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Genetic diversity and population 
differentiation in Earliella scabrosa, 
a pantropical species of Polyporales
Boris Armel Olou 1*, Apollon D. M. T. Hègbè 1, Meike Piepenbring 2 & 
Nourou Soulemane Yorou 1

Earliella scabrosa is a pantropical species of Polyporales (Basidiomycota) and well-studied concerning 
its morphology and taxonomy. However, its pantropical intraspecific genetic diversity and population 
differentiation is unknown. We initiated this study to better understand the genetic variation 
within E. scabrosa and to test if cryptic species are present. Sequences of three DNA regions, the 
nuclear ribosomal internal transcribed spacer (ITS), the large subunit ribosomal DNA (LSU), and the 
translation elongation factor (EF1α) were analysed for 66 samples from 15 geographical locations. 
We found a high level of genetic diversity (haplotype diversity, Hd = 0.88) and low nucleotide diversity 
(π = 0.006) across the known geographical range of E. scabrosa based on ITS sequences. The analysis of 
molecular variance (AMOVA) indicates that the genetic variability is mainly found among geographical 
populations. The results of Mantel tests confirmed that the genetic distance among populations of 
E. scabrosa is positively correlated with the geographical distance, which indicates that geographical 
isolation is an important factor for the observed genetic differentiation. Based on phylogenetic 
analyses of combined dataset ITS-LSU-EF1α, the low intraspecific divergences (0–0.3%), and the 
Automated Barcode Gap Discovery (ABGD) analysis, E. scabrosa can be considered as a single species 
with five different geographical populations. Each population might be in the process of allopatric 
divergence and in the long-term they may evolve and become distinct species.

Data on genetic variation within a population is useful to discuss species concepts, cryptic species, breeding 
patterns, degree of relatedness, differentiation, and gene pool  disruptions1–4. Low levels of genetic diversity may 
reduce the ability of populations to cope with environmental changes and other threats, leading species to become 
endangered or even  extinct5–7. High genetic diversity allows species to adapt to environmental  changes8. It is 
therefore essential to understand the genetic diversity and population structure of a species. This is important 
in particular for species with a wide geographical distribution as these may include multiple genetic lineages or 
cryptic  species9,10.

Earliella Murrill (Basidiomycota, Polyporales) includes a single species Earliella scabrosa (Pers.) Gilb. & 
Ryvarden. The species was described as Polyporus scabrosus Pers. on the basis of a specimen collected in the 
Marianas islands (exact position not known)—about 1500 km east of the Philippine islands (south of Japan) in 
the Pacific Ocean. Earliella scabrosa is a saprotrophic species that colonises dead wood. It is also reported to be 
an opportunistic pathogen of plants and humans. As a human pathogen, it can infect and cause endophthalmitis 
and cutaneous fungal septic  emboli11,12. Earliella scabrosa is also recognized as a medicinal species with anti-
cancer, antifungal and antimicrobial activities as well as wound healing  capabilities13–15. The species produces 
enzymes for the biotransformation of dyes in solid state fermentation and for the removal of bromocresol green, 
thus purifying  water16,17.

Morphologically, E. scabrosa can be easily recognized due to its effuse-reflexed basidiomata with reddish 
cuticle and irregular, elongated or sinuous  pores18. It is a common fungal species distributed all over the tropi-
cal regions of both hemispheres (Fig. 1A). Although the shape and colour of the basidiomata vary considerably 
(Fig. 1b), E. scabrosa is considered as a single species. Information on intraspecific diversity and genetic variability 
within and among populations is not available.
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Studies on many fungi previously thought to belong to a single species like Cryptococcus neoformans (San 
Felice) Vuill.19,20, Paxillus involutus (Batsch) Fr.21, Serpula himantioides (Fr.) P. Karst.22, and Trametes elegans 
(Spreng.) Fr.23,24 have been identified as species complexes that each contain two or more cryptic species. The 

Figure 1.  (A) Distribution map of Earliella scabrosa. Occurrences of all collected specimens during our 
mycological surveys as well as other occurrences available on the GBIF (Global Biodiversity Information 
Facility) website and those of the sequences obtained from the NCBI website were projected onto the map using 
the QGIS v3.28.0. (B) Morphological variability of basidiomata of Earliella scabrosa. Scale bar 2 cm.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:23020  | https://doi.org/10.1038/s41598-023-50398-5

www.nature.com/scientificreports/

above-mentioned consideration could also account for E. scabrosa with a wide distribution (pantropical), but, 
until now, we have no information on the genetic diversity within this species.

