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Greedy routing optimisation 
in hyperbolic networks
Bendegúz Sulyok 1 & Gergely Palla 1,2*

Finding the optimal embedding of networks into low-dimensional hyperbolic spaces is a challenge 
that received considerable interest in recent years, with several different approaches proposed in 
the literature. In general, these methods take advantage of the exponentially growing volume of 
the hyperbolic space as a function of the radius from the origin, allowing a (roughly) uniform spatial 
distribution of the nodes even for scale-free small-world networks, where the connection probability 
between pairs decays with hyperbolic distance. One of the motivations behind hyperbolic embedding 
is that optimal placement of the nodes in a hyperbolic space is widely thought to enable efficient 
navigation on top of the network. According to that, one of the measures that can be used to quantify 
the quality of different embeddings is given by the fraction of successful greedy paths following a 
simple navigation protocol based on the hyperbolic coordinates. In the present work, we develop 
an optimisation scheme for this score in the native disk representation of the hyperbolic space. This 
optimisation algorithm can be either used as an embedding method alone, or it can be applied to 
improve this score for embeddings obtained from other methods. According to our tests on synthetic 
and real networks, the proposed optimisation can considerably enhance the success rate of greedy 
paths in several cases, improving the given embedding from the point of view of navigability.

Network theory has become ubiquitous in the analysis of complex systems ranging from molecular interactions 
up to the level of the global economy or the entire society1–3. One of the very notable approaches in modelling 
the statistical features of the web of connections between parts of a complex system is given by hyperbolic 
networks4–10, where nodes are placed in a hyperbolic space and are connected according to a probability that is 
decreasing with the hyperbolic distance. These models can generate scale-free, highly clustered and small-world 
random graphs, reproducing some of the most important universal features of networks representing complex 
systems. In addition, the often observed modular structure of real-world networks11–13 can also be easily grasped 
by these approaches14–17.

Probably the most well-known hyperbolic model is the popularity-similarity optimisation (PSO) model5, 
where the nodes are introduced one by one at logarithmically increasing radial coordinates and random uniform 
angular coordinates in the native disk representation of the 2d hyperbolic space, and the connection prob-
ability between nodes is decaying according to a Fermi-function, depending on the hyperbolic distance and 
a temperature-like parameter. Another very notable approach is provided by the random hyperbolic graph4, 
where the network is static and is obtained by placing the nodes at random onto the native disk and connecting 
them according to a connection probability that is decaying with the hyperbolic distance in a similar fashion as 
mentioned above. Several variations and generalisations of these seminal models were proposed over the years by 
e.g., adding slight modifications to the linking procedures6–9, extending the approaches to higher dimensions18–21, 
or incorporating tunable community structures14,15.

The success of hyperbolic models inherently brought with itself the interest towards the inverse problem as 
well, where the task is to find an optimal arrangement of the nodes in the hyperbolic space based on a given input 
network data. The first ideas about the hyperbolic embedding of networks appeared in Ref. 22, which was followed 
by the development of various different approaches later. A very natural idea that comes up is likelihood optimisa-
tion with respect to a hyperbolic model, as implemented in Hypermap 6, an early method for minimising a loga-
rithmic loss function based on the assumption that the input network was generated according to an extended 
version of the PSO-model. Another popular option is to apply dimension reduction techniques on matrices 
representing the distance relations between the nodes, leading to model-independent embeddings such as the 
Laplacian eigenmaps approach 23, the family of coalescent embeddings 24, and the Hydra method 25. Dimension 
reduction and optimisation techniques can be also combined as proposed in the case of the Mercator method 8,26 
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or when fusing the Laplacian embedding approach with E-PSO model-based optimisation 27, or when applying a 
local likelihood optimisation to the output of a coalescent embedding algorithm 9. Hyperbolic embeddings were 
also extended to bipartite networks 28, whereas the recent generalisations of hyperbolic embedding approaches 
include methods for dealing with directed networks 29 and the embedding of multiplex networks as well 30.

