as p increases. It should be noted 
that r of QAOA+WS has a tendency to increase with n as opposed to F (Fig. 10).

We present the minimal depth for the target approximation quality for QAOA+WS. Figure 12 shows pmin 
for QAOA+WS with M = 1 as well as QAOA as a function of n (see Sect. 3 for the definition of pmin ). One can 
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Figure 7.  Minimal p that reaches the target approximation ratio rt = 0.878 plotted as a function of n for 
WS-QAOA with (a) α = 0.4 and (b) α = 1.

Figure 8.  Flow diagram of QAOA+WS.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1167  | https://doi.org/10.1038/s41598-023-50406-8

www.nature.com/scientificreports/

see that the minimal p is smaller for QAOA+WS than for QAOA (Fig. 12). We note that, as in Fig. 7, it is hard 
to discuss the scalability of the results due to the limited range of n and p.

As indicated in Fig. 12, QAOA+WS needs lower circuit depth to reach certain solution qualities than 
QAOA. Meanwhile, we should remember that QAOA+WS needs more variational circuits than QAOA, where 
QAOA+WS involves (M + 1) circuits ( 2p(M + 1) variational parameters) in comparison to a single circuit (2p 
variational parameters) for QAOA (Fig. 8). In small instances, one may rather use QAOA than QAOA+WS 
because pmin might be small enough for QAOA to be reliably executed on current NISQ devices. However, 
pmin would be much larger for large problems of practical interest. Then one can expect that it would be more 
important to reduce the circuit depth than the number of variational circuits, considering that circuit fidelity 
exponentially decreases with depth on NISQ devices due to hardware noise. In such cases, QAOA+WS could 
be more advantageous than QAOA.

It should be mentioned that approximate solutions fed to WS-QAOA can be obtained by classical solvers 
instead of QAOA as in Refs.21,22. When classical methods give better solution qualities than QAOA, there is not 
much reason for employing QAOA to obtain approximate solutions. Even when classical methods give solu-
tion qualities comparable to QAOA, using classical methods for approximate solutions might be still preferable 
because it saves quantum resources. In light of these considerations, QAOA+WS would be beneficial in cases 
that one intends to improve upon QAOA when QAOA already provides better solution qualities than classical 
methods in the future.

Conclusion
In this work, we systematically studied how the performance of WS-QAOA depends on the quality of approxi-
mate solutions by numerical simulations on the MAX-CUT problem on w3R graphs. We found that WS-QAOA 
yields higher fidelities and approximation ratios than QAOA when one uses approximate solutions that are close 
enough to the exact solutions in terms of the Hamming distance. More specifically, WS-QAOA with α = 0.4 
( α = 1 ) produces higher fidelities on average than QAOA if the relative Hamming distance of approximate solu-
tions to the exact ones, dc/n , is below 0.2–0.3 (0.1–0.25). We also obtained theoretical curves that explain those 
properties. Furthermore, we showed that QAOA could serve as a capable way to find approximate solutions for 
WS-QAOA. We found out that WS-QAOA combined with QAOA shows higher fidelity and approximation ratio 
than QAOA specifically when the depth is limited to a small number.

We believe that our findings could allow one to make a clear understanding of the efficacy of WS-QAOA. They 
might also be helpful to determining the criteria of approximate solutions for WS-QAOA. Lastly, we mention 
several future studies of interest. In Ref.31, the authors predicted the circuit depth of standard QAOA to reach a 
certain approximation ratio for various graph symmetries by machine learning technique. It would be interest-
ing to extend their results to WS-QAOA and investigate the necessary conditions for the Hamming distance of 
the approximation solution as well as the circuit depth. In the context of industrial applications, it would be also 
intriguing to see how our results would look like for more practical optimization problems.
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Figure 11.  Graph size dependence of the approximation ratios of QAOA+WS along with QAOA at (a–d) 
p = 1− 4 . The approximation ratio r is averaged over 50 graph instances for n = 10, 12, 14, 20 , 20 for n = 16 , 
and 15 for n = 18 . For WS-QAOA in QAOA+WS, we set α = 0.4 . The error bar represents standard error of the 
mean.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1167  | https://doi.org/10.1038/s41598-023-50406-8

www.nature.com/scientificreports/

Data availibility
The data generated in this study are available from the corresponding author upon reasonable request.

Received: 2 November 2022; Accepted: 19 December 2023

References
 1. Kjaergaard, M. et al. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys. 11, 369 (2020).
 2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 3. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 

015003 (2020).
 4. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625 (2021).
 5. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
 6. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
 7. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New 

J. Phys. 18, 023023 (2016).
 8. Farhi, E., Goldstone, J., & Gutmann, S. A quantum approximate optimization algorithm. arXiv: 1411. 4028 (2014).
 9. Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008).
 10. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).
 11. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: Methods and imple-

mentations. Rep. Prog. Phys. 83, 054401 (2020).
 12. Crooks, G. E. Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv: 1811. 08419 

(2018).
 13. Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, 

and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).
 14. Hastings, M. B. Classical and quantum bounded depth approximation algorithms. arXiv: 1905. 07047 (2019).
 15. Bravyi, S., Kliesch, A., Koenig, R. & Tang, E. Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. 

