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StackER: a novel SMILES‑based 
stacked approach 
for the accelerated and efficient 
discovery of ERα and ERβ 
antagonists
Nalini Schaduangrat , Nutta Homdee  & Watshara Shoombuatong *

The role of estrogen receptors (ERs) in breast cancer is of great importance in both clinical practice and 
scientific exploration. However, around 15–30% of those affected do not see benefits from the usual 
treatments owing to the innate resistance mechanisms, while 30–40% will gain resistance through 
treatments. In order to address this problem and facilitate community‑wide efforts, machine learning 
(ML)‑based approaches are considered one of the most cost‑effective and large‑scale identification 
methods. Herein, we propose a new SMILES‑based stacked approach, termed StackER, for the 
accelerated and efficient identification of ERα and ERβ inhibitors. In StackER, we first established an 
up‑to‑date dataset consisting of 1,996 and 1,207 compounds for ERα and ERβ, respectively. Using the 
up‑to‑date dataset, StackER explored a wide range of different SMILES‑based feature descriptors and 
ML algorithms in order to generate probabilistic features (PFs). Finally, the selected PFs derived from 
the two‑step feature selection strategy were used for the development of an efficient stacked model. 
Both cross‑validation and independent tests showed that StackER surpassed several conventional 
ML classifiers and the existing method in precisely predicting ERα and ERβ inhibitors. Remarkably, 
StackER achieved MCC values of 0.829–0.847 and 0.712–0.786 in terms of the cross‑validation and 
independent tests, respectively, which were 5.92–8.29 and 1.59–3.45% higher than the existing 
method. In addition, StackER was applied to determine useful features for being ERα and ERβ 
inhibitors and identify FDA‑approved drugs as potential ERα inhibitors in efforts to facilitate drug 
repurposing. This innovative stacked method is anticipated to facilitate community‑wide efforts in 
efficiently narrowing down ER inhibitor screening.

Estrogen receptors (ERs) play a crucial role in the initiation and advancement of breast cancer, a prevalent 
malignancy that affects millions  worldwide1. Breast cancer is a diverse ailment, and its different subcategories are 
frequently identified by whether ERs are present or  absent2 ERs are proteins located in breast cells that engage 
with the hormone estrogen, which is a vital regulator of numerous physiological processes, including the devel-
opment and upkeep of breast  tissue3. In this context, ERs serve as molecular switches that can either promote 
or hinder the growth and proliferation of breast cancer cells, depending on the presence or absence of estrogen.

There are two primary estrogen receptors: ERα and ERβ. ERα is predominantly situated in breast tissue and 
can also be found in the uterus, ovaries, and other reproductive organs. When estrogen activates ERα, it is associ-
ated with the stimulation of cell growth and replication, which is essential for the development and maintenance 
of breast tissue. In contrast, ERβ is found in breast tissue, although in smaller quantities compared to ERα, and 
it is also commonly distributed in various other tissues throughout the body, including the prostate, colon, and 
 bone4. The function of ERβ is more complex and not as well-understood as that of ERα. However, recent research 
has emerged emphasizing ERβ’s anti-cancer properties and its potential as a predictor of treatment effectiveness, 
irrespective of the presence of ERα5,6. Grasping the role of ERs in breast cancer is of great importance in both 
clinical practice and scientific exploration. This comprehension has paved the way for the development of tailored 
treatments specifically designed to address ER-positive breast cancers, resulting in improved treatment outcomes 
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and overall patient survival rates. These therapeutic strategies involve substances that mitigate the effects of 
estradiol by competitively binding to ER, such as selective estrogen receptor modulators (SERMs, like tamox-
ifen), which decrease the levels of natural estrogens, such as aromatase inhibitors (e.g., letrozole, anastrozole, and 
exemestane), or a selective estrogen receptor degrader (SERD, like fulvestrant), which completely counter and 
degrade  ER7. However, around 15–30% of those affected do not see benefits from the usual treatments owing to 
the innate resistance mechanisms, and during treatment, around 30–40% will acquire  resistance8,9. Therefore, 
the development of treatment resistance is a significant factor leading to unfavorable outcomes and remains a 
substantial challenge in the management of ER-positive breast cancer.

To address the problem of resistance, researchers are exploring various computer-assisted approaches for 
drug design. These methods include quantitative structure–activity relationship (QSAR)10–12, machine learn-
ing (ML)-based  models13–15, deep learning (DL)-based  models16, molecular  docking10,17,18, molecular dynamic 
 simulations18,19, and pharmacophore  analysis18, among others. It’s important to note that most of these research 
endeavors primarily focus on targeting ERα rather than ERβ20. To date, there is only one ML-based approach 
(named  ERpred21) that is developed for predicting the effectiveness of inhibitors against ERα and ERβ. ERpred 
is a random forest-based model trained on 659 and 714 compounds for ERα and ERβ, respectively. Although 
ERpred provided reasonable prediction performance, there are three major issues that need to be addressed. 
Firstly, because the existing datasets used to develop ERpred contained a small number of compounds (Table 1), 
their predictive ability might be unsatisfactory for real-life applications. Secondly, ERpred did not conduct a 
comparative analysis among different ML classifiers and molecular descriptors in the identification of ERα and 
ERβ inhibitors. Lastly, ERpred was developed using only single ML algorithm and molecular descriptor. On the 
other hand, ensemble learning approach can automatically integrate several different ML classifiers to enhance 
the predictive performance.

