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Maximum correentropy‑based 
robust Square‑root Cubature 
Kalman Filter for vehicular 
cooperative navigation
Wei Sun , Xiaotong Zhang  *, Wei Ding , Heming Zhang  & Ao Liu 

As the core method of cooperative navigation, relative positioning plays a key role in realizing 
intelligent vehicle driving and vehicle self-assembling network collaboration algorithms. However, 
when the contamination rate of measurement noise is high, the performance of filtering will be 
seriously affected. To better address the filtering performance degradation problem due to noise 
contamination, this paper proposes a vehicular cooperative localization method based on the 
Maximum Correentropy Robust Square-root Cubature Kalman Filter (MCSCKF). The algorithm not only 
retains the advantages of Square-root Cubature Kalman Filter (SCKF) but also has strong robustness 
to non-Gaussian noise. The experimental results of tightly integrated vehicular cooperative navigation 
show that compared with the Extended Kalman Filter (EKF) and Cubature Kalman Filter (CKF), the 
localization accuracy of MCSCKF is improved by 35.08% and 31.83%, respectively, which verified the 
effectiveness in improving the accuracy and robustness of the relative position estimation.

With the rapid development of intelligent transportation systems, vehicular positioning technology has become 
an important research field. Relative position sensing is not only the core of cooperative localization but also 
the key technology of intelligent vehicle driving1. Global Navigation Satellite System (GNSS) such as Global 
Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) are becoming increasingly mature and 
have been successfully applied to vehicle positioning. However, due to the complexity of our surrounding built 
environment, road conditions, and vehicle traffic, the integration of multi-satellite navigation systems increases 
the accuracy error to a certain extent and affects positioning performance. To solve such problems, wireless 
networks have facilitated the development of cooperative positioning in Vehicular Ad Hoc Networks (VANETs)2.

Xu et al.3 proposed a method to obtain the relative position based on the Doppler shift, but it is infrastructure-
dependent to be realized. Alam et al.4 proposed a Doppler-based cooperative positioning method for vehicular 
networks with GPS availability, proposing the use of Doppler shifts based on dedicated short-range communica-
tion (DSRC) signal carriers to improve GPS accuracy. The tight integration approach was proposed, taking into 
account this and emerging vehicular communication technologies, a method was proposed to improve relative 
positioning between two vehicles within a Vehicle Ad Hoc Network, fusing available low-level GPS data5,6. Feng 
Shen et al. proposed a new vehicular collaboration method, a novel tight cooperative positioning method based 
on the distance measurements of ultra-wideband (UWB), for relative positioning in new intelligent transpor-
tation systems. The method shares GPS pseudorange and Doppler shift measurements between participating 
vehicles, and then, each vehicle fuses GPS measurements and UWB-based distance to obtain relative position 
to avoid collision and improve driving safety7.

Although the accuracy of the relative distance estimation scheme for cooperative vehicle localization using a 
tight integration of GPS underlying data and UWB is improved, the data processing method used in the above 
technique is Extended Kalman Filtering (EKF). This method directly approximates the Gaussian integral with 
Taylor-expanded truncation, which can only achieve first-order accuracy and has a simple structure for systems 
with low nonlinearity. However, for tightly integrated GPS/UWB integration, the observation model has strong 
nonlinearities, since the EKF ignores higher-order terms, it will greatly reduce the filtering accuracy and may 
even cause divergence when the nonlinearity is high or the initial error is large. Therefore, the EKF needs to be 
improved and optimized.

To solve the nonlinear problems, the unscented Kalman filter (UKF) and the cubature Kalman Filter (CKF) 
are commonly used8,9. The unscented Kalman filter, first proposed by Juiler et al., was developed on the basis of 
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the unscented transformation (UT)10. The elementary concept of UT is a method to compute the statistical prop-
erties of random variables that have been nonlinearly transformed, which approximates the a posteriori mean 
and variance of a nonlinear function by obtaining a set of sigma points through a certain sampling strategy and 
setting the corresponding mean weights and variance weights. The UKF approximates the statistical properties 
of the random quantity with a finite number of parameters, in other words, it conveys the statistical properties of 
the random quantity with a set of accurately chosen sampling points mapped by a nonlinear model, which fully 
reflect the true mean and covariance of the Gaussian density. The mean and covariance of the random quanti-
ties are then estimated by weighted statistical linear regression. The UKF does not introduce linearization error, 
thus it can reach the second-order accuracy of the Taylor series expansion, and there is no need to compute 
the Jacobian matrix. Therefore, it can be easily applied to the estimation of the state of a nonlinear system11,12. 
Driedger et al.13 found that EKF and UKF were applied to evaluate the feasibility of optical navigation based on 
resident space objects, and experiments showed that UKF was more reliable than EKF. Deori et al.14 used EKF 
and UKF to design and test the benchmark cart pendulum system and the underactuated offshore boom crane 
system, and the results showed that the accuracy of UKF was higher than that of EKF. However, some statistical 
properties of the Sigma points for the a posterior distribution of the nonlinear function are lost when the system 
dimension is higher, which can degrade the system estimation accuracy15,16.