The most widely used approaches to assess genetic diversity from DNA sequences are nucleotide diversity 
and haplotype  diversity25–27. Several highly variable DNA molecular markers are used for intra- and inter-specific 
genetic characterisation in plants, animals, and  fungi28–31. In fungi, the internal transcribed spacer (ITS) region 
of nuclear ribosomal DNA has been most intensively sequenced and  used32–35. It has been widely used for species 
identification, phylogenetic analyses, and the investigation of genetic  variability36–40. In general, the fungal ITS 
marker provides higher interspecific resolution, with some degree of intraspecific  variability34,36.

The goal of this study is to examine the extent of genetic divergence within E. scabrosa throughout most its 
geographical range and discuss these results in light of the potential existence of cryptic species within this taxon. 
At present, there is no DNA sequence for African specimens of E. scabrosa in any public database. Therefore, 
we focused our attention on African specimens in order to answer the following questions: (i) Is there genetic 
variation among individuals of E. scabrosa from the same geographical area? (ii) Is there genetic differentiation 
between populations in different geographic areas? (iii) If so, is the level of genetic differentiation positively cor-
related with geographic distances? (iv) Do the different populations of E. scabrosa form a single species or does 
this species contain cryptic (hidden) species?

Materials and methods
Specimen assembly
A total of 20 specimens of E. scabrosa were collected in Benin, Congo, and Guinea. Specimens were photographed 
in their natural environment before recording using a Sony camera, model DSC-HX400V. The geographic coor-
dinates of occurrence of each specimen were recorded (Fig. 1). Small pieces of fresh basidiomata were placed 
in plastic bags half-filled with silica gel for gentle drying. The rest of the basidiomata were air- or oven-dried 
at 45–50 °C. Specimens are deposited at the mycological herbarium of the University of Parakou (UNIPAR) in 
Benin. For specimen data, see Supplementary S1.

DNA extraction, amplification, sequencing, and genetic distances analysis
DNA extraction, amplification, and sequencing
Genomic DNA from dried specimen was extracted using the microwave  method41 or Analytik Jena kit when 
the first technic did not yield good results. The extracted genomic DNA was amplified targeting two nuclear 
ribosomal DNA regions, the internal transcribed spacer region of rDNA (ITS) with the primer pair ITS-1F/
ITS442,43 and the D1–D4 domain of large subunit (LSU; 28S rDNA) with the primers LR0R/LR544. Additionally, 
the protein-coding gene translation elongation factor 1-alpha (EF1α) was amplified using the primers EF1-983/
EF1-221845. The polymerase chain reaction (PCR) procedure for ITS was as follows: initial denaturation at 95 °C 
for 3 min, followed by 35 cycles at 95 °C for 30 s, 52 °C for 30 s and 68 °C for 1 min, and a final extension at 68 °C 
for 3 min. The PCR procedure to amplify the LSU rDNA sequence differed from the one for the ITS rDNA only 
by the annealing temperature (55 °C instead of 52 °C) and an increased cycle extension time (90 s per cycle). To 
amplify the protein-coding gene EF1α, the touchdown PCR protocol following Justo and  Hibbett46 was used. 
The PCR products were further cleaned with QIAquick PCR Purification Kit according to the manufacturer’s 
instructions (QIAGEN GmbH, Hilden, Germany) and then sequenced at the company Eurofins Genomics 
Germany GmbH (https:// www. eurofi nsge nomics. eu/). All sequences used in this study are listed in Table 1 and 
the newly generated sequences deposited in GenBank.