Keeping these issues in mind, we introduce StackER, a stacked ensemble learning approach for the acceler-
ated and accurate identification of inhibitors against ERα and ERβ using SMILES information only. To obtain an 
accurate prediction model, first, we established an up-to-date dataset by collecting positive and negative samples 
from the ChEMBL database. Second, we investigated and evaluated variant ML models in predicting ERα and 
ERβ inhibitors by employing nine different types of SMILES-based feature descriptors (i.e., AP2D, AP2DC, 
FP4, FP4C, KR, KRC, MACCS, Pubchem, and RDK5) cooperating with eight popular ML algorithms (i.e., RF, 
generalized linear model (GLM), support vector machine (SVM), extreme gradient boosting (XGB), k-nearest 
neighbors (KNN), partial least squares regression (PLS), recursive partitioning and regression tree (rpart), and 
multi-layer perceptron (MLP)). Their predictive performances were obtained by performing the tenfold cross-
validation and independent tests. In the meanwhile, all the ML classifiers were applied to generate probabilistic 
features (PFs). Finally, the optimal PFs were identified through a two-step feature selection method and used for 
the development of an efficient stacked model. Experimental results based on the cross-validation and independ-
ent tests showed that StackER can achieve a better overall performance as compared to several conventional ML 
classifiers and the existing method in precisely predicting inhibitors against ERα and ERβ. Furthermore, StackER 
was applied to identify important features for being ERα and ERβ inhibitors to be substructures with fluorine 
and nitrogen-containing and cyclohexanone derativatives, respectively, while our proposed model was used to 
identify FDA-approved drugs as potential ERα inhibitors in efforts to facilitate drug repurposing.

Materials and methods
Data collection and curation
The datasets for ERα and ERβ (CHEMBL206 and CHEMBL242, respectively) were obtained from the ChEMBL 
 database22 (version 33, accessed on August 20, 2023). Initially, there were 15,446 compounds for ERα and 8979 
compounds for ERβ in the dataset. In this study, we collected the IC50 bioactivity data for inhibitory activity 
against ERα and ERβ from the initial dataset, resulting in 5180 compounds for ERα and 3605 compounds for ERβ. 
These curated datasets underwent further pre-processing, which involved standardizing the chemical structure 
representations (SMILES), removing duplicates, and eliminating salt components. All of these pre-processing 
steps were carried out using the R programming  language23. Then, we obtained the subsequent dataset consist-
ing of 2532 and 1577 compounds for ERα and ERβ, respectively. To generate active and inactive compounds, 
we applied the same criteria as employed in previous  studies21,24–26. As a result, we obtained actives and inac-
tives (ERα and ERβ) of (1145 and 736) and (851 and 471), respectively. Finally, we randomly selected 80% of all 
compounds for each subtype to construct the training datasets, whereas the remaining compounds were used 

Table 1.  Comparison of training and independent test datasets used in ERpred and this study.

Subtype Class

ERpred This study

Training Independent Training Independent

ERα

Active 283 70 916 229

Inactive 245 61 680 171

Total 528 131 1596 400

ERβ

Active 447 111 588 148

Inactive 125 31 376 95

Total 572 142 964 243
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to construct the independent test datasets. The detail of the training and independent test datasets involved in 
this study is provided in Table 1.

Descriptor extraction
For each compound, we generated multiple sets of fingerprint descriptors using the PaDEL-Descriptor  software27 
and RDKit (https:// www. rdkit. org). Molecular fingerprints are widely employed in the field of cheminformat-
ics because they effectively capture the structural characteristics of chemical  compounds28–30. In this study, we 
considered nine different categories of molecular fingerprints, which include AP2D, AP2DC, KR, KRC, MACCS, 
Pubchem, FP4, FP4C, and  RDK531–36. A summary of these descriptor types is recorded in Table 2. In essence, 
we used the chemical structures represented in SMILES format as input to compute the fingerprint descriptors. 
Before the calculation of these descriptors, we standardized the tautomeric forms and removed any salt compo-
nents. In total, we extracted eight molecular descriptors using the R programming environment (version 4.3.023) 
and the RDK5 fingerprint descriptor was extracted using the Python programming  environment37.

Two‑step feature selection strategy
From the viewpoint of classification, the feature selection procedure is an important step to exclude noisy fea-
tures while improving performance. Herein, we applied a two-step feature selection method to determine m 
informative features to construct the final model. In the first step, RF method was used to assess the importance 
score of each feature. The RF method used herein was implemented in the R programming environment (ver-
sion 4.3.1)38. Then, all the features were ranked according to their importance scores. The RF method is widely 
applied in various biological and chemical classification  problems21,24,39,40. After obtaining the ranked features, 
we constructed n feature sets containing the m top-ranked important features ranging from top mstart to mend 
with an interval of s. The values of mstart, mend, s, and n depend on the feature dimension. In the second step, ML 
models were trained using all the n feature sets and their performance were assessed using the tenfold cross-
validation test. The optimal feature set having the highest Matthews correlation coefficient (MCC) was utilized 
to construct the final model in this study.

StackER framework
Stacking is a powerful ensemble learning strategy that allows the integration of the outputs of heterogynous 
prediction models as mean to construct a stacked model. Numerous studies have highlighted that the stacked 
models outperform single-based models in terms of high accuracy and low error. As shown in Fig. 1, the stacking 
strategy uses a two-layer learning framework, where the corresponding classifiers at each layer are referred as 
base-classifier and meta-classifier. In brief, the base-classifier is constructed using the original feature descriptors 
and used to generate PFs. Then, the PFs are considered as the input feature for the meta-classifier construction. 
A detailed description of the stacking strategy is provided in details as follows.