The quality of an embedding can be quantified according to several different measures, e.g., in the case of 
likelihood optimisation, the lowest achieved value of the loss function is a straightforward simple quality indica-
tor. Another approach for measuring the quality of hyperbolic embeddings is focusing on greedy routing, that 
was initially motivated by the assumption that the majority of the links in a hyperbolic network tend to follow 
the geodesic lines 4, enabling an efficient routing based on the hyperbolic coordinates 31. The idea of greedy rout-
ing on networks embedded in a geometric space in general goes back to the pioneering work by Kleinberg 32, 
considering a navigation protocol where we always proceed to the neighbour that is the closest to the destination 
node according to the distance defined in the given geometric space. Naturally, for networks embedded in a 
hyperbolic space, this greedy routing path is based on the hyperbolic distance between the nodes 31. The routing 
stops either when the target has been reached, or when hoping onto an already visited node, meaning that instead 
of reaching the target the path ends in a cycle and the greedy routing is unsuccessful 22,31.

Although hyperbolic networks are usually considered to be very suitable for greedy routing 4,6,22,24,31, still, in 
most cases, the greedy paths are not 100% successful in reaching the target, as pointed out by a recent study also 
raising some concerns regarding the widely believed high congruence between hyperbolic networks and their 
underlying space33. Motivated by that, here we develop an optimisation procedure for increasing the efficiency 
of greedy routing on the native disk representation of the hyperbolic space, and apply it to both PSO networks 
generated in the hyperbolic space itself and real networks embedded in the native disk. Besides the study of 
the achievable increase in the greedy routing efficiency we also examine how the optimisation affects further 
properties of the embedding.

Results
Preliminaries
The efficiency of greedy routing is affected by both the fraction of successful greedy paths and the length of 
these successful paths. A quantity for quantifying the greedy routing efficiency that grasps both of these factors 
is given by the greedy routing score 24

where ({ri , θi}) refers to the actual node positions given with the help of radial and angular coordinates, N is 
the number of nodes and the summations take into account all possible source-target pairs with ℓ(SP)s→t and ℓ(GR)s→t  
denoting the length of shortest and greedy paths respectively (where ℓ(GR)s→t = ∞ if the routing is unsuccessful). 
(The details of the calculation of the above measure are described in detail in the Methods).

Unsuccessful paths, where the routing protocol enters a cycle instead of reaching the target usually cause a 
more serious problem compared to the issues raised by the fact that the length of the successful paths can be 
sub-optimal. Hence, the main priority of our optimisation algorithm is to increase the fraction of successful 
paths. A quantity focusing only on the success of the paths was introduced in the literature as the success ratio, 
ps , corresponding to the fraction of the successful greedy paths when all possible source and target pairs are 
considered31. This can be written in a similar fashion to (1) in the form of

where δs→t = 1 if the greedy routing from the source s to the target t is successful, and otherwise δs→t = 0.
Naturally, the optimisation algorithm must displace at least a part of the nodes to induce changes in the rout-

ing of the paths. Before describing the details of the optimisation, it is instructive to first consider the possible 
effects coming from the displacement of a single node from the point of view of successful and unsuccessful paths, 
as listed in Fig. 1. The simplest scenario, where the displacement of a given node has no effect on the considered 
greedy path is not shown in the figure. In case the displaced node is not part of the greedy path before the change 
but is adjacent to one of the nodes in the path, the displacement may reroute the path by directing it through the 
displaced node, as shown in Fig. 1a. If the displaced node is adjacent to the last node of an unsuccessful greedy 
path, the displacement might eliminate the clogging, as indicated in Fig. 1b. The clogging in a greedy path can 
be relieved also by displacing the before the last node, as shown in Fig. 1c. It is important to note that for all the 
different changes in the routing that are listed in Fig. 1 the “inverse” may also happen at the displacement of 
nodes (e.g., instead of eliminating the clogging in an unsuccessful path we may accidentally induce the clogging 
of a previously successful path).

To illustrate that the displacement of even a single node can change the greedy routing in a non-trivial way, 
in Fig. 2. we show heat maps of the change in the success ratio when relocating a randomly chosen node within 
the disk defined by the outermost node in a PSO network. According to Fig. 2a, the regions where the change is 
positive (indicated by the different shades of blue) form intricate patterns together with the regions where the 
change becomes negative (shown by the different shades of red). However, under a greedy routing optimisation 
process we expect that the target regions for relocation with a positive change in ps({ri , θi}) will shrink. This is 
consistent with Fig. 2b, showing the achievable change in the success ratio for relocating the same node in the 
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same network as in Fig. 2a at the end of our optimisation algorithm, where basically no positive change can be 
obtained by relocating the chosen node. In Sect. S1 in the Supplementary Information we study the shrinkage 
of the target area with positive change in ps over the iterations in more details.

