
1

Vol.:(0123456789)

Scientific Reports |          (2024) 14:430  | https://doi.org/10.1038/s41598-023-50185-2

www.nature.com/scientificreports

Predicting cell types 
with supervised contrastive 
learning on cells and their types
Yusri Dwi Heryanto 1,2, Yao‑zhong Zhang 1,2* & Seiya Imoto 1*

Single-cell RNA-sequencing (scRNA-seq) is a powerful technique that provides high-resolution 
expression profiling of individual cells. It significantly advances our understanding of cellular diversity 
and function. Despite its potential, the analysis of scRNA-seq data poses considerable challenges 
related to multicollinearity, data imbalance, and batch effect. One of the pivotal tasks in single-cell 
data analysis is cell type annotation, which classifies cells into discrete types based on their gene 
expression profiles. In this work, we propose a novel modeling formalism for cell type annotation 
with a supervised contrastive learning method, named SCLSC (Supervised Contrastive Learning for 
Single Cell). Different from the previous usage of contrastive learning in single cell data analysis, we 
employed the contrastive learning for instance-type pairs instead of instance-instance pairs. More 
specifically, in the cell type annotation task, the contrastive learning is applied to learn cell and 
cell type representation that render cells of the same type to be clustered in the new embedding 
space. Through this approach, the knowledge derived from annotated cells is transferred to the 
feature representation for scRNA-seq data. The whole training process becomes more efficient when 
conducting contrastive learning for cell and their types. Our experiment results demonstrate that the 
proposed SCLSC method consistently achieves superior accuracy in predicting cell types compared 
to five state-of-the-art methods. SCLSC also performs well in identifying cell types in different batch 
groups. The simplicity of our method allows for scalability, making it suitable for analyzing datasets 
with a large number of cells. In a real-world application of SCLSC to monitor the dynamics of immune 
cell subpopulations over time, SCLSC demonstrates a capability to discriminate cell subtypes of CD19+ 
B cells that were not present in the training dataset.

In recent years, single-cell RNA sequencing (scRNA-seq) has made remarkable advancements, enabling the 
analysis of gene expression profiles at the individual cell level. This technology has been instrumental in iden-
tifying rare cell populations, defining cell types, and uncovering novel cell states1,2. Experts in the field have 
collected numerous datasets using scRNA-seq, including large-scale initiatives like the Human Cell Atlas3 and 
Tabula Muris Atlas4.

The initial step in analyzing single-cell data typically involves annotating cells based on their known and 
novel cell types. One commonly used strategy, known as “cluster-then-annotate,” involves grouping cells into 
clusters based on the similarity of their gene expression profiles and manually characterizing them using pre-
viously identified cell type markers4,5. However, this manual strategy presents several challenges. Firstly, the 
process of cell type annotation is labor-intensive, requiring extensive literature review of genes specific to each 
cluster6. Secondly, any changes made to the analysis, such as incorporating additional data or adjusting param-
eters, require the manual reevaluation of all previous annotations. Thirdly, the incompleteness of the current 
knowledge and researcher subjectivity may contributes to cells mislabeling7,8. Lastly, transferring annotations 
between independent datasets generated by different research groups studying related tissues is challenging, 
often resulting in redundant efforts.

Recognizing the limitations, a number of supervised approaches were proposed to utilize existing reference 
datasets as training dataset and directly annotate cells on query datasets without the clustering step. Mainstream 
numerical methods in this category include Seurat9 and SingleR10. Seurat identifies anchor across batches using 
mutual nearest neighbour and then use supervised PCA on mutual neighbours to transfer reference annotations9. 
Meanwhile, SingleR utilize the Spearman correlation-based scoring to perform annotation transfer task10. How-
ever, both of these methods have poor scalability that led to longer runtimes and higher memory usage11. Kang 
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et al. introduced a novel algorithm, Symphony, utilizing a linear mixture model for constructing a large-scale inte-
grated reference dataset and and fast reference-to-query label transfer called Symphony12. However, Symphony 
is a relatively new method, and its usage and testing have not been as extensive as those of Seurat and SingleR.