Checking the affiliation of the name Earliella scabrosa applied to sequences in GenBank
On July 16th, 2022, all sequences of the ITS region labelled as E. scabrosa in GenBank (n = 76) were downloaded. 
The 76 ITS sequences of E. scabrosa from GenBank were aligned with 20 ITS sequences of E. scabrosa newly 
generated in this study. Sequences of the type species of the genera Daedalea and Trametes are added as outgroup. 
A maximum likelihood analysis was performed using IQ-tree 1.6.12 (http:// www. iqtree. org/). Sequences of speci-
mens from Mariana islands (type locality of E. scabrosa) are not available. However, all sequences (n = 66) of E. 
scabrosa that cluster together to form a single clade with sequences of specimens from other Pacific Ocean islands 
like French Polynesia are retained as E. scabrosa and were used for further analysis. Twenty-three sequences that 
were labelled E. scabrosa in GenBank did not form part of this clade. They are considered misidentifications and 
were not used for the present analysis (Supplementary S2).

Genetic diversity and relationships between geographic populations of Earliella scabrosa
A total of 66 ITS sequences belonging to E. scabrosa and annotated with data on geographic origin were used 
for the genetic analyses. These sequences were aligned and the resulting alignment was manually adjusted using 
Aliview. After this, the molecular diversity indices, such as the number of haplotypes (Nh), haplotype diversity 
(Hd), and nucleotide diversity (π) were estimated using pegas  package47. To detect genetic differentiation within 
and among populations of E. scabrosa, an analysis of molecular variance (AMOVA) was performed using the 
alignment of 66 ITS sequences from 15 countries. The correlation between genetic and geographic distances 
was evaluated using a Mantel  test48 and a linear regression. The phylogenetic relationships among the detected 
haplotypes are presented in a haplotype network. Statistical analyses have been implemented in the Integrated 
Development Environment RStudio (RStudio Team, 2021) for R software v4.1.2 (R Core Team, 2021).

Species delimitation within Earliella scabrosa
The same alignment with 66 sequences used in previous analyses is used here for species delimitation using 
the Automated Barcode Gap Discovery (ABGD)  analysis49. The ABGD is a model-based method that delimit 

https://www.eurofinsgenomics.eu/
http://www.iqtree.org/
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Species name Voucher or strain Origin

