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Atypical instantaneous 
spatio‑temporal patterns of neural 
dynamics in Alzheimer’s disease
Sou Nobukawa 1,2,3*, Takashi Ikeda 4,5, Mitsuru Kikuchi 4,6 & Tetsuya Takahashi 4,7,8

Cognitive functions produced by large‑scale neural integrations are the most representative 
‘emergence phenomena’ in complex systems. A novel approach focusing on the instantaneous 
phase difference of brain oscillations across brain regions has succeeded in detecting moment‑to‑
moment dynamic functional connectivity. However, it is restricted to pairwise observations of two 
brain regions, contrary to large‑scale spatial neural integration in the whole‑brain. In this study, we 
introduce a microstate analysis to capture whole‑brain instantaneous phase distributions instead of 
pairwise differences. Upon applying this method to electroencephalography signals of Alzheimer’s 
disease (AD), which is characterised by progressive cognitive decline, the AD‑specific state transition 
among the four states defined as the leading phase location due to the loss of brain regional 
interactions could be promptly characterised. In conclusion, our synthetic analysis approach, focusing 
on the microstate and instantaneous phase, enables the capture of the instantaneous spatiotemporal 
neural dynamics of brain activity and characterises its pathological conditions.

Cognitive functions are the most representative ‘emerging phenomenon’ in large-scale neural integration systems 
(reviewed  in1–3). Recent advances in brain network science have provided powerful insights into a wide range of 
spatiotemporal neural integrations underlying various cognitive functions (reviewed  in4,5). Particularly, in the 
functional connectivity (FC) approach, pair-wise synchronisations across brain regions successfully revealed 
diverse aspects of brain network alterations (e.g.  ageing6 and developmental  processes7), including pathological 
conditions (e.g.  schizophrenia8 and Alzheimer’s disease  [AD]9) (reviewed  in10–12). Furthermore, recent findings 
on brain networks have shown that FC is not static but dynamically changes over time, even without external 
stimuli, which is called dynamic functional connectivity (dFC)12–16 (reviewed  in17). This dynamic property 
reflects the ability of brain  function18–20 and characterises both healthy  ageing21,22 and pathological  conditions23.

Neural activity involves moment-to-moment dynamics occurring within  milliseconds24–26 (reviewed  in27,28). 
To evaluate these high-frequency components in dFC, a neuroimaging modality with a high temporal resolution, 
typified as electroencephalography (EEG) or magnetoencephalography, is  appropriate13,29,30. Despite its temporal 
significance, a sliding-time-window approach (focusing on the variability in synchronisation between neural 
activities within a certain time window) has been  applied15,16 in the conventional analysis of dFC, which deprives 
us of high temporal resolution of the neuroimaging data. To address this issue, we recently introduced a dynamic 
phase synchronisation (DPS) approach based on the temporal complexity of the instantaneous phase differ-
ence between neural activities. This approach enables the detection of the instantaneous characteristics of dFC 
involving historical characteristics (or deterministic characteristics) produced by inherent network  dynamics31. 
Subsequently, this approach could successfully detect the ageing process in the frontal cortical  network31. Hence, 
focusing on the instantaneous phase of neural activity provides additional insights into existing dFC  analyses31.
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In the dFC approach including DPS, complex and multiple network dynamics are captured by pair-wise 
interactions of neural activities. In contrast, an approach with a microstate, which is an intermittently chang-
ing quasi-stable state defined by a spatial power distribution, captures the dynamic state of whole-brain neural 
 activity32,32,33 (reviewed  in34). This microstate reportedly reflects the global integration corresponding to multiple 
neural interactions among brain regions and dynamic state transition of the whole brain network in cognitive 
 processes35–39. Moreover, a large number of studies comparing EEG activity and  dFC15,40–44, Abreu et al.  have 
recently demonstrated that the microstate reflects the global network pattern in dFCs estimated by functional 
magnetic resonance imaging with precise  accuracy45, rather than focusing on local EEG activity in individual 
brain regions. Even though the conventional microstate based on power distribution reflects whole-brain inter-
actions, the application of the microstate approach to instantaneous phase interactions involving moment-to-
moment  dFC31 might lead to a much more progressive approach to detect dynamical whole-brain interactions. 
As a preliminary study, our recent study reported that the spatial distribution of instantaneous frequency (IF) 
in EEG signals exhibited region-specific patterns and their temporal transitions, which resemble conventional 
microstates based on power distribution, that is, identification of brain region-specific leading phase states and 
their dynamical emergence/transitions46.