Deep learning methods provide a promising solution for label transfer, with a common strategy involving 
neural network training for representation learning. Representation learning refers to the automated extraction 
of meaningful features from raw data, aiming to construct a more concise and informative representation that 
captures underlying patterns and structures. Then, using this new representation of data, the algorithm performs 
supervised learning such as K-nearest neighbors (KNN) to transfer annotations from the reference dataset to the 
query dataset. In the realm of representation learning models, scANVI13 and Concerto14 are among the state-of-
the-art approaches. The scANVI model employs variational inference deep generative model to learn a compact 
representation of gene expression patterns in single-cell RNA sequencing (scRNA-seq) data. It integrates this 
learned representation with a reference dataset and subsequently transfers annotations from the reference to 
the query dataset through an approximate Bayesian inference procedure. On the other hand, Concerto utilizes 
a contrastive learning approach to learn a low-dimensional embedding. It leverages KNN in this embedding 
space to predict annotations for the query dataset. Both methods have demonstrated remarkable performance 
in label transfer tasks, surpassing other existing methods11,13,14.

In this study, we introduce a novel framework named Supervised Contrastive Learning for Single Cell 
(SCLSC) for single-cell type annotation. SCLSC method consists of two steps. First, SCLSC leverages supervised 
contrastive learning to learn a better data representation that captures both class discrimination and underlying 
data structure. This representation learning leverages label information from the training data to guide the model 
explicitly in discerning the similarity or dissimilarity between samples during the learning process. We devised a 
supervised contrastive loss utilizing cell type representations, guiding the model to position a sample close to its 
respective representative cell in the new embedding space while maintaining distance from representative cells of 
different labels. Second, the annotation is transferred from the reference dataset to the test dataset based on the 
learned representations. Following the training phase, where the model acquires representations, the KNN classi-
fier is employed to identify the most similar instances in the reference dataset for each instance in the test dataset.

Through a comprehensive evaluation using both real and simulated datasets, we demonstrate that the learned 
representations from SCLSC offer several advantages. First, they enable improved separation of cell types, effec-
tively handling variations and noise present in the data. Second, using cell type representation simplify the 
contrastive learning process because the number of cell type is inherently less than the number of cells. It make 
SCLSC a fast and straightforward framework that scales well, even when dealing with large datasets. These char-
acteristics make SCLSC particularly suitable for practical applications where computational efficiency is essential. 
Additionally, the representations capture relevant information for the label transfer task, leading to enhanced 
performance compared to existing state-of-the-art methods. Overall, our findings highlight the effectiveness 
of the supervised contrastive learning approach employed in SCLSC, showcasing its ability to achieve superior 
performance in single-cell label transfer tasks while maintaining simplicity, scalability, and efficiency.

Results
Overview of the SCLSC pipeline
We first introduced the complete pipeline of SCLSC. The SCLSC pipeline is divided into two main components: 
(1) embedding learning for cell and cell type and (2) cell annotation, shown in Fig. 1. For representing scRNA-
seq data, in previous work, highly variable genes across different cell types are used as the cell profiles. However, 
straightforward use for cell-type annotation is less comprehensive and consistent due to data noise and batch 
effect. With this in mind, we design a method to map the raw gene profiles of each cell into a new embedding 
space. To learn embeddings of cell and cell types, we used an MLP (Multi-Layer Perceptron) encoder to trans-
late a raw cell profile into a new embedding space that factors in its cell type annotation. Supervised contrastive 
learning is used to train the MLP encoder, allowing us to acquire such a new representation. To represent cell 
types in the same embedding space as single cells, we use the arithmetic mean of gene profile vectors from all 
cells annotated with the cell type as an approximation. The model parameters of the MLP encoder are shared 
between both cell and cell types. We optimized the supervised contrastive loss between the cell samples and the 
cell type representative for updating the MLP encoder. Through the supervised contrastive learning process, cells 
of the same type tend to become more clustered, while cells from different cell types are increasingly separate. As 
a result, the cell type annotation is transferred through the embedding mapping for other scRNA-seq profiles. 
Once the MLP encoder is learned, a KNN is then trained within the new embedding space. Subsequently, a new 
cell can be annotated based on the KNN within this new embedding space, as depicted in Fig. 1b.