Greedy routing optimisation algorithm
Our approach to optimising the greedy routing paths is inspired by the concept of simulated annealing 34 in 
statistical physics. In this general framework, the optimisation task is transformed into the problem of finding 
the energy minimum in a complicated energy landscape over the parameter space, and a local optimum is found 
with the help of a Markov-chain Monte-Carlo method. During this optimisation, random moves are considered 
in the parameter space, and the acceptance probability of a given move depends on the energy difference between 
the two settings and also on a parameter T analogous to the temperature. By starting the annealing procedure at 
high temperatures, almost all moves are accepted, allowing the exploration of the parameter space, whereas the 
gradual “cooling” of the system by lowering the T suppresses the acceptance of moves that increase the energy 
and eventually drives the algorithm into a local energy minimum.

In our case, the “energy” for a given set of node coordinates {ri , θi} is defined as

(3)E({ri , θi}) = 1− ps({ri , θi}),

Figure 1.   Possibly elementary changes in greedy routes when displacing a single node. In all panels, the target 
of the path (highlighted in green) is positioned at an arbitrarily large distance downward, and the displaced 
node is highlighted in red. Panel (a) shows the case of re-routing, whereas panels (b,c) display clogging and 
unclogging.

Figure 2.   Change in the success ratio under relocation of a single node. The node to be relocated is shown in 
green and the background colour indicates the change in ps({ri , θi}) defined in Eq. (2) if the node is moved to 
the given position. The node size is proportional to the number of unsuccessful paths ending at the given node. 
In panel (a) we show the results for a PSO network of N = 1024 nodes at the beginning of the optimisation 
process, whereas panel (b) depicts the heat-map at the end of the optimisation.
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where ps({ri , θi}) is calculated according to (2) and the energy difference for a transition from {ri , θi} to {r′i , θ
′
i } 

is simply �E = E({r′i , θ
′
i })− E({ri , θi}) = ps({ri , θi})− ps({r

′
i , θ

′
i }) . When sampling new coordinate settings, the 

acceptance probability of an actual transition from the current state to the next one follows the Metropolis-
Hastings rule35,36 as

The natural question arising at this point is how to sample from the possible arrangements of the nodes in the 
native disk. Given any current set of the node positions {ri , θi} , the simple choice we take for gaining a new sample 
{r′i , θ

′
i } is to displace a single node (as already illustrated in Fig. 2), where the new position for the chosen node is 

drawn from a uni-modal distribution centred on the current position of the node (where the details of the distri-
bution are given in the Methods). The pseudo-code for optimising the success ratio in this approach for a network 
G(V, E) with a node set V, an edge set E and some specified initial node coordinates is given in Algorithm 1.
Algorithm 1.   Greedy routing annealing

The overall framework for greedy routing optimisation as defined above allows several possibilities for choos-
ing the node to be moved, e.g., we can choose uniformly at random from all the nodes, or choose according 
to a probability depending on some structural property (e.g., the degree), or choose according to a probability 
depending on the number of clogged greedy routes containing the given node, etc. The most straightforward 
approach is the uniform random choice, which does not require any additional information. In the following, 
we shall refer to the sampling procedure according to this choice as “random sampling”. In our studies, we also 
tested annealing procedures where the probability to be chosen was proportional to the node degree (the cor-
responding sampling method shall be referred to as “degree dependent sampling”), or to the number of clogged 
greedy paths starting from the given node (“clogged source sampling”) or to the number of clogged greedy paths 
targeting the given node (“clogged target sampling”).

During the annealing simulations in the present work we used a cooling scheme where the temperature 
was decreased as T = T0/(1+ ne) , where T0 denotes the starting temperature and ne is equal to the number 
of passed epochs, with one epoch corresponding to a number of iterations equal to the number of nodes. This 
choice corresponds to one of the well-known cooling schemes in simulated annealing (and the code we provide 
allows replacing this with a user defined cooling scheme as well). The simulations were stopped uniformly after 
400 epochs, allowing a fair comparison between the different networks according to the average number of 
displacements per node.