Lett. 125, 260505 (2020).
 16. Farhi, E., Goldstone, J., Gutmann, S., & Neven, H. Quantum algorithms for fixed qubit architectures. arXiv: 1703. 06199 (2017).
 17. Zhu, L. et al. Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. 

Phys. Rev. Res. 4, 033029 (2022).
 18. Bärtschi, A., & Eidenbenz, S. Grover mixers for QAOA: Shifting complexity from mixer design to state preparation. In 2020 IEEE 

International Conference on Quantum Computing and Engineering (QCE), 72–82 (2020).
 19. Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 

12, 34 (2019).
 20. Wang, Z., Rubin, N. C., Dominy, J. M. & Rieffel, E. G. XY mixers: analytical and numerical results for the quantum alternating 

operator ansatz. Phys. Rev. A 101, 012320 (2020).
 21. Egger, D. J., Mareček, J. & Woerner, S. Warm-starting quantum optimization. Quantum 5, 479 (2021).
 22. Tate, R., Farhadi, M., Herold, C., Mohler, G. & Gupta, S. Bridging classical and quantum with SDP initialized warm-starts for 

QAOA. ACM Trans. Quantum Comput. 4, 1 (2023).
 23. Graß, T. Quantum annealing with longitudinal bias fields. Phys. Rev. Lett. 123, 120501 (2019).
 24. Cain, M., Farhi, E., Gutmann, S., Ranard, D., & Tang, E. The QAOA gets stuck starting from a good classical string. arXiv: 2207. 

05089 (2022).
 25. Perdomo-Ortiz, A., Venegas-Andraca, S. E. & Aspuru-Guzik, A. A study of heuristic guesses for adiabatic quantum computation. 

Quantum Inf. Proc. 10, 33 (2011).

Figure 12.  Minimal depth p to reach the target approximation ratio rt = 0.878 plotted as a function of n for 
QAOA+WS with M = 1 and QAOA.

http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1811.08419
http://arxiv.org/abs/1905.07047
http://arxiv.org/abs/1703.06199
http://arxiv.org/abs/2207.05089
http://arxiv.org/abs/2207.05089


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1167  | https://doi.org/10.1038/s41598-023-50406-8

www.nature.com/scientificreports/

 26. Amaro, D. et al. Filtering variational quantum algorithms for combinatorial optimization. Quantum Sci. Technol. 7, 015021 (2022).
 27. Suzuki, Y. et al. Qulacs: A fast and versatile quantum circuit simulator for research purpose. Quantum 5, 559 (2021).
 28. Galda, A., Liu, X., Lykov, D., Alexeev, Y., & Safro, I. Transferability of optimal QAOA parameters between random graphs. In 2021 

IEEE International Conference on Quantum Computing and Engineering (QCE), 171–180 (2021).
 29. Shaydulin, R., Lotshaw, P. C., Larson, J., Ostrowski, J. & Humble, T. S. Parameter transfer for quantum approximate optimization 

of weighted MaxCut. ACM Trans. Quantum Comput. 4, 1 (2023).
 30. Goemans, M. X. & Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using 

semidefinite programming. J. ACM 42, 1115 (1995).
 31. Shaydulin, R., Hadfield, S., Hogg, T. & Safro, I. Classical symmetries and the quantum approximate optimization algorithm. 

Quantum Inf. Process. 20, 359 (2021).

Acknowledgements
This work was supported by MEXT via the “Program for Promoting Researches on the Supercomputer Fugaku” 
(JP-MXP1020200205) and JSPS KAKENHI via the “Grant-in-Aid for Scientific Research(A)” Grant Number 
21H04553. This work was also supported in part by MEXT Quantum Leap Flagship Program (MEXTQLEAP) 
Grant No. JPMXS0120319794. Part of numerical calculation was carried out at the Supercomputer Center, 
Institute for Solid State Physics, University of Tokyo.

Author contributions
The project was conceived by K.N.O., H.N., and Y.M. K.N.O. wrote the code with help from H.N. and performed 
numerical simulations. K.N.O. conducted mathematical analyses. All authors actively discussed the results and 
contributed to preparation of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 50406-8.

Correspondence and requests for materials should be addressed to K.N.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-023-50406-8
https://doi.org/10.1038/s41598-023-50406-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Systematic study on the dependence of the warm-start quantum approximate optimization algorithm on approximate solutions
	Formulation
	MAX-CUT problem
	QAOA
	WS-QAOA

	Numerical simulations
	WS-QAOA combined with QAOA
	Conclusion
	References
	Acknowledgements