SCLSC achieved state‑of‑the‑art label transfer task performance
Here, we evaluate the performance of SCLSC for label transfer task. The label transfer task refers to the process 
of transferring known labels or annotations from one dataset to another. Our approach involves several steps: 
(1) calculating query embeddings using pretrained model weights, (2) locate query cells near their most similar 
reference cells, and (3) use a KNN classifier (with a default value of k = 10) to transfer reference annotations to 
the query cells.

To evaluate the effectiveness of SCLSC, we compare its performance against other methods, including Seu-
rat based on mutual nearest neighbors, SingleR based on correlation, scANVI based on variational inference 
probabilistic model, Symphony based on linear mixture model, and Concerto based on contrastive learning. Two 
experiments were designed for evaluation: the random split experiment and the split by batch experiment. In 
the random split experiments, we divided the dataset into training, validation, and test datasets using stratified 
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random splits. On the other hand, in the split by batch experiment, we divided the dataset based on the batches 
to assess the performance under batch-specific conditions.

Based on our experiment with random splits, it was consistently observed that SCLSC consistently achieves 
the highest accuracy and macro-averaged F1 score across most datasets, except for the lung and pancreas dataset 
where it comes in a close second place (Fig. 2). Particularly in the PBMC dataset, where it achieved 11% and 
27% improvements of accuracy and macro-F1 score, respectively, compared to the second-ranked method. It is 

Figure 1.   Overall view of SCLSC pipeline. The SCLSC pipeline can be divided into two phases: embedding 
learning and cell type annotation. In the first stage, as shown in (a), supervised contrastive learning is applied 
to learn new embeddings that capture the cell and cell type relationship derived from supervised data. For cell 
type representation, we averaged cell profile vectors in the same cell type as an approximated cell type profiling. 
In the second stage, as shown in (b), a candidate cell profile is mapped to its new embedding space based on 
the learned encoder in the first stage. Then, KNN is applied in the new embedding space to assign the cell type 
annotation for the cell.

Figure 2.   SCLSC achieves superior accuracy for label projection tasks. The performance of SCLSC in the label 
transfer task surpassed that of other state-of-the-art methods, as evidenced by its high accuracy and macro-
averaged F1 score across six benchmark datasets. We excluded SingleR from the Thymus datasets assessment as 
it failed to generate any outputs even after running for over 6 h, leading us to terminate the process.
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worth noting that each dataset has its own distinct characteristics. In the case of the PBMC dataset, challenges in 
cell type classification arose due to imbalanced distributions among cell types and strong correlations between 
them. Notably, the correlation-based approach SingleR and the linear mixture model-based method Symphony 
exhibited the poorest performance in this dataset, likely due to the presence of multicollinearity issues. Moving on 
to the CeNGEN C. Elegans dataset, it is characterized by a large number of cell types, with some cell types being 
rare, consisting of less than 100 cells. The neural network approach utilizing a variational inference probabilistic 
model, scANVI and linear mixture model framework, Symphony, demonstrated subpar performance in this 
dataset. In the case of the Thymus dataset, which contains a large number of samples, SingleR failed to produce 
any outputs even after running for more than 6 h, prompting us to terminate the process. In contrast, the consist-
ently superior accuracy of SCLSC across all datasets demonstrates its efficacy in addressing challenges such as 
multicollinearity problems, imbalanced distribution of cell types, and large-scale samples. Additionally, SCLSC 
consistently achieves the highest macro-averaged F1 score across most of the datasets. The macro-averaged F1 
score serves as a valuable performance metric, particularly in scenarios where class imbalance exists. It calculates 
the F1 score for each class individually and computes the average of these scores. This approach ensures that each 
class is given equal importance, irrespective of its prevalence in the dataset. Based on the high macro-averaged F1 
score, SCLSC demonstrates superior ability in accurately separating rare cell types (Fig. 2, Supplemental Fig. S1). 
Furthermore, we observed that employing KNN on the representations acquired through SCLSC yielded higher 
accuracy compared to using KNN directly on raw data across all datasets. The potential reason for this could be 
that the newly acquired representations from SCLSC have lower dimensions and exhibit less noise, making it 
easier for the KNN classifier to categorize cell types within the learned representation as opposed to the raw data.