In the first-layer, we employed eight ML algorithms (i.e., GLM, MLP, KNN, RF, PLS, rpart, SVM and XGB) 
cooperating with nine molecular descriptors (i.e., AP2D, AP2DC, KR, KRC, FP4, FP4C, MACCS, Pubchem, 
and RDK5) to construct heterogeneous base-classifiers. As a result, we obtained a total of 72 base-classifiers, 
which were implemented based on the caret package for the R programming environment (version 4.3.1)38, their 
parameters were tuned using the grid optimization  algorithm24,26,41–43 (Supplementary Table S1). After that, we 
employed these base-classifiers to generate PFs. The PF generation based on the stacking strategy is as following: 
(i) we used the tenfold cross-validation procedure to randomly divide the training dataset  (DTRN) into 10 equal-
sized subsets, where DTRN = {S1, S2, . . . , S10} ; (ii) for the  kth iteration, we treated DTRN − Sk and Sk as the current 
training and testing sets. The base-classifier trained with DTRN − Sk was used to generate the prediction output 
( Pk ); and we obtained 10 prediction outputs {P1, P2, . . . , P10} of  DTRN. Then, the PF was obtained by averaging 
the 10 prediction outputs. Finally, in this layer, 72 PFs of all the 72 base-classifiers were obtained and represented 
with a 72-D probabilistic feature vector (APF). In the second layer, the meta-classifier was constructed using 
the SVM method (called mSVM) cooperated with APF. To optimize the performance of the meta-classifier, the 
two-step feature selection method was employed to determine a set of optimal PFs (called OPF). As a result, 
the values of mstart, mend, s, and n are 5, 50, 5, and 14, respectively. The optimal feature set having the highest 

Table 2.  Summary of nine molecular fingerprints used in this study.

Fingerprint Abbreviation #Feature Description Ref

2D atom pair AP2D 780 Presence of atom pairs at various topological distances 31

2D atom pair count AP2DC 780 Count of atom pairs at various topological distances 31

Klekota–Roth KR 4,860 Presence of chemical substructures 32

Klekota–Roth count KRC 4,860 Count of chemical substructures 32

MACCS MACCS 166 Binary representation of chemical features defined by MACCS keys 35

Pubchem Pubchem 881 Binary representation of substructures defined by PubChem 34

Substructure FP4 307 Presence of SMARTS patterns for functional groups 36

Substructure count FP4C 307 Count of SMARTS patterns for functional groups 36

RDK5 RDK5 2048 Binary representation of daylight-like substructures with path length 5 33

https://www.rdkit.org
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MCC was utilized to construct the final stacked models for the identification of inhibitors against ERα and ERβ. 
Moreover, we employed six well-known performance metrics, including MCC, area under the receiver operating 
characteristic (ROC) curve (AUC), accuracy (ACC), balanced accuracy (BACC), specificity (Sp), and sensitiv-
ity (Sn) to assess the performance of the proposed model and conventional ML models. The details of these six 
performance metrics are mentioned in the Supplementary Information.

Case study and docking study of FDA‑approved drugs
In this study, we obtained a library of FDA-approved small molecule drugs, consisting of 2,735 compounds, 
from the DrugBank database (version 5.1.10; released on January 4, 2023). After removing salt and inorganic 
compounds, as well as eliminating duplicate and disconnected SMILES representations and SMILES with explicit 
valence, the remaining number of compounds was reduced to 1,737. We then calculated molecular descrip-
tors for all these compounds, which were used as input for prediction with our StackER model. The top fifteen 
compounds identified by our stack model were subsequently subjected to docking analysis, facilitating drug 
repurposing efforts. The target protein (PDB ID: 3ERT) was obtained from the Protein Data Bank (https:// www. 
rcsb. org) and adjusted for docking. This optimization involved energy minimization in the SwissPDB  Viewer44 
and the addition of polar hydrogens and removal of water molecules in AutoDockTools version 1.5.7. Likewise, 
in order to ensure docking compatibility with AutoDock  Vina45, ligands were prepared using AutoDockTools. 
Both the optimized protein and ligands were saved in pdbqt file formats. To enable accurate binding affinity cal-
culations, we used the amino acid residues in the active site of the ERα protein to define a grid with dimensions 
of 50 × 40 × 48, with its center coordinates set at X = 29.621, Y = −0.545, Z = 26.455. The binding affinity of the 
ligands was determined by docking them inside the predetermined grid box of the target protein. The exhaustive-
ness was set to 32, and the energy range was set to 4, with the maximum energy difference between the best and 
worst binding mode not exceeding 3 kcal/mol. The binding potential of individual ligands can be represented 
by docking score or energy, where lower scores indicate higher binding  affinity46,47. Finally, the analysis of the 
docked protein–ligand binding complexes was carried out using Discovery Studio software.

Figure 1.  Workflow of the StackER development for identifying inhibitors against ERα and ERβ. This 
framework involves four primary steps, which include dataset preparation, base-classifier construction, meta-
classifier optimization, and performance evaluation and model interpretation.

https://www.rcsb.org
https://www.rcsb.org
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Results and discussion
Analysis of applicability domain
The applicability domain (AD) of a QSAR model delineates a region within the chemical space where the model 
is expected to provide accurate  predictions48. To understand this, we employed t-distributed stochastic neighbor 
embedding (t-SNE) to visually represent the feature space associated with the nine molecular fingerprints. The 
visualizations in Supplementary Figs. 1 and 2 depict the compounds from both the training and independent 
datasets, denoted in green and red, respectively, for ERα and ERβ. The AD boundary was established based on the 
characteristics of the training dataset, and compounds falling within this boundary are considered to be within 
the model’s applicability domain. As seen in Supplementary Figs. 1 and 2, all nine molecular fingerprints for 
both protein subtypes exhibited overlapping chemical spaces between the training and independent datasets, 
indicating their suitability for the models developed in this study.