However, since the optimisation problem we are dealing with is analogous to the location of the ground state 
in a complicated energy landscape, the number of local minima can increase super linearly with the system size. 
Therefore, in a larger system the amount of exploration steps needed for finding a suitably good solution can 
grow faster than linear. Based on that, a natural alternative for the stopping criterion (made possible by the code 
we provide) can be formulated based on the relative improvement in ps between subsequent epochs (or over a 
certain range of the last epochs). Under this setting, the annealing stops if the relative improvement in ps drops 
below a certain threshold. Nevertheless, we still used a fixed number of epochs in the simulations as mentioned 
above, in order to make the preparation of the statistics describing the behaviour of various quality scores as a 
function of the number of epochs straight forward.

Greedy routing optimisation of networks
Although the greedy routing optimisation procedure we described can be viewed as a hyperbolic embedding 
algorithm (when starting from random node positions), it is much more convenient to use it as an auxiliary 
method for improving embeddings obtained by other hyperbolic embedding algorithms. To illustrate the kind of 
results that can be expected from our annealing framework, in Fig. 3.  we show layouts of a network of N = 1024 
nodes generated by the PSO model both before and after the optimisation. The parameters of the PSO model 
were set to m = 4 (controlling the average degree as �k� = 2m ), β = 0.5 (governing a gradual outward shift of 
the nodes during the network generation, leading to a tunable degree decay exponent γ = 1+ 1

β
 ), and T = 0.1 
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(corresponding to a temperature-like parameter, controlling the clustering coefficient). In Fig. 3a we show the 
original layout of the network generated by the PSO model, where the node size is proportional to the number of 
unsuccessful greedy paths ending at the given node and the colouring of the nodes indicates simply their angular 
coordinates. In comparison, Fig. 3b displays the network after applying our optimisation framework. Apparently, 
the node sizes are substantially smaller compared to Fig. 3a, thus, our optimisation is indeed doing its job by 
modifying the node arrangement in such a way that the number of unsuccessful greedy paths is reduced. The 
colouring of the nodes in Fig. 3b is indicating their original angular coordinate as given in Fig. 3a and according 
to that, the overall layout of the network remained quite similar to the original one. In panels Fig. 3c,d we show 
a similar comparison between the same PSO network embedded first by the Mercator algorithm8 (Fig. 3c), and 
then optimised according to the simulated annealing procedure proposed in the present work (Fig. 3d). Here and 
throughout the rest of the paper, we used Mercator with default settings, omitting optional refinement steps in 
the embedding. Again, the node sizes are seemingly smaller in Fig. 3d compared to Fig. 3c, thus, our optimisa-
tion has improved the greedy navigability of the embedding. Meanwhile, based on the colouring of the nodes 
(indicating this time the angular coordinate in the Mercator embedding) the organisation of the network on a 
global scale has remained mostly intact.

We tested the performance of our optimisation approach on several synthetic and real networks, including 
PSO networks of size N = 128 , N = 256 , N = 512 and N = 1024 , a co-purchasing network of political books37 
with N = 105 nodes and L = 441 links, a metabolic network38 of N = 453 nodes and L = 2025 links, a bipartite 
language network39 containing countries and spoken languages N = 858 nodes (10 disconnected nodes were 
discarded) and L = 1245 links and the fictional social network40 of the characters appearing in the fantasy series 
“A Song of Ice and Fire” with N = 796 nodes and L = 2823 links. The real networks were obtained from41. In 

Figure 3.   Improving the greedy routing in a PSO network. The layout of the network at the end of the network 
generation process according to the PSO model ( N = 1024 , m = 4 , β = 0.5 , T = 0.1 ) is shown in panel (a), 
whereas the modified layout according to the optimisation algorithm is displayed in panel (b). In both panels 
the node size is proportional to the number of greedy routes prematurely ending at a given node, whereas the 
node colors indicate the initial angular coordinates. In panel (c) we show the embedding of the same network 
according to Mercator8, where the colouring of the nodes is adapted to this new starting layout. Panel (d) depicts 
the result obtained by optimising the layout shown in panel (c).
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Fig. 4 we show the results by plotting the success ratio calculated according to (2) as a function of the number 
of epochs when the optimisation was started on embeddings obtained with Mercator8.