Cell type hierarchy is preserved in the new embedding space
In conducting supervised contrastive learning, we approximated the cell type representation by using the arith-
metic mean of gene profile vectors from all cells annotated with a specific cell type. We utilized the PBMC dataset 
to investigate the cell type hierarchy for this method in both the raw and learned embedding spaces. Hierarchical 
agglomerative clustering with single-linkage was performed on 11 cell type vectors in each of these spaces. The 
dendogram of cell type representation from the 2000 highly variable genes (HVGs) raw data input (Fig. 3a) and 
the dendogram of the output cell type representation learned by SCLSC (Fig. 3b) is consistent with the immune 
cell lineage tree (Fig. 3c). The fact that the input HVGs dendrogram aligns with the immune cell differentiation 
hierarchy indicates that the selected input adequately captures the biological information within the dataset.

In the dendrogram shown in Fig. 3a, CD34+ cells are positioned at the root, from which two branches 
emerge. The left branch consists of myeloid cells, including CD14+ monocytes and dendritic cells, while the 
right branch consists of lymphoid lineage cells, namely CD56+ NK, CD19+ B, CD4+ T, and CD8+ T cells. This 
dendrogram structure aligns with the established immune cell lineage tree, demonstrating that the cell type 
representation learned by the SCLSC effectively captures and preserves the biological hierarchical structure 
present in the dataset.

SCLSC can learn the representation of the unseen cell in PBMC dataset while preserving the 
hierarchical structure
The objective of SCLSC is to transfer label annotations from a reference dataset to a query dataset. However, 
challenges arise when the query dataset contains cell types that were not present in the reference dataset, mak-
ing it challenging for SCLSC to predict their annotations. Nevertheless, despite this limitation, SCLSC is still 
capable of learning valuable representations of these unseen cell types. to investigate the effect of the unseen cells, 
we conducted an experiment using the PBMC dataset, dividing it randomly into training, validation, and test 
subsets. To simulate the presence of unseen cell types, we removed CD19+ B cells from the training and valida-
tion datasets. Using the training dataset as a reference, SCLSC successfully projected the unseen CD19+ B cells 
separately from other cell types (refer to Fig. 4a). Moreover, the learned representation of these previously unseen 
cell types can maintains the hierarchical structure of immune differentiation, as illustrated in Fig. 4b. Specifically, 
CD19+ B cells are positioned within the same subtree as other lymphoid progenitors like T reg, cytotoxic T cells, 
T helper cells, and T memory cells. And, they are situated in a different subtree from myeloid progenitors such 
as monocytes and dendritic cells. This suggests that SCLSC holds the potential to infer representations of unseen 
cells from incomplete data while maintaining the structure of the complete dataset.