Construction of StackER
In this section, we constructed different SVM-based meta-classifiers by taking advantages of our two new proba-
bilistic feature vectors (i.e., APF and OPF) to provide more accurate ERα and ERβ inhibitors prediction. In addi-
tion, to improve the predictive performance, we used the two-step feature selection strategy to independently 
optimize the APF for each subtype. The two-step feature selection strategy determined 35 and 35 important PFs 
for developing SVM-based meta-classifiers for ERα and ERβ, respectively. Table 3 lists the performance evalua-
tion results of four SVM-based meta-classifiers in terms of both the cross-validation and independent tests. In 
the case of ERα, OPF provided a better performance than APF in terms of BACC, Sn, and MCC on the training 
dataset, while the performance of OPF was comparable to APF in terms of BACC (0.894 versus 0.989) and MCC 
(0.786 versus 0.792). Impressively, OPF performed better than APF in terms of both the cross-validation and 
independent tests for ERβ subtype. To be specific, on the independent test dataset, the BACC, MCC, and AUC 
values of OPF were 0.849, 0.712, and 0.974, which were 4.02, 7.10, and 7.37%, respectively, higher than APF. 
Therefore, we applied the OPF to develop SVM-based meta-classifiers (called StackER) for ERα and ERβ in the 
following studies.

Stacking strategy contributes to performance improvement
To verify the necessity of the stacking strategy in this study, we compared the performance of StackER against 
conventional ML classifiers for predicting inhibitors against ERα and ERβ. As mentioned above, these ML clas-
sifiers were independently developed using 8 ML methods cooperating with 9 molecular descriptors for each 
subtype. The performance results of all the ML classifiers are summarized in Supplementary Tables 2, 3, 4 
and 5. In addition, we selected 5 top-ranked ML classifiers having high cross-validation MCC for conducting 
a comparative analysis herein (Fig. 2). As shown in Fig. 3 and Tables 4 and 5, the 5 top-ranked ML classifiers 
for predicting inhibitors against ERα consist of RF-Pubchem, RF-MACCS, RF-FP4C, GLM-KRC, and SVM-
MACCS with respective MCC values of 0.785, 0.784, 0.780, 0.778, and 0.768 (Table 4), while the 5 top-ranked 
ML classifiers for predicting inhibitors against ERβ consist of RF-FP4C, RF-MACCS, RF-Pubchem, RF-AP2DC, 
SVM-MACCS with respective MCC values of 0.755, 0.736, 0.732, 0.730, and 0.719 (Table 5).

From Fig. 4 and Tables 4 and 5, several points can be observed: (i) StackER achieved a better performance in 
terms of all six performance metrics over the tenfold cross-validation test for both for ERα and ERβ. Specifically, 
StackER provided MCC values of 0.847 and 0.829 for ERα and ERβ, which were 6.18–7.95% and 7.41–10.99%, 
respectively; (ii) As for the independent test results, StackER performed better than almost all of the 5 top-
ranked ML classifiers in terms of MCC, with the exception of SVM-MACCS for ERα. However, the performance 
of StackER was most comparable to that of SVM-MACCS (0.786 versus 0.796) for ERα. In addition, for ERβ, 
StackER significantly outperformed SVM-MACCS in terms of ACC, BACC, Sp, MCC, and AUC; (iii) StackER 
attained outstanding AUC values of 0.974 and 0.973 for ERα and ERβ, which were 6.18–7.95% and 7.41–10.99%, 
respectively; (iv) The PFs were able to create a clearer boundary between the two clusters (i.e., active and inac-
tive) compared to Pubchem and MACCS, demonstrating that the information derived from the PFs is more 
crucial than conventional molecular descriptors for capturing the distinct patterns between active and inactive 
samples. Taken together, our comparative results reveal the effectiveness of the stacking strategy to the perfor-
mance improvement.

Table 3.  Cross-validation and independent test results of different feature representations.

Subtype Evaluation strategy Feature ACC BACC Sn Sp MCC AUC 

ERα

Cross-validation
APF 0.922 0.919 0.939 0.899 0.840 0.978

OPF 0.925 0.922 0.945 0.899 0.847 0.973

Independent test
APF 0.898 0.898 0.895 0.901 0.792 0.952

OPF 0.895 0.894 0.900 0.889 0.786 0.973

ERβ

Cross-validation
APF 0.909 0.904 0.925 0.883 0.808 0.962

OPF 0.918 0.916 0.925 0.907 0.829 0.974

Independent test
APF 0.831 0.809 0.912 0.705 0.641 0.900

OPF 0.864 0.849 0.919 0.779 0.712 0.974
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Performance comparison with the existing method
As mentioned above,  ERpred21 is the only SMILE notation-based approach for predicting ERα and ERβ inhibi-
tors. Since ERpred was not developed based on the up-to-date dataset constructed herein, we implemented 
ERpred using the same procedure as mentioned in the previous study. Table 6 shows the detailed performance 
comparison between StackER and ERpred. As can be seen from Table 6, for both ERα and ERβ, StackER is 
superior to ERpred in terms of almost all performance metrics, including ACC, BACC, Sp, MCC, and AUC, 
on both the training and independent test datasets. In particular, StackER outperformed ERpred as judged by 
the independent test results, with a 1.75–4.21% increase in Sp, 1.59–0.3. 54% increase in MCC, and 1.33–5.55% 
increase in AUC, thereby highlighting the effectiveness and robustness of StackER. Furthermore, as StackER 
attained impressive Sp and MCC values, it could be implied that our proposed model might effectively narrow 
down the number of candidate drugs against ERα and ERβ.