In response to the above issues, Arasaratnam et al.17 proposed CKF, an algorithm based on the third-order 
spherical-radial cubature rule, which is based on the a priori mean and covariance. The Sigma cubature points 
are selected by the cubature rule, then these cubature points are passed through a nonlinear function, and then 
the cubature points after the nonlinear function are passed through are weighted to deal with the approximation 
of the state a posteriori mean and covariance. Because the filtering process of CKF also needs to conduct the 
decomposition and inverse of the error covariance matrix, it is necessary to ensure the positive characterization of 
the error covariance matrix. However, in practice, it is often difficult to ensure the positive definiteness. Thereby 
the Square-root Cubature Kalman Filter (SCKF) is proposed18, which directly updating the recursion in the 
form of the square root of the covariance matrix not only reduces the computational complexity and improves 
the efficiency, but also ensures the positive characterization of the covariance matrix and effectively avoids the 
divergence problem of the filter.

For the filtering problem under non-Gaussian conditions, many scholars have proposed a number of robust 
methods. Particle filtering (PF) and its improved algorithms use particles to deal with non-Gaussian noise 
issues19,20. These particle-based filtering methods use a large number of particles to approximate the probability 
distribution of the state and therefore also suffer from high computational complexity. Huber-based Kalman 
filtering is another popular method in recent years that uses a maximum likelihood regression criterion to 
deal with problems caused by non-Gaussian noise21, Tseng et al. applied their fusion with CKF to GPS naviga-
tion processing, and the results showed that the problem of contamination of measurements due to outliers or 
deviations from the assumption of Gaussian distribution, as well as the problem of contamination of signals by 
non-Gaussian noise or outliers, has been greatly improved22. Nevertheless, Huber-based methods usually select 
measurements that contain large errors, which may lead to non-negligible errors in the filter.

In the current state, the maximum correntropy criterion (MCC) has been introduced in the filter to deal with 
the problems caused by non-Gaussian noise23,24. The maximum correntropy Kalman filters24 are mainly applied 
to linear systems, and the maximum correntropy unscented Kalman filters23,25 are extended for solving some 
nonlinear problems. Nonetheless, they are not applicable to high-dimensional nonlinear systems. Therefore, this 
paper proposes a new nonlinear filter, Maximum Correntropy Square-root Cubature Kalman Filter (MCSCKF) 
based on the use of MCC to change the measurement update process of SCKF. This method not only has the 
advantages of SCKF as well as the overall line of thought, but also has strong robustness to non-Gaussian noise. 
Based on the work of Shen et al.7, experiments on vehicular cooperative navigation with a tight integration of 
GPS/UWB are conducted to further improve the performance of cooperative localization and enrich the research 
field for nonlinearities in practical applications of vehicle cooperative navigation. The experimental results show 
that MCSCKF is suitable for high-dimensional nonlinear systems, and the algorithm improves the estimation 
accuracy of the relative position.

The rest of the paper is organized as follows. Firstly, “Measurement and system modeling” introduces the 
measurement and system model for tight integration. Secondly, “Filtering algorithms” provides a preliminary 
introduction to MCC and SCKF. Then MCSCKF along with this algorithmic flow is derived in “MCSCKF algo-
rithm”. After that, “Experimental analysis of on-board results” conducts on-board experiments and analyzes the 
results. Finally, “Conclusion” concludes the full paper with a summary and an outlook.

Methods
Measurement and system modeling
As shown in Fig. 1, only the relative motion of vehicle a and vehicle b in the vehicular ad hoc network is con-
sidered for convenience, where the GPS and UWB observations are fused in the process of tight-integration 
cooperative localization. Vehicle a obtains the pseudo-range(ρb ) and Doppler shift(ϑb ) of vehicle b through UWB 
communication, then combines the local pseudo-range(ρa ) and Doppler shift ( ϑa)for double difference. At the 
same time, the UWB measures the distances of the two vehicles and carries out the data fusion process using 
MCSCKF to realize the relative localization of the vehicles.