The effectiveness of SCLSC for label transfer task under batch specific conditions
To investigate the performance under batch-specific conditions, we partitioned some datasets based on their 
batches. Despite SCLSC not directly addressing batch effects, our results indicate its robust performance even in 
their presence. In this experiment, we focused on the methods that can align different batches so that cells from 
the same cell type/subpopulation will cluster together. Consequently, we omitted KNN and SingleR due to their 
inability to yield new alignments. SCLSC consistently achieved high accuracy and macro-averaged F1 scores, 
ranking first or second across all datasets splitted based on their batches (Fig. 5a). It suggests that SCLSC effec-
tively transfer annotations from the reference dataset to query datasets from different batches. To quantitatively 
evaluate batch effect removal, we employed Normalized Mutual Information (NMI) and Adjusted Rand Index 
(ARI) metrics. SCLSC, emerging as the top performer in both NMI and ARI evaluations, demonstrates that its 
learned representation effectively embeds cells of the same type in the same cluster while maintaining separation 
between different types. Particularly in the CenGen C. Elegans, SCLSC exhibited a remarkable improvement, 
with a 27% increase in accuracy and a 52% increase in macro-F1 score compared to the second-ranked methods. 
The CenGen C. Elegans dataset encompasses 169 distinct cell types originating from 17 different batches. We 
separated the datasets into train dataset that contain 12 batches and the test dataset that contain remaining 5 
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batches. The high number of cell types and batches in this dataset poses a challenge for effective analysis by other 
methods. The UMAP visualization in Fig. 5b illustrates that SCLSC generates an embedding space where cells 
from different batches are mixed together, yet the model can still distinguish cells of different types.

There are two plausible explanations as to why our model can partially address the batch effect problem. First, 
contrastive learning commonly employs data augmentation techniques that introduce diverse transformations 
to the input data. In this context, the batch condition can be viewed as a form of data augmentation15. By lever-
aging contrastive learning, our model learns to emphasize the shared features among samples while remaining 
invariant to batch-specific variations. Consequently, this diminishes the impact of batch effects on the learned 
representations. Second, it is widely accepted that the differences between cell types are greater than differences 
between batch16,17. As SCLSC functions as a supervised model, it utilizes cell type information to guide the learn-
ing process and minimize the influence of batch effects.

SCLSC is fast and scale‑well in large dataset
We used simulated datasets generated using Splatter R package18 for scalability analysis. The dataset has 2000 
features/genes and 10 cell types with equal occurrence frequencies. We performed three runtime evaluations: 

Figure 3.   The comparison of dendrogram of PBMC cell type representation and the hierarchy of immune cells 
differentiation. (a) The dendrogram of the cell type representation using HVGs in original space that being used 
as input and (b) the dendrogram of the cell type representation learned by SCLSC showed that SLCSC input and 
output can capture and preserve (c) the hierarchy of immune cells differentiation.
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model training time, which involves calculating the duration from inputting the reference dataset until the model 
training is completed; label transfer time, where both the reference and query datasets are inputted to the model 
to transfer annotation from the reference to the query dataset; and total time, which is the sum of model training 
time and label transfer time. SCLSC comes second in the term of speed (total time) after Symphony compared to 
to other methods (Fig. 6). Symphony achieves a faster training time compared to SCLSC due to its utilization of a 
simpler linear mixture model in contrast to the neural network architecture used by SCLSC. Yet, upon completion 
of training, the label transfer runtime for SCLSC is significantly faster than that of Symphony, clocking in at 3.6 
s compared to 313.9 s for a dataset of 400,000 cells. Consequently, in case of training a single reference dataset 
and applying it to predict the annotations of numerous query datasets, SCLSC will exhibit a faster performance 
compared to Symphony. SCLSC stands out as the fastest when compared to other deep neural network methods 
such as scANVI and Concerto in our benchmark. The SCLSC demonstrates an almost twofold increase in speed 
compared to another contrastive-learning-based-methods, Concerto, when applied to a dataset consisting of 
400,000 samples. The results indicate that SCLSC could easily deal with large-scale datasets. SCLSC speed stems 
from a combination of the simplicity of the contrastive learning algorithm and the straightforwardness of the 
encoder architecture. The Early Stopping algorithm integrated into the SCLSC also has role to stop the training 
process early if the model’s performance is not improving, thereby saving time and computational resources. 
The SingleR method was excluded from the scalability analysis alongside other methods due to its failure to 
generate results within the given time frame for thymus datasets, which comprised approximately 200,000 cells.