Impairment in the integration of neural activity leads to various pathological conditions involving cogni-
tive decline (reviewed  in10–12). Particularly, due to the progress of the ageing society, the global prevalence of 
AD, which is the most common form of dementia, will increase to 0.6% in 2030 and 1.2% by  204647. Although 
effective treatments for AD are controversial, recent studies have shown that the early diagnosis of AD and 
early intervention significantly delay disease  evolution48. Therefore, the advent of biomarkers that support early 
diagnosis is expected. AD causes cognitive impairment due to the loss of multiple neural interactions induced by 
progressive neuronal death, neurofibrillary tangles, and senile plaques in widespread brain  regions49–51. The use 
of the phase synchronisation approach has revealed that the progression of AD leads to alterations in frequency-
band-specific global  FC26,52. Moreover, studies on whole-brain network dynamics captured by dFC analysis using 
a sliding-time-window53–55 and microstate analysis based on power spatial  distribution56–58 reported alterations 
in network dynamics in AD.

In this context, in addition to the DPS approach, where the instantaneous phase of neural activity is applied 
to the evaluation of  dFC31, we hypothesised that introducing a microstate based on the instantaneous phase 
reflecting the moment-to-moment dynamical characteristics of whole-brain network activity might provide 
another dimension of understanding to the network alternation in AD. To validate this hypothesis, first, based 
on the findings of the region-specific IF  distribution46, we developed a novel microstate analysis with the dynam-
ics of deviation for spatial IF distribution in the whole brain and applied it to AD EEG signals. Subsequently, 
we validated whether the time evolution of whole-brain IF reflected the inherent dynamic process in the neural 
network. Finally, we validated the effectiveness of the IF microstate in identifying alterations in network dynam-
ics due to AD pathology.

Results
Analysis for the dynamics of the IF in EEG signals
First, we provide an overview of the estimation method for the IF and temporal behaviour of the spatial deviation, 
as shown in Fig. 1a. In this method, multichannel EEG signals were processed by band-pass filtering to extract 
oscillations in the frequency regions involving theta and alpha [4 : 13] Hz, which are the dominant oscillations 
in the resting eye-closed EEG signals in both healthy control (HCs) and patients with AD. In microstate analysis 
involving conventional methods, the frequency band is used over a wider range than  FC34. Subsequently, by 
Hilbert transformation, the multichannel time series of the IF was derived through processing to remove phase 
slips using a median filter and an unwrapping angle. Typical examples of IF time series at the Fz electrode are 
shown at the top of Fig. 1b. The IFs at all electrodes fluctuated around the frequency range of band-pass filter-
ing (see the movies for temporal evolution of the IF at all electrodes in the Supplementary Information). From 
these results, owing to the slowing wave of AD, the temporal and spatial averages of the IF in the AD group were 
significantly low ( t = −2.8016, p = 0.0099 ) (group-average of HC cases: 8.58 Hz, group-average of AD cases: 
7.82 Hz); the spatial patterns of the IFs were transient, intermittent in both groups. To capture the characteristics 
of this evolution, the time series of the standard deviation of the IFs among all electrodes was derived, which is 
called the global field instantaneous frequency (GF-IF) in this study (see the bottom part of Fig. 1a). Here, the 
high-frequency ripple behaviour in the GF-IF was eliminated using the median-filtering process. As shown at the 
bottom of Fig. 1b, the GF-IF exhibits the fluctuated oscillations in both HCs and patients with AD. The temporal 
averages of the GF-IF are not different between HCs and patients with AD [ t = −1.151, p = 0.258 (group average 
of HC cases: 1.486 Hz, group-average of AD cases: 1.425 Hz)].