GPS observations
The pseudorange between the receiver a and the satellite s at the moment t  is defined as the following equation:

(1)ρs
a(t) = Rs

a(t)+ δa(t)+ ds + ζ sa(t)
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where ρs
a(t) is the pseudorange between the receiver a and the satellite s at time t  ; Rs

a(t) is the true distance 
between satellite s and receiver a ; δa(t) is the clock difference of receiver a ; ds contains the satellite bias, atmos-
pheric delay error, and other common errors of satellite s ; and ζ sa(t) includes the thermal noise, multipath prob-
lem, and other non-disclosed systematic errors of receiver a associated with satellite s.

When receivers a and b observe both satellite s and satellite j , the pseudorange values derived from Eq. (1) 
can be eliminated by performing a pseudorange double-difference that eliminates the receiver’s clock difference 
as well as other common satellite errors to obtain the following equation:

where ρsj
ab(t) is the double differenced pseudorange between the receiver a and receiver b to two satellites s and 

j , Rsj
ab(t) is the double differenced geometric distance from two receivers to two satellites, ζ sjab(t) is the error of 

receiver and satellite that can not be eliminated by the double difference. where Rsj
ab(t) can be defined as:

where ⇀µs and ⇀µj are the unit observation vectors from receiver a (or receiver b ) to the two satellites s and j , respec-
tively, and ⇀

rab is the relative position vector of receiver a and receiver b . Substituting Eq. (3) into Eq. (2) yields:

Since the actual distance between the receiver and the satellite is about 20,000 km, and the GPS position-
ing error is negligible within a few tens of meters under these conditions, the apparent distance vector can be 
obtained by rough position estimation and a priori satellite ephemeris.

Similarly, the double differenced Doppler shift between receiver a and receiver b to satellite s and satellite j 
at the moment t  can be defined as:

where ⇀
vab is the relative velocity vector of receiver a and receiver b , � is the wavelength of the GPS L1 signal, 

and γ sj
ab is the double differenced residual of the Doppler observation noise of receivers a and b with respect to 

satellite s and satellite j.

UWB observations
UWB is a communication technology that uses narrow non-sinusoidal pulses of nanoseconds and microseconds 
to transmit data over short distances with a high transmission rate, low transmission power, and high penetra-
tion capability. The principle of its distance estimation is to estimate the distance by the signal propagation time 
between the base station and the target carrier, and to use the product of the arrival time of the UWB signal 
of the target carrier measured by the base station and the propagation speed as the relative distance between 
them. When using UWB for ranging, it is necessary to have measurement information from at least three base 
stations at the same time.

In the work of Shen et al.7, it is assumed that there is no non-line-of-sight (NLOS) problem for UWB between 
two vehicles, and the distribution law is an approximate Gaussian distribution function. To verify the specific 
performance of the MCSCKF, the actual measured distance across the UWB transceiver from two vehicles in 
7 is used.

GPS/UWB tightly coupled system modeling
The system equation is defined as:

where τ is the observation period; X is the state vector; F is the state transition matrix, G is the process noise 
model, and D is the relative acceleration noise, which obeys a Gaussian distribution law with zero mean 

(2)ρ
sj
ab(t) = R

sj
ab(t)+ ζ

sj
ab(t)

(3)R
sj
ab(t) = [ ⇀

µs(t)− ⇀
µj(t)]T ⇀

rab(t)

(4)ρ
sj
ab(t) = [ ⇀

µs(t)− ⇀
µj(t)]T ⇀

rab(t)+ ζ
sj
ab(t)

(5)ϑ
sj
ab(t) =

1

�
[ ⇀
µs(t)− ⇀

µj(t)]T ⇀
vab(t)+ γ

sj
ab(t)

(6)X(t + τ) = FX(t)+ GD(t)

Figure 1.   Relative sensor structure.
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and standard deviation of σ along each coordinate axis. Define the covariance matrix of the process noise as 
Q = σ 2GGT , for receiver a and receiver b , with the following equation:

in which In is an identity matrix of n× n.
The observation equation for the relative localization of this experiment can be defined as:

where y is the observation vector, which includes the GPS pseudorange, the Doppler shift, and the actual distance 
between receivers a and b based on the UWB measurements; h is a nonlinear function, which is derived from 
Eqs. (4) and (5) as well as the true relative distance between the two vehicles R̂ab =