Real world application: mapping label from PBMC dataset onto immune cells from dengue 
datasets
As an example of real-world implementation, we use SCLSC to project cell labels from PBMC dataset from 
Zheng et al.19 onto PBMC from a patient with dengue fever (DF) and a patient with dengue hemorrhagic fever 
(DHF)20. The PBMC samples of dengue dataset were gathered on specific days: at defervescence (Def) day, two 
days before defervescence (Day-2), one day before defervescence (Day-1)—collectively known as the febrile ill-
ness period, and two weeks after defervescence (Wk2), which represents the convalescence or follow-up phase. 
SCLSC can successfully transfer the label from PBMC dataset onto unlabelled cells in the dengue dataset (Fig. 7a). 
With the aid of these labelled cells, we can conduct downstream analysis to track the dynamics of immune cell 
populations during dengue virus infection, focusing on B cells in particular. Recent observations have empha-
sized the significant involvement of B cells during infection with dengue viruses, particularly during acute 
dengue infection, where a substantial increase in the number of effector B cells has been noticed21. To verify the 
accuracy of the labelling process, we conducted differential gene analysis and gene set enrichment analysis on 
cells identified as CD19+ B cells. The results confirmed that the labelled cells accurately represented the genetic 
characteristics associated with B cell cellular processes and function, including B cell activation, differentiation, 
proliferation, and the host’s modulation of viral processes (Fig. 7b). As shown in the Fig. 7c, the proportion of 
the B cell is peaking in the one day before defervescence. This finding is consistent with a previous study that 
showed an increase in immunoglobulin-containing B cells can be observed during infection, and these cells 
reach their maximum levels around the time when the fever starts to subside22,23. Within the B cell cluster, we 
can also investigate the subtype of the B cells such as antibodies secreting cells (ASCs): plasmablast and plasma 
cell. For this purpose, we used gene markers, namely XBP124,25, TNFRSF1725,26, JCHAIN27,28, and CD2729,30 which 
are ASCs markers. On the other hand, we used MS4A129,31,32 as a gene marker for non-ASC-B cells, excluding 
plasmablasts and plasma cells. Additionally, CD83 was employed to for distinguishing ASCs from non-ASCs. 
CD83 is an activation marker for antigen presenting cells that are expressed in dendritic cells, monocytes, T cell 

Figure 4.   The projection of unseen cell types using SCLSC (a) SCLSC can project the unseen cell types 
(inside red circle) separately from other cell types. (b) The dendrogram of the unseen cell type representation 
approximately preserve the hierarchy of immune cells differentiation.
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Figure 5.   SCLSC can handle label transfer task under batch effects. (a) The incorporation of label information 
in SCLSC can tackles the batch effect, as demonstrated by its high accuracy, macro-F1, NMI, and ARI scores 
across benchmark datasets. (b) The benchmark datasets’ learned representation by SCLSC is visualized using 
UMAP. The upper figure represents the color-coding of batches, while the lower figure represents the color-
coding of cell types. The batch groups are well mixed within each cluster, while simultaneously maintaining clear 
separation of individual cell types.



8

Vol:.(1234567890)

Scientific Reports |          (2024) 14:430  | https://doi.org/10.1038/s41598-023-50185-2

www.nature.com/scientificreports/

and B cell33. While CD83 is not exclusive to B cells, it has been shown that CD83 is statistically overexpressed in 
non-ASC-B-cell when compared to plasma cells32. As shown in the Fig. 7d, the SCLSC learned a representation 
capable of distinguishing between ASCs (plasmablasts and plasma cells) and non-ASC-B cells.

SCLSC provides stable performance across varying dimensions of input and output
SCLSC has two key parameters: the dimension of the input and the dimension of the output of the encoder. In 
case of input dimension, SCLSC has the capability to process input from all genes. However, a subset of genes 
known as highly variable genes (HVGs), which exhibit high cell-to-cell variation, have been found can help 
in reducing noise and emphasizing the biological signal in scRNA-seq datasets9,34. To investigate this further, 
we conducted an experiment using both all genes and HVGs as SCLSC inputs for the label transfer task on 
benchmark datasets. We found that using all genes as inputs did not lead to a significant difference in accuracy 
( n = 5 , paired Wilcoxon test P-value = 0.11) and made the macro F1-score worse ( n = 5 , paired Wilcoxon test 
P-value = 0.0311) compared to using HVGs as inputs (Fig. 8a). Furthermore, utilizing all genes required more 
time and memory resources.