Model interpretation and feature importance analysis
In this section, we utilized the SHAP  method49 to assess the contribution of each feature on the prediction outputs 
and identify the most important feature that might be responsible for potential inhibitory effects against ER. 
Figure 5A, B showcases the top 20 most influential features of StackER for predicting ERα and ERβ inhibitors, 
respectively, where high and low SHAP values demonstrate that the prediction outputs favour active and inac-
tive classes, respectively. The top-five base-classifiers that were important for predicting ERα and ERβ inhibitors 
involved (SVM-KR, MLP-MACCS, GLM-KRC, KNN-Pubchem, and RF-RDK5) and (PLS-KR, MLP-Pubchem, 
GLM-Pubchem, MLP-AP2DC, and MLP-MACCS), respectively. To gain a more profound understanding of the 
specific features for ERα and ERβ, we also applied the SHAP method to MLP-Pubchem. Figure 5C, D displays the 
top 20 crucial features for ERα and ERβ, respectively. Furthermore, the particulars of these analyzed substructure 
fragments, including their general structures and SMARTs patterns, can be found in Table 7.

Upon comparing the top 20 important features for ERα and ERβ, we observed that the two subtypes shared 
five common features, namely Pubchem697, Pubchem667, Pubchem696, Pubchem308, and Pubchem450, which 
correspond to 2-methylheptane, prop-2-en-1-ol, octane, hydroxyl group, and formimidamide (Table 7). Notably, 
among these, Pubchem697 and Pubchem667 exhibited a significant impact on both subtypes as ER inhibitors, as 
indicated by SHAP (Fig. 5C, D). Interestingly, Pubchem697, representing 2-methylheptane, a branched alkane 
isomeric to octane (i.e., Pubchem696), showed a high SHAP value only for ERα. This feature was also emphasized 
in our previous work on  ERpred21, further underscoring its significance. Researchers observed that in derivatives 
of tamoxifen, a well-known ER inhibitor, the elongated alkyl side chains led to the degradation of  ER50. In addi-
tion, researchers devised a set of diphenylalkane derivatives, incorporating several elongated alkyl chains linked 
to the hydroxyl group. Subsequently, they assessed the compounds’ biological characteristics, encompassing 

Figure 2.  Performance comparison of StackER and top-five prediction models for ERα (A,B) and ERβ (C,D) 
subtypes assessed by the tenfold cross-validation (A,C) and independent tests (B,D).
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Figure 3.  MCC values of top-30 ML classifiers for ERα (A,B) and ERβ (C,D) assessed by the tenfold cross-
validation (A,C) and independent tests (B,D).

Table 4.  Performance comparison of StackER and top-five prediction models in identifying active and 
inactive compounds for ERα.

Evaluation strategy Method ACC BACC Sp Sn MCC AUC 

Cross-validation

SVM-MACCS 0.887 0.883 0.906 0.860 0.768 0.949

GLM-KRC 0.892 0.886 0.921 0.851 0.778 0.949

RF-FP4C 0.893 0.889 0.914 0.865 0.780 0.954

RF-MACCS 0.895 0.891 0.914 0.869 0.784 0.955

RF-Pubchem 0.895 0.890 0.926 0.854 0.785 0.954

StackER 0.925 0.922 0.945 0.899 0.847 0.973

Independent test

SVM-MACCS 0.900 0.899 0.904 0.895 0.796 0.959

GLM-KRC 0.875 0.875 0.873 0.877 0.747 0.946

RF-FP4C 0.890 0.891 0.886 0.895 0.777 0.958

RF-MACCS 0.893 0.892 0.895 0.889 0.781 0.962

RF-Pubchem 0.883 0.878 0.908 0.848 0.759 0.957

StackER 0.895 0.894 0.900 0.889 0.786 0.973
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their effects on ER degradation, anti-proliferative properties, transcriptional activity, and binding  affinity51. 
Furthermore, in their analysis of the novel compound docking, the scientists observed the interaction between 
the carboxylic acid of Glu351 in ERα and the hydrogen atom bound to nitrogen. This interaction served as the 
foundation for the bonding between the ERα hydrophobic groove and the elongated alkyl chain. Consequently, 
the essential factors contributing to the downregulation of ERα can be attributed to both the nitrogen group and 
the diphenylheptane with a specific length of extended alkyl  chain52.

Pubchem667, corresponding to prop-2-en-1-ol, was found to be a potent ER antagonist in a study conducted 
by Anita et al.53. Their research focused on examining the apoptosis in human MCF-7 breast cancer cells and the 
inhibition of cell proliferation induced by an analogue of Eugenol (4-[4-hydroxy-3-(prop-2-en-1-yl) phenyl]-2-
(prop-2-en-1-yl)). Additionally, in the work of Reddy et al.54, various compounds containing the prop-2-en-1-ol 
substructure were tested in vitro, demonstrating their strong efficacy across a broad spectrum of human tumor 

Table 5.  Performance comparison of StackER and top-five prediction models in identifying active and 
inactive compounds for ERβ.