√−→rabT−→rab ; if the number of 
visible satellites of receivers a and b is m+ 1 , under this condition, the observation vector y and the measurement 
noise ζ are expressed as follows:

Assuming that the observations are independent of each other, the measurement noise covariance matrix 
can be defined as the following equation:

If σ 2
ρ , σ

2
ϑ , σ

2
r  are the variance of the pseudorange, the Doppler shift, and the UWB measurement error, respec-

tively, it follows that.

where 1 is denoted as a matrix in which all elements are 1.

Filtering algorithms
Maximum correntropy criterion
Given two random variables X ∈ R,Y ∈ R , assume that their joint distribution function is FXY (x, y) ; the entropy 
of correlation between the two is usually defined as:

where E[·] denotes the expected value and κ(·, ·) is the Mercer kernel function, in this paper, we choose the 
Gaussian kernel as the kernel function of entropy, denoted as follows:

here, e = x − y , σ represent the kernel bandwidth while σ > 0.
In practice, the joint distribution function FXY (x, y) is often unknown and the number of available data 

samples is limited. Therefore, we often use the sample mean estimator to estimate the correlation coefficient:

where e(i) = x(i)− y(i) , and {x(i), y(i)}Ni=1 , denote the N sample data drawn from the joint distribution func-
tion FXY (x, y).

Using the entropy value as a cost function has a strong suppression effect on non-Gaussian noise. If a column 
of error data {e(i)}Ni=1 is obtained, the MCC-based objective function is denoted as:

Square‑root Cubature Kalman Filter
Square-root Cubature Kalman Filter (SCKF) is an effective method to solve the state estimation problem of 
nonlinear systems by transferring the square root form of the error covariance. In this paper, it can not only 

(7)X = [ ⇀
rab

⇀
vab ]T , F =

(

I3 τ I3
03 I3

)

,G = [ 0.5τ 2I3 τ I3 ]T

(8)y(t) = h(X(t))+ ζ(t)

(9)y = [ ρ12
ab · · · ρ1m

ab ϑ12
ab · · ·ϑ1m

ab ζab ]T

(10)ζ = [ ζ 12ab · · · ζ 1mab γ 12
ab · · · γ 1m

ab ζab ]T

(11)� =
(

�c 0m−1 0
0m−1 �ϑ 0

01×(m−1) 01×(m−1) �r

)

(12)�ρ = σ 2
ρAA

T ,�ϑ = σ 2
ϑAA

T ,�r = σ 2
r AA

T

(13)A = [ 1(m−1)×1 −I(m−1) −1(m−1)×1 I(m−1) ]

(14)V(X,Y) = E[κ(X,Y)] =
∫

κ(x, y)dFXY (x, y)

(15)κ(x, y) = Gσ (e) = exp

(

− e2

2σ 2

)

(16)V̂(X,Y) = 1

N

N
∑

i=1

Gσ (e(i))

(17)JMCC = 1

N

N
∑

i=1

Gσ (e(i))
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overcome the problem of low accuracy of EKF due to linearization but also avoid the problem of CKF error 
covariance losing positive characterization.

Taking the nonlinear system in Eqs. (6) and (8) as an example, the steps of time update and measurement 
update for SCKF are shown below:

Time update.  Suppose that at time k , Sk−1|k−1 is the square root of the covariance matrix Pk−1|k−1 , 
i.e., Pk−1|k−1 = Sk−1|k−1S

T
k−1|k−1 . Similarly, SQ,k−1, SR,k are square root factors of Qk−1,Rk , i.e., 

Qk−1 = SQ,k−1S
T
Q,k−1,Rk = SR,kS

T
R,k , respectively.