According to Fig. 4., the fraction of successful greedy paths is increasing in all networks during the optimisa-
tion, and in some cases, we can even achieve ps({ri , θi}) = 1 , meaning that all greedy paths become successful due 
to our optimisation. Naturally, both the ps({ri , θi}) at the end of the optimisation and the relative performance 
of the different annealing schemes vary over the studied networks. In Fig. 5. we show the improvement in ps 
observed when the optimisation was started from embeddings of the same networks obtained with hyperbolic 
ISOMAP24. Similarly to Fig. 4., the success ratio is increasing for all networks under the optimisation. However, 
since ps in the initial embedding is usually lower compared to the same score in the initial Mercator embeddings 
in Fig. 4., the value at the end of the optimisation (terminated after 400 epochs similarly to the case of Mercator 
embeddings) can also fall behind the results seen in Fig. 4. Nevertheless, the relatively low initial success ratio 
allows for greater relative improvement by the optimisation, as we can observe e.g., in the case of the metabolic 
network (Fig. 5d), the unicodelang network (Fig. 5f) and the network of fictional characters (Fig. 5g).

By comparing the results for different systems, it seems that the annealing scheme using target dependent 
sampling outperformed the other annealing schemes when starting the optimisation from Mercator embeddings 
in the case of Fig. 4d,f–g (the metabolic network, the unicodelang network and the network between fictional 
characters). In contrast, according to Fig. 5d,f–g, when embedding the same networks with hyperbolic ISOMAP, 
the target dependent sampling seems to fall behind the other alternative annealing schemes according to the 
speed of increase in the success ratio.

Since our optimisation scheme is specifically tailored for optimising the success ratio, it is natural to ask what 
happens to other alternative quality measures during the simulated annealing. In Figs. 6, 7 we show the geometri-
cal congruence33, measuring the similarity between the geodesic distances and the projected topological distances 
governed by the networks structure, where the precise definition of this score is given by Eq. (5) in the Methods.

The results show a mixed picture, as in some cases the GC-score is slightly smaller after the optimisation, 
whereas in other cases the annealing terminates with a higher GC-score value compared to the initial embed-
ding. Furthermore, the curves can show a non-monotonous behaviour, having either a minimum or a maximum 
in the studied interval. Nevertheless, we would like to point out that the overall change in the GC-score (when 
comparing the starting value and the value at the end of the optimisation) is minor in most of the cases.

We provide more results on the proposed optimisation framework in the Supplementary Information. In 
Sect. S2 we examine the behaviour of both the success ratio and the GC-score when the simulated annealing 

Figure 4.   Improvement of the success ratio during the optimisation for embeddings obtained with Mercator8. 
We plot ps({ri , θi}) defined in (2) as a function of the number of epochs for random sampling (red), degree 
dependent sampling (green), clogged source dependent sampling (blue) and clogged target dependent sampling 
(purple). The curves correspond to the median over 20 samples and the shaded region around the curves 
falls between the 40th and 60th percentiles. For better visibility, we marked both the starting values (before the 
optimisation) and the ending values (after 400 epochs) with ’x’ symbols. The results are shown for the network 
of political books ( N = 105 , L = 441 ) in panel (a), for a PSO network with N = 128 nodes and L = 618 links 
in panel (b), a PSO network with N = 256 nodes and L = 1178 links in panel (c), the metabolic network 
( N = 453 , L = 2025 ) in panel (d), a PSO network with N = 512 nodes and L = 2264 links in panel (e), the 
unicodelang network ( N = 858 , L = 1245 ) in panel (f), the network between fictional characters ( N = 796 , 
L = 2823 ) in panel (g) and a PSO network with N = 1024 nodes and L = 4402 links in panel (h).
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is started from a random embedding for the same networks that are studied here. According to the results, full 
navigability (where the success ratio is reaching ps = 1 ) can be achieved in this case as well for some of the 
studied networks. However, in most cases the success ratios at the end of the optimisation are slightly below the 
values we observed when starting the annealing from embeddings obtained with Mercator8 and are roughly at 
the same level we can observe in experiments started from embeddings according to the hyperbolic ISOMAP24 
method. In parallel, according to Fig. S3., major improvement can be observed in the geometrical congruence 
as well for most of the networks.