Second, the frequency characteristics of temporal behaviour in the GF-IF were evaluated. The result of the 
power spectrum density (PSD) of the GF-IF shows that the frequency component of the GF-IF is distributed 
in the frequency region � 0.35 [Hz], and there is no difference in PSD between HCs and patients with AD(see 
Fig. 2a). The dynamic patterns of the GF-IF were analysed using multiscale entropy (MSE)  analysis59. In the 
MSE analysis, the time series of the GF-IF were coarse-grained at each temporal scale; these complexities were 
quantified by sample entropy (SampEn). The MSE profiles of the GF-IF in the HC and AD groups are shown in 
Fig. 2b. SampEn exhibited a monotonic increase as a function of temporal scale in both the HC and AD cases; 
these profiles showed no difference between them. Moreover, the deterministic properties of these patterns 
were evaluated by comparing the MSE profile of the GF-IF time-series and that of the corresponding iterated 
amplitude-adjusted Fourier transform (IAAFT)  surrogates60. In Fig. 2c, the differences in SampEn between the 
original GF-IF and the average of ten IAAFT surrogates produced from different random seeds and paired-t 
values as a function of the temporal scale were represented. In both HC and AD cases, the values of SampEn in 
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the IAAFT surrogates were significantly higher than those in the original GF-IF time-series on the temporal scale 
[ � 6 ( � 0.03 s)]. Thus, the temporal patterns of the GF-IF involve deterministic characteristics produced by the 
inherent dynamic process of the neural network, that is, the previous state of the neural network reflecting the 
GF-IF determines the next state, although the GF-IF cannot capture the pathology of AD.

Analysis for microstates based on the IF
Regarding the behaviours of the GF-IF, which reflects the interactions among whole-brain activities, the maxim-
ised GF-IF can be interpreted as the appearance of a signal source that corresponds to the fastest neural activity 
(the highest IF value) among the regions. To capture the characteristics of the intermittent transition of the 
source location and their alternation owing to the pathology of AD, we classified the IFs at the maximised GF-IF 
using the k-means method (cluster size is set to k = 4 ) (see the flow of classification in Fig. 3a); subsequently, 
the temporal transition of classified states called as the IF microstate was evaluated.

The classified spatial distributions of the IFs, which were temporal-averaged within each classified state, are 
shown in Fig. 3a. Right-hemispheric, occipital, left-hemispheric, and frontal leading phase microstates were 
identified in both the HC and AD groups. Under the definition where the state transients at the local minimum 
of the GF-IF, that is, diminishing the local specification of the IFs, the state transitions of typical participants 
in the HC and AD groups are shown in Fig. 3b. Intermittent transitions of the IF microstates were confirmed.

To evaluate the temporal characteristics of the transition, Fig. 4 shows the emergence frequency per second 
(a) and rate of occurrence duration for each IF microstate (b). Consequently, a significant decrease in the emer-
gence frequency and rate of occurrence duration for the occipital leading phase ( t = −3.400 ( p = 0.0018 ) and 
t = −3.351 ( p = 0.0020 ), respectively, satisfying q < 0.05 ) was confirmed in the AD group. Furthermore, to 
evaluate the temporal transition probability among these IF microstates, we analysed the mean state transition 
probability across all four microstates in the HC and AD groups and differences between the groups (Fig. 5). 
Consequently, a significant decrease was observed in the transition probability from the frontal, left-hemispheric, 
and occipital leading states to the occipital leading state in AD, satisfying q < 0.05.