Evaluate the cubature points:

where

here, ξ denotes the n× n-unit matrix, [1]i denotes the i - th column vector.
Dissemination of cubature points:

Estimate the square root of the a prior state and the corresponding covariance matrix:

where Tria(·) denotes the QR decomposition of the matrix, X∗
k|k−1 from (23):

Measurement update.  Evaluate the cubature points:

Dissemination of cubature points:

Estimate the square root of the a priori measurements and the corresponding covariance matrix:

here Yk|k−1 is denoted as shown below:

Calculate the inter-correlation covariance matrix:

with Xk|k−1 in the equation:

Calculate the Kalman gain:

Estimate the square root of the a posterior state and the a posterior covariance matrix:

(18)χi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, i = 1, ..., 2n

(19)ξi =
{ √

n[1]i , i = 1, ...n

−
√
n[1]i−n, i = n+ 1, ...2n

(20)χ∗
i,k|k−1 = f

(

χi,k−1|k−1

)

, i = 1, ..., 2n

(21)x̂k|k−1 =
1

2n

2n
∑

i=1

χ∗
i,k|k−1

(22)Sk|k−1 = Tria
([

X∗
k|k−1, SQ,k−1

])

(23)X∗
k|k−1 =

1√
2n

[

χ∗
1,k|k−1 − x̂k|k−1, ...,χ

∗
2n,k|k−1 − x̂k|k−1

]

, i = 1, ..., 2n

(24)χi,k|k−1 = Sk|k−1ξi + x̂k|k−1, i = 1, ..., 2n

(25)χ∗∗
i,k|k−1 = h

(

χi,k|k−1

)

, i = 1, ..., 2n

(26)ŷk|k−1 =
1

2n

2n
∑

i=1

χ∗∗
i,k|k−1

(27)Syy,k|k−1 = Tria
([

Yk|k−1, SR,k
])

(28)Yk|k−1 =
1√
2n

[

χ∗∗
1,k|k−1 − ŷk|k−1, ...,χ

∗∗
2n,k|k−1 − ŷk|k−1

]

, i = 1, ..., 2n

(29)Sxy,k|k−1 = Xk|k−1Y
T
k|k−1

(30)Xk|k−1 =
1√
2n

[

χ1,k|k−1 − x̂k|k−1, ...,χ2n,k|k−1 − x̂k|k−1

]

, i = 1, ..., 2n

(31)Kk =
(

Sxy,k|k−1

/

STyy,k|k−1

)/

Syy,k|k−1
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MCSCKF algorithm
Due to the excellent performance of correntropy in non-Gaussian noise environments26, we combine MCC with 
SCKF and use MCC to improve the robustness of SCKF.

First, from the nonlinear model described by Eqs. (6) and (8), the a priori estimated states and the correspond-
ing square root covariance matrices are evaluated by Eqs. (18)–(23).

Then, the nonlinear regression model is constructed by combining Eqs. (8), (21), and (22) as follows.

where ϕk = 
[

x̂k|k−1 − xk

ζk

]

 , given by the square root of the covariance matrix ϕk:

Equation (34) is obtained by multiplying both sides of B−1
k  simultaneously:

the specific expression in the above equation is as shown below:

Based on the above model, the cost function MCC is constructed as:

where ei,k = di,k − gi,k , and here di,k , gi,k are the i − th component of Dk , g(xk) , respectively.
Then the xk optimal estimate based on MCC can be obtained from the following equation:

Let the first order derivative of the cost function is equal to zero, then we can derive:

here, ψ
(

ei,k
)

= Gσ

(

ei,k
)

· ei,k.
Then, we define Ci,k = ψ

(

ei,k
)/

ei,k =Gσ

(

ei,k
)

 , and there it is:

where Cx,k = diag
(

C1,k , ...,Cn,k

)

,Cy,k = diag
(

C1,k , ...,Cm,k

)

.
According to (41), (40) can further be denoted as:

In fact, the key to improving SCKF performance using MCC is to use Ck to update the state covariance and 
the variance of the measurement noise.

The definition of �k is the updated covariance matrix, denoted as follows:

For the next derivation, we write �k in block matrix form, such that:

in fact, we can derive

(32)x̂k|k = x̂k|k−1 + Kk

(

yk − ŷk|k−1

)

(33)Sk|k = Tria
([

Xk|k−1 − KkYk|k−1, KkSR,k
])

(34)
[

x̂k|k−1

yk

]

=
[

xk

h(xk)

]

+ ϕk

(35)Bk =
[

Sk|k−1 0
0 SR,k

]

(36)Dk = g(xk)+ ek

(37)Dk = B−1
k

[

x̂k|k−1

yk

]

, g(xk) = B−1
k

[

xk

h(xk)

]

, ek = B−1
k ϕk

(38)JMCC(xk) =
n+m
∑

i=1

Gσ

(

ei,k
)

(39)x̂k = argmax
xk

n+m
∑

i=1

Gσ

(

ei,k
)