In Sect. S3 in the Supplementary Information we study the effect of our annealing framework on further 
quality scores, such as the mapping accuracy42, the area under the receiver operating characteristic curve and the 
area under the precision-recall curve in graph reconstruction43,44, the greedy routing score24 as defined in Eq.(1) 
and the greedy routing efficiency33. According to the results, the mapping accuracy (Sect.S3.1) and the quality 
scores related to graph reconstruction (Sect.S3.2) decrease when starting the optimisation from embeddings 
obtained with Mercator8. This can be viewed as a sort of “cost” we have to pay for achieving the improvement in 
the success ratio shown in Fig. 4. In case of annealing experiments starting from hyperbolic ISOMAP24 embed-
dings the picture is more mixed: the above quality scores (that are not related to greedy routing) either stagnate 
or slightly decrease for most networks, but in some examples we can also observe a small increase instead.

The scores related to greedy routing (studied in Sect.S3.3) either remained close to their original value, occa-
sionally with a slight decay, or improved when starting the simulated annealing from an embedding obtained 
with Mercator8. In contrast, these scores showed an increasing nature under the annealing experiments started 
from embeddings generated by hyperbolic ISOMAP24 for all studied networks.

The behaviour of the same scores was also studied in annealing experiments started from random embed-
dings, where we observed (in most cases major) improvement in all score values over the iterations. Hence, the 
embeddings our annealing framework finds are advantageous from the point of view of a wide range of quality 
measures compared to random node coordinates.

When combining the figures related to the different quality scores from both the main paper and Supple-
mentary Information it is apparent that the different sampling methods have lead to different performance in 
a number of examples. A plausible explanation for this is that our annealing framework based on single node 
relocation is likely to explore only a limited fraction of the possible configuration space, and in certain cases the 
different sampling methods drive the system to distinct “valleys” (local minima) in this abstract space. Since the 
degree-based sampling is one of the sampling methods that surpassed the others in several examples, in Sect. S4 

Figure 5.   Improvement of the success ratio during the optimisation for embeddings obtained with hyperbolic 
ISOMAP24. The ps({ri , θi}) defined in (2) is plotted as a function of the number of epochs for random sampling 
(red), degree dependent sampling (green), clogged source dependent sampling (blue) and clogged target 
dependent sampling (purple). The curves indicate the median over 20 samples (where the starting and ending 
values are marked by ’x’ symbols) and the shaded region around the curves is spanning between the 40th and 
60th percentiles. The results are shown for the network of political books ( N = 105 , L = 441 ) in panel (a), for 
a PSO network with N = 128 nodes and L = 618 links in panel (b), a PSO network with N = 256 nodes and 
L = 1178 links in panel (c), the metabolic network ( N = 453 , L = 2025 ) in panel (d), a PSO network with 
N = 512 nodes and L = 2264 links in panel (e), the unicodelang network ( N = 858 , L = 1245 ) in panel (f), 
the network between fictional characters ( N = 796 , L = 2823 ) in panel (g) and a PSO network with N = 1024 
nodes and L = 4402 links in panel (h).
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in the Supplementary Information we examined whether the displacement of hubs play an important role in 
cases where it seems to be more successful compared to the other sampling methods. Related to that we car-
ried out experiments where a part of the nodes (selected based on degree) were fixed during the optimisation. 
According to the results, hub position has a strong effect on embedding quality when starting the optimisation 
from random initial node positions, but not when starting from embeddings generated by Mercator. The likely 
reason behind this is that Mercator places hubs to positions that are already very close to optimal, and for such 
initial configuration, it is sufficient to displace the lower degree nodes only.

In order to provide an overview of the gains and losses we can observe in the different quality scores, in 
Sect. S5 of the Supplementary Information we display violin plots showing the distribution of the score values 
observed at the end of the optimisation processes. Here we include all four sampling methods as well as the 
results for experiments with fixed hubs during the annealing.

A further question studied in the Supplementary Information is to what extend do the statistical properties 
of graphs re-generated from the embeddings match with those of the original networks. In Sect. S6 in the Sup-
plementary Information we analyse graphs obtained by drawing between node pairs according to probabilities 
dictated by the S1/H2 model8. According to the results, the degree distribution and the average clustering coef-
ficient of these reconstructed graphs match with that of the original networks quite well for Mercator8 embed-
dings, and compared to that with a slightly decreased accuracy for the optimised layouts. This indicates that the 
annealing process can also affect these fundamental statistics of the re-constructed graphs to some extent, and 
thereby, the decreased similarity compared to Mercator8 embeddings is yet a further cost we have to pay for the 
possible gain in greedy routing.