Figure 1.  (a) Estimation process for the continuous instantaneous frequency (IF) time-series of 
electroencephalography (EEG) signals and global field instantaneous frequency (GF-IF) based on IFs among 
whole electrodes. (b) Typical examples of time-series of the IF at the Fz electrode (upper part) and GF-IFs 
(lower part) in for healthy control (HC) and Alzheimer’s disease (AD) cases. Red and blue dots exhibit the local 
maximum and minimum of GF-IFs. Here, the duration of 25–30 s is shown within the whole evaluation period.
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Furthermore, we investigated the relationship between IF microstates and cognitive function in AD. Figure 6 
shows the scatter plots of the emergence frequency (corresponding to Fig. 4a) and mini-mental state examina-
tion (MMSE) scores and their Pearson’s correlation coefficient r and scatter plots between the rate of occurrence 
duration (corresponding to Fig.4b) and MMSE scores and their r. The results showed that correlations with the 
statistical criterion q < 0.05 were not observed in either case. In Fig. 7, the Pearson’s correlation coefficients r 
between the state transition probability and MMSE scores (a) and scatter plots with the significant large correla-
tion coefficient r ( q < 0.05 ) (b) are shown. The results show a significantly large negative correlation between 
the transition probability from the left-hemispheric leading state to the left-hemispheric state. Thus, it can be 
interpreted that over maintenance of the left-hemispheric leading state and difficulty in transitioning from the 
left-hemispheric leading state might induce cognitive decline.

Discussion
In this study, we aimed to investigate the inherent instantaneous spatiotemporal neural dynamics of the human 
brain and their alterations in patients with AD. To this end, a microstate approach was applied to the whole-brain 
IF distribution of EEG signals. Our results indicate that the temporal fluctuation of the whole-brain IF, which is 
captured by the GF-IF, reflects the internal dynamical process of neural networks; moreover, in the microstates 
based on this whole-brain IF, the emergence frequency/rate of occurrence duration of occipital leading state in 
patients with AD decreased in comparison with that in HCs. Regarding the state transition among the IF micro-
states, the state transition probabilities of the occipital-to-frontal, occipital-to-left-hemispheric, and occipital-to-
occipital leading states patients with AD decreased compared with those in HCs, that is, participants with AD 
were harder to transition to the occipital leading state and easier to transition from the occipital leading state. The 
state transition probabilities of the left-hemispheric-to-left-hemispheric leading states exhibited a significantly 

Figure 2.  Dynamical characteristics of the GF-IF. (a) Average of power spectrum density (PSD) of the GF-IF 
in the HC and AD groups (dotted lines exhibit the standard deviations) (upper part). t-value between the HC 
and AD groups (lower part). Positive (negative) values correspond to a larger (smaller) PSD for the AD group 
than for the HC group. No significant difference was confirmed. (b) Average of sample entropy (SampEn) 
dependency on the temporal scale in the HC and AD groups (dotted lines exhibit the standard deviations) 
(upper part). t-value between the HC and AD groups (lower part). Positive (negative) values correspond to 
a larger (smaller) SampEn for the AD group than for the HC group. (c) Difference in SampEns between the 
original GF-IF time-series and iterated amplitude adjusted Fourier transform (IAAFT) surrogates [first (HC) 
and third (AD) columns] and their paired-t value [second (HC) and fourth (AD) columns]. The larger t-values 
than magenta dotted line satisfy with q < 0.05 . The temporal scale components of the temporal patterns of the 
GF-IF [ � 6 ( � 0.03 s)] possess the deterministic characteristics.
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large negative correlation with the MMSE. In other words, difficulty in transitioning from a left-hemispheric 
leading state is correlated with cognitive decline.

First, we must consider the reason why the temporal evolution of the spatial deviation of the IFs, that is, the 
GF-IFs, reflects the inherent dynamic process. Many studies using the phase synchronisation approach for FC 
have revealed that the instantaneous phase component reflects the interaction of inter-regional neural  activity6–12. 
Moreover, in addition to the evaluation of static phase synchronisation within a certain time window in the FC 
evaluation, the moment-to-moment interaction, which appears in the instantaneous phase difference captured 
by the DPS approach, exhibits deterministic characteristics produced by internal network  dynamics31. Therefore, 
the whole-brain assembly of these phase components as the GF-IF inherited this deterministic characteristic 
(Fig. 2). However, in the GF-IF, the multi-dimensional IF behaviours, involving whole brain interactions, are 
degenerated to one-dimensional behaviours without spatial region specificity; consequently, the GF-IF cannot 
capture the pathology of AD for the relatively small and heterogeneous clinical dataset used in this  study25,26.