(40)
n+m
∑

i=1

ψ
(

ei,k
)∂ei,k

∂xk
= 0

(41)Ck = diag
(

C1,k , ...,Cn+m,k

)

=
[

Cx,k 0
0 Cy,k

]

(42)
(

∂g(xk)

∂xk

)T

Ck

(

Dk − g(xk)
)

= 0

(43)�k = BkC
−1
k BTk

(44)�k =
[

�x,k 0
0 �y,k

]
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the updated measurement covariance matrix is also derived:

which is then the square root of the updated measurement covariance matrix:

The main steps of the MCSCKF algorithm are summarized as follows.
(1) Choose a suitable kernel bandwidth σ , assume an initial estimation state of x̂0|0 and an associated square 

root covariance matrix S0|0 , and set the time k = 1;
(2) In the same time update step as the Square-root Cubature Kalman Filter (SCKF), the MCSCKF performs 

calculations (18)–(23);
(3) Derive the updated square root covariance matrix of measurements S∗R,k from (34)–(47), compute the 

a priori measurement means using (26), replace SR,k with S∗R,k from (27), and thus obtain the corresponding 
updated square root covariance matrix:

(4) Perform the MCSCKF measurement update process using (26), (48), and (29) through (32) and (49), and 
then return to (2) for the next time update when k = k + 1 occurs.

It is worth noting that the kernel bandwidth σ in step 1) is a key parameter in the MCSCKF algorithm, larger 
or smaller kernel widths cannot optimize the performance of the algorithm27. The smaller the kernel bandwidth, 
the more relatively stable and robust the algorithm turns out to be. In case the kernel bandwidth is much too 
narrow. However, the filtering accuracy will be reduced, slowing down the convergence of the filtering or even 
leading to filtering divergence. On the other hand, when the kernel bandwidth is too large, MCSCKF degenerates 
to SCKF28. Therefore, the value of σ should be chosen appropriately, and after many experiments and summarized 
by previous authors, the value of σ is 3 in this paper.
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Results
Experimental analysis of on‑board results
In order to verify the adaptability and robustness of MCSCKF together with a comparative analysis of the effects 
of various filters on the performance of cooperative navigation, the experimental data used in this experiment 
are the same as those in the literature7. Two vehicles were driven at different speeds, relative speeds, and dis-
tances. The maximum speed was 80 km/h, the maximum relative speed was 34 km/h, and the maximum distance 
between them was 78 m. A set of low-cost Xsens MTI-G INS is installed on two vehicles, a and b , to obtain the 
raw data needed by the algorithm, in addition to simultaneously obtaining the actual distances of the two vehicles 
via MSSI-based UWB. At the same time, a Leica GS10 receiver and a set of Novatel IMU-LCI integrated GNSS 
carrier phase differences are equipped on both vehicles for high-precision position estimation to get the reference 
solutions, with a data sampling rate of 1 Hz and an experimental duration of thirteen minutes.

During the experiment, both vehicles are in motion. The GPS receiver on the carrier is used to observe the 
visible satellites in the experimental area in real-time, to get the pseudorange and Doppler shift between the 
vehicles and the satellites, and to obtain the real-time distance between the two vehicles as well as the observa-
tion information through UWB. To ensure time synchronization, the GPS time is used for data synchronization. 
The algorithm of this experiment utilizes the L1 pseudorange, the Doppler shift, and the real distance between 
the two vehicles based on UWB as the observation data to establish the data fusion model as shown in Fig. 2. 

(45)�x,k = Sk|k−1 · I · STk|k−1 = Pk|k−1

(46)R∗
k = �y,k

(47)R∗
k = S∗R,kS

∗T
R,k

(48)Syy,k|k−1 = Tria
([

Yk|k−1, S
∗
R,k

])

(49)Sk|k = Tria
([

Xk|k−1 − KkYk|k−1, KkS
∗
R,k

])
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EKF, classical CKF, and improved MCSCKF are compared in this experiment to analyze the data fusion and 
draw conclusions.

As shown in Fig. 3, the number of visible satellites needs to be greater than 4 satellites in all other common 
experiments. In the occasional case of less than 4 satellites, this leads to a decrease in the Kalman filtered innova-
tion and the covariance matrix dimension of the observations, which results in the measurement update not being 
performed properly, and in order to ensure that the measurement update is performed properly, the Kalman filter 
can compensate for this by using the dynamic models of the system, setting the innovation of missing observa-
tion to zero, and the observation covariance matrix is changed to infinity as a consequence. Figures 4, 5, 6 and 
7 show the resulting three-axis error as well as the overall error, respectively.