Discussion
The navigability of networks in the hyperbolic space is a topic of fundamental interest 4,10,22,31,33. Already at the 
introduction of the first hyperbolic network models, one of the noted advantages of the graphs generated by these 
approaches was that the geodesic paths seemed to be aligned with the topological shortest paths, enabling an 
efficient greedy routing protocol for navigation in the network 4,10. Nevertheless, in a recent work some concerns 
were raised regarding the congruence between hyperbolic networks and their underlying geometry 33, where it 
was shown that in some cases, the greedy routing may lead to unsuccessful paths between a considerable frac-
tion of the node pairs.

Related to the above topic, in the present paper we introduced a simulated annealing framework for improving 
the greedy navigability of networks embedded in the hyperbolic space. According to the results, our approach 
is able to increase the success ratio for both synthetic graphs generated by hyperbolic network models and real 

Figure 6.   Change in the geometrical congruence under the optimisation of embeddings obtained with 
Mercator8. We show the GC defined in (5) as a function of the number of epochs for the same networks (initially 
embedded with Mercator8) as in Fig. 4, where the colour of the curves encode the annealing scheme, the value 
of the curve shows the median over 20 samples (where the starting and ending values are marked by ’x’ symbols) 
and the shaded region around the curves is spanning between the 40th and 60th percentiles. The results are 
shown for the network of political books in panel (a), for a PSO network with N = 128 nodes in panel (b), a 
PSO network with N = 256 in panel (c), the metabolic network in panel (d), a PSO network with N = 512 
nodes in panel (e), the unicodelang network in panel (f), the network between fictional characters in panel (g) 
and a PSO network with N = 1024 nodes in panel (h).
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networks embedded into the hyperbolic space by some graph embedding technique, reaching in some examples 
the maximum score, corresponding to layouts where all greedy paths are successful in reaching their targets. 
Although in theory, the algorithm can be used as an embedding method on its own, in practice it is more useful 
to use it as an auxiliary procedure that can improve the output of other hyperbolic embedding methods due to 
the well-known high computation cost of simulated annealing methods.

Besides the success ratio, we have also monitored the change of several other quality measures, including the 
geometrical congruence33, the mapping accuracy42, the area under the receiver operating characteristic curve and 
the area under the precision-recall curve in graph reconstruction43,44, the greedy routing score24 and the greedy 
routing efficiency33. As expected, the scores related to greedy routing usually change in the positive direction 
under the optimisation even when starting the simulated annealing from a high quality embedding such as the 
output by Mercator8. In the meantime, the quality measures that are more independent from the success ratio 
such as the mapping accuracy or the scores measuring the performance in graph reconstruction can show a 
slightly decreasing tendency if the score of the initial embedding is high. The geometrical congruence showed 
a mixed behaviour, sometimes increasing, in other cases decreasing over the iterations. Nevertheless, the losses 
observed in the various measures during the experiments starting from embeddings obtained with Mercator 
were usually minor.

The behaviour of the above quality scores shows a somewhat different picture when starting the optimisa-
tion from embeddings obtained with the hyperbolic ISOMAP24 method. Under this circumstance the quality 
indicators related to greedy routing where always improved by the annealing procedure, and in some cases a 
part of the scores not related to greedy paths were also increasing. In parallel, all studied quality scores showed 
an increasing tendency when starting the optimisation from a uniformly random node coordinates, usually 
achieving a significant improvement at the end of the process.

In conclusion, the simulated annealing framework we propose is a general approach for improving the navi-
gability of hyperbolic networks. Although here we focused on increasing the fraction of successful paths, with 
minor changes made to the energy function, the method could also be used for optimising with respect to other 
quality scores instead. Our results showed that this approach was capable of maximising the success ratio in 
some examples, hence, similar optimisation algorithms aimed at improving the layout of hyperbolic networks 
with respect to alternative other measures have a great potential to be effective as well.