GenBank N°

ReferencesITS LSU EF1α

Daedalea quercina FP56429 USA KY948809 KY948883 57

Earliella scabrosa 117_01_01 Sri Lanka MT507861 58

Earliella scabrosa 216-TWTDW2 China KU194310 58

Earliella scabrosa biocode08-30 French Polynesia MZ996924 59

Earliella scabrosa biocode08-59 French Polynesia MZ996933 59

Earliella scabrosa biocode08-82 French Polynesia MZ996931 59

Earliella scabrosa biocode08-96 French Polynesia MZ996935 59

Earliella scabrosa biocode08-110 French Polynesia MZ996936 59

Earliella scabrosa biocode08-145 French Polynesia MZ996925 59

Earliella scabrosa biocode08-158 French Polynesia MZ996928 59

Earliella scabrosa biocode08-183 French Polynesia MZ996926 59

Earliella scabrosa biocode09-248 French Polynesia MZ996930 59

Earliella scabrosa biocode09-324 French Polynesia MZ996927 59

Earliella scabrosa biocode09-337 French Polynesia MZ996929 59

Earliella scabrosa biocode09-544 French Polynesia MZ996932 59

Earliella scabrosa BRFM1106 French Guiana JX082364 58

Earliella scabrosa CIRM-BRFM 1817 USA OL685338 60

Earliella scabrosa CLZhao 3722 China MK268896 58

Earliella scabrosa CLZhao 3730 China MK268897 58

Earliella scabrosa CLZhao 3989 China MH114644 58

Earliella scabrosa CLZhao 4008 China MH114645 58

Earliella scabrosa CR45 Venezuela JN164992 46

Earliella scabrosa CR95 Venezuela JN165008 46

Earliella scabrosa CrIre Venezuela JN165006 46

Earliella scabrosa Cui 6236 China KC867366 KC867485 KX838431 58

Earliella scabrosa extr19 Taiwan MH605432 58

Earliella scabrosa FBP11 Viet Nam MF521432 58

Earliella scabrosa FBP13 Viet Nam MF521433 58

Earliella scabrosa FDNa20 Viet Nam MF521434 58

Earliella scabrosa FLAS-F-61025 USA MH211697 58

Earliella scabrosa He31 China KC867365 KC867484 58

Earliella scabrosa KP1 Thailand KF860879 58

Earliella scabrosa MH_60 Pakistan MN892530 58

Earliella scabrosa NTOU5409 Taiwan MN592930 61

Earliella scabrosa NTOU5411 Taiwan MN534946 61

Earliella scabrosa NTOU5413 Taiwan MN534947 61

Earliella scabrosa NTOU5416 Taiwan MN534948 61

Earliella scabrosa NTOU5882 Taiwan MW940757 MW881468 58

Earliella scabrosa NTOU5883 Taiwan MW940758 MW881469 58

Earliella scabrosa NTOU5884 Taiwan MW940759 MW881470 58

Earliella scabrosa PR1209 Puerto Rico JN165009 58

Earliella scabrosa UOC-BIB-MB03 Sri Lanka KP734204 58

Earliella scabrosa UOC DAMIA D13b Sri Lanka KR706165 58

Earliella scabrosa UOC DAMIA D37 Sri Lanka KR706167 58

Earliella scabrosa URM7788 Brazil MG870412 62

Earliella scabrosa ZD16091703 China MN523328 58

Earliella scabrosa ZD16091705 China MN523327 58

Earliella scabrosa OAB0062 Benin ON876009 This study

Earliella scabrosa OAB0067 Benin OR116224 This study

Earliella scabrosa OAB0119 Benin OR116225 OR116239 OR148937 This study

Earliella scabrosa OAB0186 Benin OR116226 This study

Earliella scabrosa OAB0212 Benin OR116227 OR116240 OR148938 This study

Earliella scabrosa OAB0285 Benin OR116228 OR116241 OR148939 This study

Earliella scabrosa OAB0286 Benin OR116229 This study

Earliella scabrosa OAB0626 Benin OR116230 This study

Continued
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partitions of taxa, which can be recognized as species  entities49. It sorts the sequences into hypothetical species 
based on the barcode gap. The ABGD analysis was performed using the Jukes-Cantor (JC69) distance with the 
relative gap width set to 1.0 and all other parameters were kept in default mode.

Phylogenetic relationship analyses
For phylogenetic analyses, sequences of ITS, LSU, and EF1α were used. Sequences of Daedalea quercina (L.) Pers. 
and Trametes suaveolens (L.) Fr. were used as outgroup. The sequences were aligned separately for each marker 
using the online mode of MAFFT version  750. The resulting multiple sequence alignments were checked in 
Geneious 5.6.7 (Kearse et al.51, https:// www. genei ous. com), where the ends rich in gaps were manually trimmed. 
Further, the multiple sequence alignments were viewed and some bases were manually corrected using  AliView52. 
The combination of ITS, LSU and EF1α alignments was used for phylogenetic relationship analyses. The best-fit 
evolutionary model was estimated for each region using ModelFinder implemented in IQ-tree 1.6.12 http:// www. 
iqtree. org/53. Based on estimated evolutionary models, the phylogenetic tree inference of Maximum likelihood 
(ML) and Bayesian Inference (BI) were performed to verify the phylogenetic relationship between all sequences 
of E. scabrosa. The Maximum likelihood analysis was performed with Ultrafast Bootstrap (UFBoot)54 and the 
branch support was evaluated with 5000 replicates using the IQ-tree 1.6.12. The BI was executed using MrBayes 
v. 3.2.7 in command line mode (https:// github. com/ NBISw eden/ MrBay es) for five million generations until the 
standard deviation of split frequencies reached 0.01. Chain convergence was determined using Tracer v. 1.7.1 
(http:// tree. bio. ed. ac. uk/ softw are/ tracer/) and the first 25% (5000) of the trees were discarded as burn-in. The 
remaining trees were used to build the consensus tree using the Phylogenetic Tree Summarization (SumTrees) 
program within DendroPy v. 4.3.0., https:// github. com/ jeets ukuma ran/ Dendr oPy55. The topology of species 
resulting from ML is used, and to add the posterior probabilities (PP) of BI on the ML tree, the Phylogenetic Tree 
Summarization (SumTrees) program within DendroPy v. 4.3.0., was used. Then, the UFBoot values were added 
to the ML best tree that already having the posterior probabilities using IQ-tree56. The resulting tree is presented 
below in the Fig. 5 and the support values of UFBoot/PP are indicated on each node.

Results
Newly generated sequences
A total of 28 new sequences were generated, namely 20 ITS sequences, four LSU sequences, and four EF1α 
sequences. Sequences have been generated for the first time for specimens from Africa.