As shown in Fig. 7, EKF and CKF have basically the same position estimation accuracy, while the positioning 
accuracy of MCSCKF is significantly better than the two, which utilizes a nonlinear system to transmit the cuba-
ture law, and at the same time integrates the rules of Maximum Correntropy Criterion and Square-root Cubature 
Kalman Filter to inhibit the influence of colored noise in the actual measurements on the experimental data, and 
accordingly, it can be concluded that the precision, accuracy and robustness are better than EKF and CKF. Fig-
ure 8 represents the error cumulative distribution function (CDF) of the three different filters in the experiment, 
which shows that the applicability of MCSCKF is significantly better than that of the other two Kalman filters.

On this basis, in order to better analyze the effect of different filters on the position estimation accuracy of the 
experiments, the quality of the estimation is expressed using the Root Mean Square Error (RMSE). For further 
analysis, the accuracy ( ea ) and precision ( ep ) of the relative position estimation are also defined.

The quantitative results of the three can be expressed using the following equation:

(50)ea =
∣

∣

∣

∣

∣

m−1
m
∑

t=1

[
⇀

r′(t)− ⇀
r (t)]

∣

∣

∣

∣

∣

(51)ep =

√

√

√

√

3
∑

i=1

�ii

Figure 2.   Schematic of the experimental settings.

Figure 3.   Number of commonly visible satellites.
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Figure 4.   Comparison of X-axis errors.

Figure 5.   Comparison of Y-axis errors.

Figure 6.   Comparison of Z-axis errors.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22961  | https://doi.org/10.1038/s41598-023-50377-w

www.nature.com/scientificreports/

 where 
⇀

r′ and ⇀r  are the relative position estimated by the algorithm and the reference relative position of the RTK, 
respectively, m is the total number of calendar elements, �ii is the ith value in the diagonal of the � matrix, with 
� = cov[

⇀

r′(t)− ⇀
r (t)] . The performance metrics of the three filtering algorithms are shown in the following 

Table 1.
Define the parameter ω to be used to indicate the enhancement effect of scheme B on the realization of scheme 

A, where ErrorA and ErrorB are the values of the error metrics for the three performances in Table 2.

(52)ω =
[

1− ErrorB

ErrorA

]

× 100%

Figure 7.   Comparison of three-axis distance errors.

Figure 8.   Comparison of error cumulative distribution functions.

Table 1.   Quantitative indicators of experimental results.

Method RMS/m Accuracy/m Precision/m

EKF 2.05 1.52 1.38

CKF 2.03 1.55 1.31

MCSCKF 1.62 1.35 0.89
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Using the above equation, the percentage increase of MCSCKF over the other two classical filtering algorithms 
among the three performances is calculated as shown in Table 2:

Based on the above data, experimental results can be derived, which show that the relative position percep-
tion of MCSCKF has stronger robustness and localization accuracy than EKF and CKF, and also provides a more 
accurate system control method for tight combination cooperative navigation.

Conclusion
Based on the theory of robustness and adaptability, the data processing method of vehicle relative position 
localization is optimized, which further improves the vehicle positioning accuracy and the performance of coop-
erative navigation. Moreover, in response to the problem that the covariance matrix dimension of the Kalman 
filter is reduced due to the new information and observations of the Kalman filter, which leads to the failure 
of the measurement update, a Maximum Correentropy-based Robust Square-root Cubature Kalman Filter is 
proposed, which improves the data fusion method, and further improves the accuracy of vehicle relative posi-
tioning, and also improves the performance of cooperative navigation. further improves the accuracy of relative 
vehicle localization, and also opens up a new field for cooperative navigation at the same time. The in-vehicle 
navigation experiments yielded that the positioning accuracy and robustness of MCSCKF improved by 20.74% 
and 35.08% compared with EKF; the positioning accuracy and robustness of MCSCKF improved by 20.08% and 
31.83% compared with CKF, thus verifying the robustness and superiority of MCSCKF. However, the algorithm 
proposed in this paper also has a number of limiting factors, which depend on the actual situation problems in 
engineering, and these problems also limit the method to have limitations in complex applications in practice. 
This point is also the subject of subsequent research work.
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