In contrast to the GF-IF, the IF microstate as a whole-brain IF distribution can reflect the regional specificity 
of IF interactions, and we must discuss the difficulties in maintaining occipital leading states and transition to 
occipital leading states related to AD pathological conditions. The pathological progression of AD leads to the 
impairment of the posterior cingulate gyrus, which plays an important role in the integration and transmission 

Figure 3.  (a) Classified spatial distributions of the IFs. The average of the IFs within each classified state, that is, 
the right-hemispheric, occipital, left-hemispheric, and frontal leading phase microstates were identified in both 
the HC and AD groups. (b) State transitions of typical HCs and participants with AD. Red and blue dots exhibit 
the local maximum and minimum of the GF-IFs. We defined that the state transition was at the local minimum 
of the GF-IF, that is, diminishing localisation of the IFs. The intermittent transitions of the IF microstate were 
confirmed.
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Figure 4.  (a) Emergence frequency of each microstate per second (all: frequency of all IF microstates, #MSfR: 
right-hemispheric, #MSfO: occipital, #MSfL: left-hemispheric, and #MSfF frontal leading phase microstates). 
(b) Rate of occurrence duration for each IF microstate. The significant decreasing emergence frequency and rate 
of occurrence duration for the occipital leading phase ( t = −3.400 ( p = 0.0018 ) and t = −3.351 ( p = 0.0020 ), 
respectively, satisfying with q < 0.05 ) were confirmed in the AD group.

Figure 5.  Mean state transition probability from the source state (vertical axis) to the destination state 
(horizontal axis) in the HC and AD groups (upper part). The positive (negative) t-value corresponds to a high 
(low) probability of participants with AD than HCs (lower part). The result showed the significant decreasing 
the state transition probabilities from the frontal, left-hemispheric, and occipital leading states to occipital 
leading state in AD cases, satisfying with q < 0.05.
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processes as a hub for brain networks (reviewed  in61–63). Assuming that the leading-phase state corresponds to 
the transmission  process64, the hub function in AD progression with cognitive  decline65–67 may induce difficulties 
in the occipital leading state (see Figs. 4 and 5).

Further, we discuss the correlation of the difficulty in transitioning from the left-hemispheric leading phase 
state with cognitive decline in the AD group. Almost all evaluated items for cognitive functions measured by the 
MMSE relate to language and memory  functions68. The brain regions involved in verbal memory functions are 

Figure 6.  (a) Scatter plots between the emergence frequency (corresponding to Fig. 4a) and Mini-Mental State 
Examination (MMSE) scores and their correlation coefficient r. (b) Scatter plots between the rate of occurrence 
duration (corresponding to Fig. 4b) and MMSE scores and their r. No correlations were observed in both cases.
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located in the left hemisphere of the brain, especially in the left-sided  hippocampus69,70; progression in AD leads 
to hippocampal  shrinkage71–73 and dysfunction in the integration of verbal memories and semantic  concepts74–76. 
Considering these findings, the low frequency of transience from the left-hemispheric leading phase state might 
reflect diminishing interactions starting from the left hemisphere as the source of verbal memory function, that 
is, diminishing dFC, in AD with a reduced MMSE score. However, for a more detailed verification of this finding, 
a comparison between the IF microstate and exhaustive cognitive function tests in a larger dataset is needed.

Additionally, we must consider the comparison with comparison with the microstate approach based on signal 
amplitude, similar to the conventional microstate approach. In “Supplementary Note 4”, the microstates based 
on instantaneous amplitude (IA) were evaluated under the condition with the same frequency band (4–13 Hz) 
and clustering method. The result showed similar spatial patterns (left-hemispheric, occipital, right-hemispheric, 
and frontal activate micro-state). In contrast to the micro-state based on IF, the right-hemispheric activate state 
based on IA in the AD group emerges with a significantly higher frequency. Therefore, IF might capture a dif-
ferent aspect of network alterations in the pathology of AD. However, to reveal a more detailed mechanism to 
produce each IF microstate and its alternation, magnetoencephalography and complementary cortical source 
localization techniques are needed, as the EEG signals used on the scalp cannot precisely identify the source of 
neural activity inducing the IF microstate. Furthermore, recent studies are focusing on the relationship between 
the microstate and  dFC77,78. The other type of microstate approach based on dFC, which is defined as dynamics 
of FC among all the electrodes, instead of each phase component of EEG signals used in this study, has been 
 proposed79,80. Evaluation from the viewpoint of the multiple microstate approach may introduce a novel and 
comprehensive perspective regarding the complex dynamics of the brain.