Evaluation strategy Method ACC BACC Sn Sp MCC AUC 

Cross-validation

SVM-MACCS 0.867 0.855 0.910 0.801 0.719 0.921

RF-AP2DC 0.872 0.861 0.913 0.809 0.730 0.926

RF-Pubchem 0.873 0.863 0.912 0.814 0.732 0.930

RF-MACCS 0.876 0.863 0.918 0.809 0.736 0.928

RF-FP4C 0.884 0.875 0.917 0.832 0.755 0.931

StackER 0.918 0.916 0.925 0.907 0.829 0.974

Independent test

SVM-MACCS 0.831 0.807 0.919 0.695 0.641 0.881

RF-AP2DC 0.864 0.845 0.932 0.758 0.712 0.914

RF-Pubchem 0.835 0.810 0.926 0.695 0.651 0.915

RF-MACCS 0.856 0.835 0.932 0.737 0.695 0.914

RF-FP4C 0.860 0.840 0.932 0.747 0.704 0.925

StackER 0.864 0.849 0.919 0.779 0.712 0.974

Figure 4.  t-SNE distribution of our probabilistic features (PFs) and two informative conventional molecular 
descriptors for ERα (A–C) and ERβ (D–F) on the training dataset.
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cell lines, including MCF-7, which is an ER-positive breast cancer cell line. Pubchem308, as shown in Fig. 5C, D 
and detailed in Table 7, represents a hydroxyl group that gains significance when it is a part of other significant 
molecular structures, such as bisphenol A (BPA), bisphenol C (BPC), and bisphenol P (BPP). These compounds 
have been identified as endocrine-disrupting  chemicals55. The authors of these studies demonstrated that ERα-
related transcriptional activity is dependent on the existence of the 4-hydroxyl group in both the A-phenyl and 
B-phenyl rings of BPA derivatives, which clearly exhibits ER inhibitory effects both in laboratory experiments 
and in living  organisms56,57.

Furthermore, nitrogen-containing characteristics, specifically Pubchem391, Pubchem345, and Pubchem375, 
with high SHAP values, were found to be more prominent in ERα. Conversely, alcohol-containing features, 
like Pubchem777, Pubchem590, and Pubchem617, had a greater impact on ERβ (Fig. 5C, D and Table 7). The 
mentioned nitrogen-containing features, associated with N,N-dimethylmethanamine, ethanamine, and methan-
ediamine, respectively, serve as precursors for several significant ER inhibitors, including tamoxifen, 4-hydroxy 
tamoxifen, raloxifene, and their  analogues58–61. In addition, Makar et al.62, highlighted the importance of the 
N,N-dimethylamine side chain in the triphenylethylene-based ER inhibitor tamoxifen. This side chain altered 
the conformation of helix-12 and inhibited co-activator binding, underscoring its significance in ER inhibition.

The most prominent feature for ERα was identified as fluoromethane (Pubchem287; see Fig. 5C and Table 7), 
a compound known for its ability to notably enhance various pharmaceutical properties, including potency, 
metabolic stability, hydrogen bonding, improved binding interactions, and pharmacokinetics, across a range 
of  medications63. Furthermore, the inclusion of fluorine atoms in about 20–25% of known drugs highlights the 
element’s importance in medicinal  chemistry64,65. Scott et al.66 conducted a study on the impact of fluorinated 
analogues on a clinical SERD candidate, and they concluded that the resulting molecules exhibited high quality 
and advanced profiling stages. Recently, Lu et al.63 reported their work on designing and synthesizing fluorinated 
SERDs based on the clinical drug candidate G1T48 (NCT03455270). Their findings suggested that introducing 
fluorine atom substitutions into SERDs enhanced overall therapeutic effectiveness, making them superior clinical 
candidates for orally treating ER-positive breast cancer. As for the top feature for ERβ, Pubchem777 (Fig. 5D and 
Table 7), which relates to 4-methylcyclohexanol, when oxidized to cyclohexanone and its derivatives, serves as a 
valuable scaffold in the development of anticancer  agents67 Such compounds have the potential to act as potent 
inhibitors of tamoxifen-resistant MCF-7 cancer  cells68,69. Consequently, the presence of these top features for 
ERα and ERβ inhibitors underscores the capability of our StackER model to discern the features of significant 
importance in the field of medicinal chemistry.

Case study: potential ER inhibitors from FDA‑approved drugs
In this section, we applied our StackER model to identify promising ERα inhibitors among existing approved 
drugs, seeking to maximize therapeutic benefits while minimizing the risks of toxicity. We obtained the data 
from the DrugBank and applied various filtering criteria, as outlined in the “Materials and methods” section. 
Following this filtering process, we had a total of 1,737 compounds available for predicting their potential as ER 
inhibitors using our StackER model. In this context, our primary focus was on identifying potential inhibitors for 
ERα, as the role of ERβ in breast cancer is intricate and subject to ongoing debate. The results of our predictions 
for the top 15 potential ERα inhibitors, as determined by our developed model, are presented in Table 8. Notably, 
among these top 15 compounds, six are directly associated with ERα treatment, including SERMs, SERDs, or 
substrates of BC resistance proteins. The remaining eight compounds consist of diverse medications, such as 
antidepressants, antihistamines, anti-cancer agents, and anti-COVID agents.

With this in mind, we conducted docking simulations for all of the top compounds using Autodock Vina with 
the default parameters. The five compounds with the highest docking scores were identified, and their interac-
tions with ERα were further investigated (as shown in the Fig. 6 and Table 8), comparing them to the co-crystal 
ligand, tamoxifen (OHT). Tamoxifen is a widely recognized SERM used for breast cancer  treatment70,71 with a 
long list of side-effects72. It forms hydrogen bonds (H-bonds) with Glu353 and Arg394 at distances of 3 Å and 
1.98 Å, respectively (as depicted in Fig. 6A). In a similar manner, the top-docked compound, lasofoxifene, with 
a docking score of −11.6 kcal/mol, is a non-steroidal  SERM73 and also establishes H-bonds with Glu353 and 
Arg394 at distances of 2.05 Å and 2.02 Å, respectively (illustrated in Fig. 6B).