Genetic diversity analysis
Haplotype diversity and distribution
The analysis of 66 ITS sequences of E. scabrosa with information on geographic origin revealed 24 haplotypes. The 
probability that two randomly selected alleles are different (haplotype diversity) is 0.880. The nucleotide diversity, 
which is the mean difference in nucleotide per base position when comparing DNA sequences pairwisely, is 
π = 0.0058. The highest number of haplotypes (Nh = 6) is recorded for China, French Polynesia and Taiwan while 
the highest haplotype diversity (haplotypes diversity = 1) is discovered for Sri Lanka (Fig. 2).

The haplotype distribution in all populations is shown in Fig. 3 and suggests a limited gene flow between 
populations between geographic areas. Of the 24 haplotypes in total, only four haplotypes namely h1, h2, h4, 
and h20 occur in several populations in different areas. Haplotype 20 (h20) is only distributed in three African 
countries, namely Benin, Congo Republic, and Guinea. Almost all haplotypes are linked to h3 which is from 
French Polynesia (Fig. 3). Our haplotype analyses revealed a high number of unique haplotypes mostly found 

Species name Voucher or strain Origin

GenBank N°

ReferencesITS LSU EF1α

Earliella scabrosa OAB0630 Benin OR116231 OR116242 OR148940 This study

Earliella scabrosa OAB0691 Benin OR116217 This study

Earliella scabrosa OAB0729 Benin OR116218 This study

Earliella scabrosa OAB1021 Guinea OR116219 This study

Earliella scabrosa OAB1024 Guinea OR116220 This study

Earliella scabrosa OAB1025 Guinea OR116221 This study

Earliella scabrosa OAB1027 Guinea OR116234 This study

Earliella scabrosa OAB1030 Guinea OR116222 This study

Earliella scabrosa OAB0755 Benin OR116232 This study

Earliella scabrosa OAB0845 Benin OR116233 This study

Earliella scabrosa OAB1120 Benin OR116235 This study

Earliella scabrosa ALN050 Congo OR116223 This study

Trametes suaveolens FP102529sp USA JN164966 JN164807 JN164890 46

Table 1.  Species names, sample data, and GenBank accession numbers of sequences of Earliella scabrosa 
obtained in the context of the present study or retrieved from GenBank.

https://www.geneious.com
http://www.iqtree.org/
http://www.iqtree.org/
https://github.com/NBISweden/MrBayes
http://tree.bio.ed.ac.uk/software/tracer/
https://github.com/jeetsukumaran/DendroPy
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in Taiwan and French Polynesia. The most common haplotypes are h20, h1, h6 and h4 which correspond to 
respectively 29%, 15%, 11%, and 9% of the individual DNA sequences included in the analysis.

Population structure and genetic differentiation
The results from the analysis of molecular variance (AMOVA) showed significant genetic differentiation between 
the sequences of E. scabrosa from the source countries (ΦST = 0.82, p = 0, Table 2). The analysis suggests that 

Figure 2.  Haplotype diversity in countries with high scores.

Figure 3.  Haplotype network based on ITS sequences of Earliella scabrosa, including information on the 
geographical origin of the sequences by different colours. The circles represent different haplotypes. The sizes 
of the circles as well as the sizes of the pies reflect the frequency of detection of each haplotype. The lines 
connecting haplotypes represent their genetic distance and the short perpendicular lines indicate the number of 
nucleotide differences.
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nearly 82% of the genetic variation is explained by between country differences while only 18% of the genetic 
variation is explained by within country differences (Table 2). The result of the Mantel test shows a significant 
correlation between geographical distance and genetic distance. This is confirmed by the linear regression fit 
which indicates a positive correlation of the genetic distance and the geographic distance (Fig. 4).

Species delimitation
The ABGD partitioned the ITS dataset into three initial partitions. The first two partitions with an intraspecific 
divergence of 0–0.2% divided sequences of E. scabrosa into 18 groups with each group representing a hypotheti-
cal species. All sequences from African specimens clustered together and formed a single hypothetical species 
(Supplementary S3). However, with an intraspecific divergence of only 0.3%, all sequences of E. scabrosa should 
be considered as one single species (Supplementary S4).