Finally, the limitations of this study should be considered. First, we set k cluster numbers to estimate the IF 
microstate based on an instantaneous distribution to k = 4 , which is widely utilised in the conventional power-
based microstate  approach32,32,33. However, this cluster number might be optimised for the IF microstate based 
on the instantaneous distribution. Moreover, according to the tendency of silhouette  value81 (see “Supplementary 
Note 3”), the use of k = 4 , corresponding to the setting for the conventional EEG microstates approach, is deemed 
necessary for the analysis of neuroimaging with high spatial resolution, typified by high-density EEG. Second, the 
effect of volume conduction can lead to spurious synchronization in the estimation of FC. Therefore, metrics of 
functional connectivity often incorporate measures to address this  effect82. However, it is unclear whether volume 
conduction can affect to the state based on the phase components of EEG signals across all electrodes in our 
proposed IF microstate approach, as well as pair-wise synchronization. Therefore, this point needs clarification; 
we must develop a method to address this influence if volume conduction significantly affects the IF microstate. 
Third, this study dealt with participants with mild or higher severity of AD; therefore, evaluation of participants 
with mild cognitive impairment is needed to apply the IF microstate approach to the early diagnosis of AD. 
Fourth, alterations in the network dynamics involving dFC appear in many types of psychiatric  disorders83,84. 
Therefore, alterations in dynamic states based on the IF distribution might emerge in these disorders, and such 
disease-specific characteristics must be revealed. In future studies, we plan to address these issues.

Conclusions
In this study, we introduced a new microstate approach based on whole-brain IF distributions. This approach can 
be used to detect alterations in the network dynamics that reflect AD pathology and cognitive decline. Although 
some limitations remain, this approach might become an effective approach for revealing the brain functions 
produced by whole-brain interactions as emerging phenomena and their alternations.

Figure 7.  (a) Correlation coefficient r between the state transition probability and MMSE scores. (b) The 
associated scatter plot with a significantly large correlation coefficient r ( q < 0.05 ). The result showed that a 
significantly large negative correlation for the transition probability from the left-hemispheric leading state to 
the left-hemispheric state.
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Material and methods
Participants
We included 16 participants with AD who satisfied the National Institute of Neurological and Communicative 
Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association criteria and were in a state before 
the onset of primary dementia according to the Diagnostic and Statistical Manual of Mental Disorders (fourth 
edition) criteria, and sex- and age-matched healthy older participants who were non-smokers and were not on 
 medication25,26,85. In the HC group, participants with medical or neurological conditions involving epilepsy or 
head trauma in the past and with a history of alcohol or drug dependency were excluded. In patients with AD, 
medications affecting the central nervous system were not administered, and the Functional Assessment Staging 
Test (FAST) and  MMSE68 were conducted. There were three participants with mild AD (FAST 3), seven with 
moderate AD (FAST 4), and six with severe dementia (FAST 5). The MMSE scores were distributed in the range 
of 10–26 (average: 15.56). Detailed information about the participants is provided in Table 1. Informed consent 
was obtained from all participants before the study. The experimental protocol of this study was approved by 
the Ethics Committee of Kanazawa University and conducted in accordance with the Declaration of Helsinki.

EEG recording
To conduct EEG recording, 16 electrodes located at Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, Fz, Pz, 
T5, and T6 according to the international 10–20 system of electrode placement were used. EEG signals were 
measured using a binaural connection as a reference. During the EEG measurements, the participants sat in an 
electrically shielded and soundproof recording room, and the room illuminance was controlled. The EEG-4518 
apparatus (Nihon Kohden, Tokyo, Japan) was used for EEG measurements. The EEG signal was recorded at a 
sampling frequency of 200 Hz and a bandpass filter of 1.5–60 Hz. The electrode/skin conductance impedance 
was carefully controlled at each electrode to be less than 5k� . Eye movements were traced using bipolar elec-
trocardiography. Each participant’s EEG signal was measured for 10–15 min in a resting state with eyes closed. 
In the recorded EEG signals, an artifact-free continuous 60s (12, 000 data points) epoch was selected for each 
participant.