We also conducted an experiment using encoder output dimension = 8, 16, 32, and 64. We observed that 
the tested output dimension had minimal impact on both the accuracy and macro-F1 score. However, in most 
datasets, setting the output dimension to 16 resulted in a decrease in the number of epochs required for the early 
stopper to be triggered (Fig. 8b). This suggests that an output dimension of 16 can achieve optimal accuracy in 
the shortest time compared to other output dimensions. Based on these results, we used the 2000 HVGs as the 
input and 16 as the output dimension in our overall study.

Figure 6.   The runtime of the SCLSC and the competing methods against the number of cells. Due to its 
simplicity, the SCLSC algorithm is capable of efficiently scaling up to handle large datasets. When applied to 
query-to-reference label transfer tasks involving 100,000 to 400,000 cells, the SCLSC algorithm are the second 
fastest methods after Symphony. Nevertheless, the label transfer time of SCLSC is orders of magnitude faster 
than Symphony.
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Figure 7.   Downstream analysis of the representation of PBMC dengue dataset learned by SCLSC. (a) UMAP 
visualization of the representation of PBMC dataset learned by SCLSC. (b) The presence of enriched genes 
associated with B cell cellular processes in the cells labeled as CD19+ B confirms the accuracy of our labeling, 
confirming that these cells are indeed B cells. (c) The predicted cell labels can be utilized for subsequent 
downstream analysis, including monitoring the dynamic changes in subpopulations of PBMC cells over 
dengue infection progression. (d) The learned representation of B cells using SCLSC demonstrates the ability to 
distinguish subtypes that were not observed in the training dataset. The representation separates the antibodies 
secreting cells (ASCs): plasmablast and plasma cell, characterized by XBP1, TNFRSF17, JCHAIN, and CD27 
markers, from the less differentiated non-ASC-B cells labeled by MS4A1 and CD83.
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Discussion
In this research, we used real and simulated testing datasets to showcase the effectiveness of SCLSC in transfer 
cell type knowledge from annotated dataset. One key advantage of the SCLSC method is its simplicity for con-
ducting contrastive learning for cell and cell types. Unlike the previous method doing contrastive learning for 
different cells, using cell types in the contrastive learning significantly reduced the number of contrastive pairs. 
With such a feature, SCLSC can tackle diverse datasets efficiently. SCLSC has capability to swiftly provide cell 
type information for hundred-thousands of cells in a matter of minutes. In our experiment, SCLSC demonstrated 
its scalability to large datasets and emerged as the second fastest method, following Symphony, in processing 
400,000 cells. However, in comparison to Symphony, SCLSC exhibits higher accuracy and consistent performance 
for the label transfer task.

Previous studies have shown that contrastive learning models possess a remarkable ability to transform 
single cell input data into a more compact, structured, and expressive representation that captures data 
characteristics14,35. However, by incorporating the label information, supervised contrastive learning have several 
advantages compared to conventional contrastive learning. First, the model can learn representations that are 
optimized specifically for the label transfer task, resulting in more distinguishable outcomes. Second, it reduced 
the sensitivity to negative samples. In conventional contrastive learning, the choice of negative samples plays a 
crucial role in the learning process. Selecting appropriate negative samples can be challenging, and suboptimal 
choices may result in the model learning trivial or uninformative patterns. Supervised contrastive learning, by 
incorporating label information, reduces the reliance on negative samples, making it more robust and less sen-
sitive to the choice of negatives. Third, it is enabling more effective training even with smaller labeled datasets. 
In traditional contrastive learning approaches, a large labeled dataset is typically required to capture similarity 
and dissimilarity patterns effectively. However, supervised contrastive learning can leverage labeled data, ena-
bling more effective training even with smaller labeled datasets. Moreover, SCLSC algorithm is using cell type 
representation, which are the average gene expression of the cell type, to perform cell-cell type pairs instead of 
cell-cell pairs for contrastive learning. The number of cell types is significantly smaller than the number of cells. 
Thus, performing contrastive learning is easier and faster because we just need to compare the cell with small 
number of cell types rather than thousands of cells. Compared to our method, Concerto14 utilizes unsupervised 
contrastive learning and employs an asymmetric teacher-student architecture to achieve high performance. In 
contrast, SCLSC employs a simpler MLP but still achieves comparable results.