Phylogenetic analysis
The alignment of ITS, LSU, and EF1α sequence data of specimens of E. scabrosa includes 68 sequences with 2195 
characters, 336 distinct patterns, 77 parsimony-informative sites, 301 singleton sites, and 1817 constant sites. The 
topology of species resulting from ML and BI analyses is congruent. Different groups that reflect populations 
of E. scabrosa with moderate to high support values and evident geographical patterns regarding the origin of 
collection are highlighted (Fig. 5).

Discussion
We used the combination of haplotype networks and phylogenetic trees to analyse the genetic diversity and 
population differentiation within and among samples of Earliella scabrosa from its pantropical range of dis-
tribution. The phylogenetic tree revealed distinct lineages among the populations of E. scabrosa. Meanwhile, 
the haplotype network provided additional quantitative information on how haplotypes are shared between 
populations of E. scabrosa.

Haplotype diversity, population structure and genetic differentiation
In this study, we found a high level of genetic diversity (haplotype diversity, Hd = 0.88) across the known geo-
graphical range of E. scabrosa based on ITS sequences. Similar levels of genetic variability are commonly observed 
in wild populations with broad ecological niches, and/or wide geographical distribution, such as Funneliformis 

Table 2.  Molecular variance of Earliella scabrosa in different countries calculated by AMOVA.

Source of variation df Sum of squares Variance component % Variation ΦST p-value

Between country 14 0.0020423 1.459e−04 81.65 0.81652751 0

Within country 51 0.0003852 7.554e−06 18.35

Total 65 0.0024275 4.117e−05

Figure 4.  Influence of geographic distance on genetic distance in Earliella scabrosa populations.
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mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler63 and Schizophyllum commune Fr.38,64. However, the 
level of genetic diversity detected in our study could be the direct consequence of a single gene used or the nuclear 
ribosomal region used as other studies on genetic diversity have revealed a difference between the ribosomal and 
the ISSR  markers7,65. Here, we were not able to combine both regions or several gene loci because corresponding 

Figure 5.  This multilocus ML/BI tree was constructed from the combined alignment of ITS, LSU, and EF1α 
sequences showing phylogenetic relationships between the 66 collections of Earliella scabrosa. The groups 
highlighted bear the names of the origins of most of the sequences in the respective group.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:23020  | https://doi.org/10.1038/s41598-023-50398-5

www.nature.com/scientificreports/

sequence data are not available in GenBank. Future studies to sequence and combine more genes from different 
populations of E. scabrosa will increase our understanding on the genetic diversity of this species.

The 24 haplotypes detected in our analyses are revealed for the first time, and among them, two haplotypes 
(h20 and h21) are detected from African specimens. Our haplotype analyses reveal a dominance of unique 
haplotypes (20 out of 24 in total) which are mostly found in Taiwan and French Polynesia. Because our sample 
sizes are relatively small for several sites, it is possible that more ITS haplotypes might be found if more extensive 
sampling were conducted and that wider distributions of some of these unique haplotypes might be revealed.

Within the studied populations of E. scabrosa, haplotypes are hardly shared. Of the 24 haplotypes detected, a 
few of them (h1, h2, h4, h20) were found distributed in multiple geographical areas (Fig. 3). This result is consist-
ent with a certain degree of gene flow between geographical populations of this species in nature. While evidence 
for certain degree of gene flow has been found in E. scabrosa, our population genetic analyses also suggest that, 
overall, gene flow was somewhat limited. Previous studies on the gene flow of fungal have shown that gene 
flow can be short distance or long distance and both of them are generally mediated by wind, human or animal 
 activities63,66. In this study, h20 is only shared between African specimens from Congo Republic, Guinea and 
Benin. The distances between Benin and Guinea on the one hand and Benin and Congo Republic on the other are 
about 1500 km and 2000 km. Similar spore dispersals (up to 2000 km) were reported in several  fungi67–69. Thus, 
we can assume that wind-driven dispersal of basidiospores is probably responsible for the observed gene flow in 
the African samples. Unlike h20, which is distributed only among samples from the same continent, h1 is shared 
between America and China, h2 between Sri Lanka and Venezuela, and h4 between Asia and French Polynesia. 
The geographic distance between these abovementioned populations was much larger than the short dispersal 
distance of fungal spores. However, even if long-distance gene flow was relatively much  rarer70, this idea cannot 
be ruled out as several fungi are known to be influenced by human activity, including plant  pathogens71,72 and 
fungi that are found on substrates used by humans like E. scabrosa22. For example, in natural populations of the 
button mushroom Agaricus bisporus (J.E. Lange) Imbach, the sharing of certain genotypes was found for strains 
from different regions, countries and even  continents73,74. Because those genotypes were identical or very similar 
to cultivated strains, it was suggested that human-aided dispersal was responsible for such long-distance gene 
flow in A. bisporus. A similar process could account for the wide distribution of h1, h2, and h4 in our samples.