Microstate based on spatial patterns of the IF
In this study, the states of brain activity were defined using the instantaneous phase dynamics of EEG signals 
in 16 electrodes. The instantaneous phase dynamics were estimated using the following process (an overview is 
shown in Fig. 1). The time series of the multichannel EEG signals were band-pass filtered for the frequency range 
[4 : 13] Hz, which was set to involve the dominant frequency component of EEG activity in HCs and participants 
with AD with slowing waves (see for the profile of power spectrum in “Supplementary Note 1”)86. The same 
tendency of spatial patterns of microstate was confirmed using the wider frequency band used in conventional 
microstate analyses [2 : 20]  Hz34(see “Supplementary Note 1”). The first and last 5-s periods (1000 data points) 
in each bandpass-filtered epoch were removed to avoid distortions produced by the bandpass filtering process. 
The wrapped instantaneous phase θ(t) ( −π ≤ θ ≤ π ) was estimated through the Hilbert transformation. This 
instantaneous phase involves phase noise that causes a significantly large deviation from the instantaneous fre-
quency range [4 : 13] Hz, which is known as a phase  slip87. Therefore, a median-filtering process with a window 
length (0.1 s) for the IF was applied. This estimation method was used in the DPS approach in a previous  study31. 
The instantaneous amplitude and phase, which were derived from the Hilbert transformation, correspond to the 
envelope components and higher-frequency oscillations. The conventional microstate approach focuses mainly 
on the whole-brain distribution of the amplitude corresponding to the instantaneous  amplitude32,33.

In the state-estimation process based on a continuous instantaneous frequency time series IFi(t) (i the elec-
trode location) (its overview shown in Fig.1b), the deviation of IFi(t) from the average IFi(t) among all electrodes:

was used ( IF(t) is averaged IFi(t) among all electrodes). dIFi(t) represents the degree of leading (positive value) 
or delaying (negative value) of the phase component of neural activity in comparison with whole brain regions. 
The standard deviation of dIFi(t) among all the electrodes is defined as the GF-IF. Here, the high-frequency ripple 
behaviour in GF-IF was removed by the median-filtering process with a window-length (0.025 s). Based on the 
time series dIFi(t) at the local maximum of the GF-IF in both the HC and AD groups, the centres of k clusters 
were determined by the k-means algorithm, where the Euclidean distance was used to denote the distance in the 
space of dIFi(t) . These centres were estimated for overall participants in both groups (regarding the validity of the 
length of time-series and the cluster size k, these evaluations were shown in “Supplementary Note 2” and “Sup-
plementary Note 3”, respectively). Each cluster corresponds to a dynamic state based on 16 values of dIFi(t) . The 

(1)dIFi(t) = IFi(t)− IF(t),

Table 1.  Physical characteristics of healthy older controls (HCs) and patients with Alzheimer’s disease (AD). 
Here, the MMSE indicates the Mini-Mental State Examination.

HC participants AD participants p values

Male/female 7/11 5/11 0.72

Age (year) 59.3 (5.3, 55–66) 57.5 (4.7, 43–64) 0.31

MMSE score NA 15.5 (4.7, 10–26) NA
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appearance of state transients was defined as the local minimum of the GF-IF, that is, diminishing the local speci-
fication of the IFs. Using k clusters, the dynamic transitions among k states in both the HC and AD groups were 
obtained. These transitions were assumed to reflect the moment-to-moment dFC in the whole-brain network. 
In this study, according to the standard cluster size in the conventional  microstate35–39, a cluster size of k = 4.