Table 6.  Performance comparison of StackER and the existing method on the same training and independent 
test datasets.

Subtype Evaluation strategy Method ACC BACC Sn Sp MCC AUC 

ERα

Cross-validation
ERpred 0.897 0.892 0.924 0.860 0.788 0.956

StackER 0.925 0.922 0.945 0.899 0.847 0.973

Independent test
ERpred 0.888 0.885 0.900 0.871 0.770 0.960

StackER 0.895 0.894 0.900 0.889 0.786 0.973

ERβ

Cross-validation
ERpred 0.880 0.870 0.913 0.827 0.746 0.931

StackER 0.918 0.916 0.925 0.907 0.829 0.974

Independent test
ERpred 0.848 0.828 0.919 0.737 0.677 0.919

StackER 0.864 0.849 0.919 0.779 0.712 0.974
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It’s worth noting that the docking score for OHT was −9.6 kcal/mol. However, OHT did not rank among 
the top 15 of the predicted potential compounds. This discrepancy may be attributed to the fact that OHT was 
discovered a long time ago, and our model is trained on the latest data, which includes newer generations of more 
potent SERMs. In addition, Lainé et al.73, recently discovered that lasofoxifene has the potential to treat mutant 
types of  ER+ metastatic breast cancer. Additionally, among the top 5 docked candidates, three are non-steroidal 
SERMs (i.e., lasofoxifene, bazedoxifene, and raloxifene). The remaining two, lomitapide and berotralstat, are a 
lipid-lowering drug and a kallikrein inhibitor, respectively. These two compounds could be strong candidates 
for drug repurposing.

Lomitapide, initially developed for the treatment of a rare genetic disorder known as familial 
 hypercholesterolemia74, achieved a docking score of −11.2 kcal/mol. Figure 6C illustrates the docking interactions 

Figure 5.  Feature importance analysis based on the SHAP method for StackER (A,B) and MLP-Pubchem 
(C,D). The impact of each feature on the identification of inhibitors against ERα (A,C) and ERβ (A,C). Mean 
absolute SHAP values, where positive and negatives SHAP values influences the predictions toward positive and 
negative samples, respectively.
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of lomitapide with ERα. Notably, lomitapide features two trifluoromethyl groups linked to a nitrogen atom at 
one end and a carbon atom at the other end, establishing interactions with Ala350, Asp351, Glu419, Glu420, and 
Gly521, respectively. The substitution of fluorine has been extensively explored in drug design and development 
to enhance biological activity, metabolic or chemical reactivity, and metabolic or chemical  stability75. This is 
primarily attributed to the properties exhibited by fluorine, including lipophilicity, electronegativity, electrostatic 
interactions, and  size76. Additionally, lomitapide forms one conventional H-bond with His524 and two carbon-
based H-bonds with Asp351 and Gly521. In the work by Zuo et al.77, the anti-cancer effects of lomitapide were 
observed in colorectal cancer. Similarly, in a study by Lee et al.78, the authors revealed that lomitapide induces 
autophagy-dependent cell death in HCT116 colorectal cancer cells. More recently, Wang et al.79, demonstrated 
that lomitapide has the ability to inhibit a key enzyme responsible for the downstream proliferation of pancreatic 
cancer cells. Moreover, the impressive anti-tumor properties of lomitapide were demonstrated in triple-negative 
breast cancer (TNBC) cell lines, where researchers observed substantial induction of apoptosis, diminished 
capacity of TNBC cells to form spheres and colonies while also hindering cell cycle  progression80.

In contrast, berotralstat has received approval for its use in hereditary angioedema, a rare genetic disorder 
characterized by recurrent, unpredictable episodes of swelling that affect subcutaneous or submucosal tissues. 

Table 7.  Top 10 important features for ERα and ERβ as determined by SHAP method.

Subtype Rank Feature SMARTS pattern Substructure description General structure

ERα

1 Pubchem287 C–F Fluoromethane

2 Pubchem697 C–C–C–C–C–C(C)–C 2-methylheptane

3 Pubchem667 C=C–C–O–[#1] Prop-2-en-1-ol

4 Pubchem193  >= 3 saturated or aromatic carbon-only ring size 6 Greater than or equal to 3 saturated or aromatic carbon-
only six-membered cyclic ring

5 Pubchem391 N(~ C)(~ C)(~ C) N,N-dimethylmethanamine

6 Pubchem535 O=C–C–C Propanal

7 Pubchem345 C(~ C)(~ H)(~ N) Ethanamine

8 Pubchem186  >= 2 saturated or aromatic carbon-only ring size 6 Greater than or equal to 2 saturated or aromatic carbon-
only six-membered cyclic ring