Phylogenetics and taxonomy
We detected some level of intraspecific variation within the population of E. scabrosa even at the fine geographical 
scale (country level). For example, with an intraspecific divergence of 0–0.2%, populations of E. scabrosa in China, 
Venezuela, Taiwan, and French Polynesia might be split into several hypothetical species. However, considering 
an intraspecific divergence of 0.3%, all sequences of E. scabrosa sequences are grouped into a single species. This 
means ITS region may include considerable intraspecific variation, which can lead to oversplitting of species 
during DNA barcoding  analyses75. The intraspecific divergence found in this study corresponds well with data 
available in literature on intraspecific ITS variability of 0–3% in the fungal  kingdom36,76. Seena et al.77, when 
proposing the internal transcribed spacer gene region as a barcode for identifying aquatic hyphomycete species, 
found also a 0.3% variation within Articulospora tetracladia Ingold. The difference in numbers of hypothetical 
species according to the intraspecific divergence suggests that these hypothetical species should not be used as 
phylogenetic species, but an extra clustering step is needed to approach species-level resolution. Phylogenetic 
analyses grouped E. scabrosa sequences in several groups of which five displaying well evidenced geographical 
patterns. The phylogenetic patterns within E. scabrosa can be attributed to geographic hypotheses. Our five well 
distinct groups showed a preference or tendency for geographic regions. The African group is geographically 
restricted to specimens from African countries. The Polynesian group is mostly represented by Polynesian sam-
ples with an additional collection from Taiwan. Samples forming the Asia group are widely distributed across 
Asia countries with one collection from French Polynesia. The America group includes American samples as well 
as multiple samples from China and Sri Lanka. The heterogeneity within some geographical groups confirmed 
the sharing haplotypes between these populations. Only specimens from the African group are available and 
examination of these has not revealed any anatomical differences, although distinct morphological characters 
(presence or absence of reddish cuticles on the basidiomata, the effused basidiomata in some and resupinate in 
others) have been observed within the specimens of this group. As with the ABGD, the 20 sequences from the 
African specimens formed a well-defined group and no other sequences from other areas fell into this group. We 
therefore suspect that geographically separated populations of E. scabrosa are genetically divergent, but difficult 
to separate based on morphology. The results from the Mantel tests and linear regression supports the hypothesis 
that the genetic relationship among populations is closely associated with geographic distance (Table 2, Fig. 4). 
AMOVA tests also confirmed that geographic separation contributed significantly to the observed sequence 
variation and approximately 82% of observed differentiations were partitioned among populations. Similar 
types of geographic patterns of DNA sequence variation have been observed in many other fungal groups. For 
example, distinct alleles were observed in geographically separated populations of Russula brevipes  Peck78,79. Each 
group identified here and especially the African one could become a distinct phylogenetic species knowing that 
long-term geographical isolation could favour the process of allopatric divergence of different  populations80.

Conclusion
This study revealed five distinct groups within E. scabrosa and a correlation between genetic and geographic 
distances. The intraspecific divergences (0–0.3%), however, are relatively low, so cryptic taxa apparently are not 
present. The different groups may eventually evolve into phylogenetically distinct species in the long term, as 
geographical isolation could favour the process of allopatric divergence. More extensive sampling and analyses 
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combining several makers may reveal additional distinct lineages as well as novel distribution patterns within 
this species in its geographical areas of distribution.

Data availability
Newly generated sequences are available in GenBank and the accession numbers are given in Table1. Alignment, 
phylogenetic tree, and accession numbers of newly generated sequences will be public after the paper is published. 
Collected specimens are available at the mycological herbaria of the University of Parakou (UNIPAR) in Benin.
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