Evaluation indexes for the IF microstate
Power spectrum analysis
To evaluate the power spectrum of the behaviours of the GF-IF, we used the PSD in dB/Hz using Welch’s method 
with a Hanning window function width of 5.0 s. The frequency and bin were set to [0.001 : 1] Hz and 0.001 Hz, 
respectively. The PSD was estimated using the signal-processing toolbox in MATLAB. To assess the difference 
in the PSD between the AD and HC groups, a t-test was conducted. Benjamini-Hochberg false discovery rate 
(FDR) correction was applied to the t-score for multiple comparisons ( q < 0.05 ) (1000 p values).

Multi‑scale entropy analysis
MSE analysis was utilised to assess the temporal scale dependence of the GF-IF time-series  complexity59. The 
time-series sample entropy of random Z-score variables { x1, x2, ..., xN } is given by

    Here, Cm(r) is the probability of �xmi − x
m
j � < r (i  = j, i, j = 1, 2, ...) among all pairs of i and j. xmi  indicates an 

m-dimensional vector xmi = {xi , xi+1, ..., xi+m−1} . In the MSE analysis, {x1, x2, ..., xN } was calculated using Eq. 
(3) for the coarse-grained time series yj:

    Here, {y1, y2, ..., yN } represents the observed signals. τ(τ = 1, 2, ...) represents a temporal scale. In this study, 
we set m = 2 and r = 0.259 and MSE analysis was performed using the Physio Toolkit toolbox in MATLAB 
(http:// physi onet. incor. usp. br/ physi otools/ sampen/). To assess the difference in SampEn between the AD and 
HC groups at each temporal scale, a t-test was conducted. FDR correction was applied to the t-score for multiple 
comparisons ( q < 0.05 ) (20 p values).

To investigate whether a nonlinear dynamic process was involved in the temporal behaviour of the GF-IF 
in both the HC and AD groups, we used IAAFT surrogate data  analysis60 with an iteration number of 100. Ten 
IAAFT surrogate datasets were generated using different random seeds for each original GF-IF. The SampEn 
values were averaged and compared with the values from the original GF-IF. To assess the difference between 
SampEn of the original GF-IF and that of the surrogate datasets, a paired t-test was conducted. FDR correction 
was applied to the t-score for multiple comparisons ( q < 0.05 ) (20 p values).

IF microstate analysis
To capture the temporal behaviours of each microstate, we used the emergence frequency, rate of occurrence 
duration, and sustaining duration of each IF microstate. The emergence frequency was defined as the frequency 
of the local maximum GF-IF per second. This frequency was counted in the appearances of all the IF microstates 
and each IF microstate. The rate of occurrence for each IF microstate is given by [summation of the duration 
between the local minimum of the GF-IF for each IF microstate]/[evaluation duration].

To evaluate the state transitions among IF microstates, we used the probability of state transitions among IF 
microstates. State transition is defined as the transition probability of the IF microstate from lth local maximum 
GF-IF to l + 1 th local maximum GF-IF.

Statistical analyses for microstates
To investigate the characteristics of the appearance of the microstate, we assessed the emergence frequency per 
second and rate of occurrence for each state. For comparisons between the AD and HC groups, t-tests were used. 
FDR correction was applied to the t-score for multiple comparisons of the emergence probability ( q < 0.05 ) (5 
p values for the emergence frequency and 4 p values for the rate of occurrence). Additionally, t tests were used 
to assess the differences in state transition probability between the AD and HC groups, t-tests were used. FDR 
correction was applied to the t-score for multiple comparisons of the transition probability ( q < 0.05 ) (16 p 
values: k × k state transitions).

Moreover, to reveal the relationship between the emergence frequency, rate of occurrence duration, and tran-
sition probability with cognitive functions in the AD group, we evaluated the Pearson’s correlation coefficients 
r with MMSE scores. The statistical criterion for significance was set to q < 0.05 by adjusting FDR correction.

Data availability
The datasets generated for this study will not be made publicly available, because informed patient consent will 
not include a declaration regarding the public availability of the clinical data. Requests to access the datasets 
were made by the corresponding author.

(2)h(r,m) = − log
Cm+1(r)

Cm(r)
.

(3)xj =
1

τ

jτ∑

i=(j−1)τ+1

yi(1 ≤ j ≤
N

τ
).

http://physionet.incor.usp.br/physiotools/sampen/
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