9 Pubchem696 C–C–C–C–C–C–C–C Octane

10 Pubchem192  >= 3 any ring size 6 Greater than or equal to 3 six-membered cyclic ring

ERβ

1 Pubchem777 CC1CCC(O)CC1 4-Methylcyclohexanol

2 Pubchem697 C–C–C–C–C–C(C)–C 2-methylheptane

3 Pubchem259  >= 3 aromatic rings Greater than or equal to 3 aromatic carbon-only six-
membered cyclic ring

4 Pubchem628 C–N–C–C:C N-methylpropan-1-amine

5 Pubchem674 N–C–N–C:C N-vinylmethanediamine

6 Pubchem392 N(~ C)(~ C)(~ H) N-methylmethanamine

7 Pubchem667 C=C–C–O–[#1] Prop-2-en-1-ol

8 Pubchem590 C–C:C–O–[#1] (E)-prop-1-en-1-ol

9 Pubchem617 C–C–C–O–[#1] Propan-1-ol

10 Pubchem696 C–C–C–C–C–C–C–C Octane
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Berotralstat is an orally administered synthetic small-molecule inhibitor targeting a serine protease called 
plasma kallikrein. The stimulation of plasma kallikrein leads to the plasma kallikrein/kinin system activation 
and enhancement. This activation plays a role in the classical complement cascade pathway, the alternative 
complement pathway, and blood  coagulation81–84. Nevertheless, no previous reports have documented the anti-
cancer properties of berotralstat. In our study, berotralstat emerged as one of the top 5 candidates in both the 
prediction and docking studies for its potential as an ERα inhibitor, boasting a probability score of 0.7008 and a 
docking score of -10.2 kcal/mol (as shown in Table 8). Figure 6E displays the interacting residues of berotralstat 

Table 8.  Probability, docking scores, and description of 15 selected FDA-approved drugs against ERα as 
deduced from our StackER model.

DrugBank ID Compound name Probability Docking score (kcal/mol) Description

DB00481 Raloxifene 0.7577 −10 Non-steriodal SERM

DB06249 Arzoxifene 0.7519 −9.9 SERM

DB08827 Lomitapide 0.7305 −11.2 Cholesterol-lowering drug

DB04841 Flunarizine 0.7188 −10 Selective calcium channel blocker and anti-histamine 
activity

DB15982 Berotralstat 0.7008 −10.2 Plasma kallikrein inhibitor

DB06401 Bazedoxifene 0.6935 −10.8 Non-steroidal indole-based SERM

DB13292 Pimethixene 0.6929 −7.6 Dopamine antagonist

DB06202 Lasofoxifene 0.6902 −11.6 Non-steroidal SERM

DB16691 Nirmatrelvir 0.6874 −7.6 Anti-covid drug

DB01624 Zuclopenthixol 0.6858 −8.6 Anti-psychotic drug

DB06603 Panobinostat 0.6853 −9 Chemotherapy drug

DB00947 Fulvestrant 0.6801 −9.9 SERD

DB12332 Rucaparib 0.6773 −9.4 PARP inhibitor

DB00434 Cyproheptadine 0.6740 −8.9 Anti-histamine

DB09167 Dosulepin 0.6671 −7.8 Anti-depressant

Figure 6.  Binding interactions of ERα with OHT (A) and the top 5 FDA-approved drugs—Lasofoxifene (B), 
Lomitapide (C), Bazedoxifene (D), Berotralstat (E), and Raloxifene (F). Residues forming hydrogen bonds are 
represented in dark green and light green colors while residues forming pi-sigma, pi-alkyl, pi-sulfur and halogen 
interactions are depicted in purple, pink, orange and blue colors, respectively.
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with ERα. It is notable that berotralstat forms two conventional H-bonds with Gly420 and Leu536, while also 
establishing pi-sigma and pi-sulfur interactions with Leu525 and Met343, respectively. Furthermore, akin to 
lomitapide, berotralstat contains a trifluoromethyl group, which interacts with Glu353 and Leu387. This further 
underscores the significance of fluorine as a sidechain substitution.

It’s worth mentioning that the most crucial feature for ERα, as determined by our StackER model and SHAP 
analysis (as mentioned in the previous section and shown in Fig. 5C and Table 7), was Pubchem287, correspond-
ing to fluoromethane. Consequently, these findings shed light on the potential repurposing of lomitapide and 
berotralstat as novel therapeutic options for the treatment of ERα-induced cancers.

Conclusions
In this study, a novel SMILES-based stacked ensemble learning approach, terms StackER, is developed for the 
accelerated and accurate identification of inhibitors against ERα and ERβ. First, we collected an up-to-date dataset 
from the ChEMBL database to develop an efficient and effective prediction model. Second, we trained and evalu-
ated several ML classifiers trained with eight ML algorithms combined with nine molecular descriptors. Finally, 
an optimized stacked approach was constructed based on the combination of selected ML classifiers derived 
from the two-step feature selection method. Experimental results based on the cross-validation and independ-
ent tests, highlighted the effectiveness and robustness of StackER by outperforming the existing method (i.e., 
ERpred) and several conventional ML classifiers. Three important factors can be attributed to the performance 
improvement of our developed model: (i) StackER is optimized based on the up-to-date dataset having a larger 
sample size; (ii) StackER takes advantage of several state-of-the-art ML algorithms and molecular descriptors; 
and (iii) StackER is developed using the ensemble learning strategy along with the two-step feature selection 
method. We anticipate that StackER will provide useful insights for the accelerated and large-scale discovery of 
high potential breast cancer drugs and inspire follow-up research in the future. Although StackER has attained 
superior predictive performance in comparison to several conventional ML classifiers and the existing method, 
it still has a few shortcomings, which can be addressed in follow-up works. The first point pertains to developing 
a two-layer prediction framework that is capable of identifying ERα and ERβ inhibitors (actives or inactives) 
as well as the inhibitory activity against ERα and ERβ (IC50 bioactivity). The second point is to utilize efficient 
molecular representation learning (MRL), such as  Mol2vec85, geometry-enhanced  MRL86 and self-supervised 
pretrained  learning87 strategies. The last point pertains to incorporating StackER with novel ML frameworks, 
such as a pre-trained language  model88 and DL-based  framework25,89.

Data availability
The datasets and R source code are available at https:// github. com/ Shoom buato ng/ Stack ER.
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