Figure 7.   Change in the geometrical congruence under the optimisation of embeddings obtained with 
hyperbolic ISOMAP24. The GC is plotted as a function of the number of epochs for the same networks (initially 
embedded with hyperbolic ISOMAP24) as in Fig.5, where the colour of the curves encode the annealing scheme, 
the value of the curve indicates the median over 20 samples (where the starting and ending values are marked by 
’x’ symbols) and the shaded region around the curves is falling between the 40th and 60th percentiles. The results 
are shown for the network of political books in panel (a), for a PSO network with N = 128 nodes in panel (b), 
a PSO network with N = 256 in panel (c), the metabolic network in panel (d), a PSO network with N = 512 
nodes in panel (e), the unicodelang network in panel (f), the network between fictional characters in panel (g) 
and a PSO network with N = 1024 nodes in panel (h).
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Methods
Calculating the success ratio
Since the calculation of the success ratio, ps , has to be carried out a large number of times, it is necessary to design 
an efficient algorithm for doing so. Although various algorithms can be defined that differ in their details, the 
time complexity is roughly O(N2 logN + N2�k�) in all cases, where N is the number of nodes and 〈k〉 denotes 
the average degree of the network. Our solution builds on two main parts. First, for each (directed) source and 
target pair we identify the neighbour that is next in the greedy routing path in O(N2〈k〉) time. Second, we imple-
ment the propagation along the greedy paths in O(N2 logN) by iteratively applying a path halving algorithm 
log2N times. This many iterations are enough for the worst case scenario, that is when a successful greedy routing 
path exists that visits each node. The path halving sweeps can be calculated very fast, especially when vectorised 
arithmetics are available. The pseudo-code of this procedure is given in Algorithm 2.
Algorithm 2.   Greedy success ratio

Sampling the target position for displacement
In every iteration, after selecting the node we try to displace, we also need to specify the possible new position 
for the selected node. This position was obtained by independently sampling a new angular coordinate from a 
normal distribution centered on the angular coordinate of the chosen node and a new radial coordinate from 
a truncated normal distribution centered on the radial coordinate of the chosen node, where the distribution 
was restricted to the [0, R] interval with R denoting the disk radius of the network. Illustrations of the resulting 
distribution are provided in Fig. 8.

Figure 8.   Distribution of the possible new positions for a node. The green heat map indicates the probability 
density and the current position of the chosen node is shown by the red marker. A network of size N = 128 was 
used for generating the panels, where the chosen node is close to the disk center in panel (a), at medium range 
from the disk center in panel (b) and close to the disk periphery (far from the center) in panel (c).
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Although a sampling distribution where the level lines of the density form hyperbolic circles around the cho-
sen node might seem as a more natural choice, according to our experience the sampling distribution proposed 
here yields a faster increase in the success ratio over the iterations. The likely reason for this is that when the 
chosen node has a relatively large radial coordinate (such as e.g., in the case of Fig. 8c) our sampling distribution 
allows the exploration of a much larger angular region, which seems to help finding more suitable new positions.

The geometric congruence
The geometric congruence was introduced in Ref33 as a general measure for quantifying the alignment between 
the network topology and an underlying geometry. By assuming that we can evaluate the distance between any 
node pair, the geometric congruence is formulated as

where DIST(i, j) is the distance between node i and j according to the geometry, which in our case becomes the 
distance along the geodesic of the hyperbolic disk; and PTSP(i, j) is the projected topological shortest path, that 
is the sum of distances along a topological shortest path (or the average of these sums if multiple topological 
shortest paths exist) starting on i and ending on j. Note that the summing runs over only the nonadjacent node 
pairs, since j cannot be a member in the neighbour set of node i (denoted by N(i) in the formula).

Data availability
All data generated during the current study are available from the corresponding author upon request. The 
“polbooks” network was compiled and hosted by V. Krebs. Currently, it is available from several network dataset 
sources such as the KONECT project at http://​www.​orgnet.​com. The metabolic network is available from Ref.38. 
The “unicodelang” network was compiled from the data available at the Territory-Language Information page of 
the unicode.org project and accessed via the KONECT project at https://​www.​unico​de.​org/​cldr/​cldr-​aux/​charts/​
25/​suppl​ement​al/​terri​tory_​langu​age_​infor​mation.​html. The “a song of ice and fire” network was compiled and 
hosted by A. Beveridge at https://​github.​com/​mathb​everi​dge/​asoiaf.

Code availability
Our code is available at the following link: https://​github.​com/​bsuly​ok/​gra.
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