There is no universal model that fits all scenarios, and our SCLSC model is no exception. The validity of our 
model heavily relies on the availability and accuracy of labels in the training data. Acquiring a large amount of 
precisely labeled single-cell data poses a challenge in the field of single-cell research. Therefore, the applicability 
of the SCLSC model is restricted to tasks where labeled data is readily accessible. Utilizing high-quality reference 

Figure 8.   The impact of the encoders input and output dimension to the performance of the SCLSC (a) 
Using all genes as input does not improve accuracy ( n = 5 , paired Wilcoxon test P-value = 0.11), in fact, can 
be detrimental to the macro-F1 score of SCLSC ( n = 5 , paired Wilcoxon test P-value = 0.0311). (b) On the 
different choice of output dimensions, there were no drastic changes in accuracy and macro-F1 score observed 
. However, the epoch needed to trigger the early stopper is decreased when the output dimension is 16 in most 
datasets.
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datasets leads to superior annotations and enhances the model’s performance. Additionally, the generalization 
capability of the model is limited when it comes to unseen classes. If the test or deployment data includes classes 
or samples that were not present during training, the representations produced by the SCLSC model may not 
generalize well to these unseen classes. To mitigate this limitation, we recommend using large-scale reference 
datasets that encompass a wide range of cell types during the training process. It’s important to consider these 
limitations when applying the SCLSC model in practical applications and to take appropriate measures such 
as addressing batch effects, ensuring sufficient availability of accurately labeled data, and using comprehensive 
reference datasets to enhance generalization to unseen classes.

Methods
Training process
The MLP encoder was trained with inputs from the gene expression count matrix and cell type labels derived 
from the training dataset. Subsequently, representative samples were defined for each cell type by computing 
the mean gene expression across all samples with the same cell type. Once these representative samples were 
created, we employed an MLP encoder to embed both the gene expression matrix and representative samples. 
Within the embedding space, we calculated the supervised contrastive loss between the samples and their cor-
responding representative samples. The supervised contrastive loss was employed to update the MLP encoder, 
to bring each sample closer to its corresponding representative sample while simultaneously distancing it from 
other representative samples in the embedding space.

To mitigate the possibility of the overfitting, we employed an early stopping algorithm. In this algorithm, the 
training will stop if the validation loss is not decreasing for five validation steps. A validation step was performed 
for every two epoch training.

SCLSC supervised contrastive loss
We optimized the contrastive loss, defining it as follows:

The variables ci , ctj , yij are the cell profiles, the cell type representation profiles, and the one-hot-encoded cell 
label, respectively. The cell type ctj is computed using all cells of that type from the training data. It is calculating 
as ctj = 1

K

∑K
k=1,ck∈ctj

ck . Here, K represents the number of cell samples of the type ctj . A margin m is employed 
to group cells within their respective annotated cell type, while distinguishing them from the other cell types.

Encoder structure
The encoder network accepts X ∈ R

d where d denotes the number of genes. First, the encoder feed X into a dense 
layer with Relu activation, dropout, and batch normalization layer to get hidden1 . Then, the hidden1 is fed into 
a second dense layer with Relu activation, dropout, and batch normalization layer to get hidden2 . Finally, the 
hidden2 is fed into a last dense layer to get the final output Z ∈ R

d′ where d′ denotes the number of embedding 
space dimensions.

Datasets
We have chosen commonly utilized datasets for benchmarking label transfer tasks (Table 1). These datasets are 
publicly accessible and come in a standardized format that is ready for immediate use. Each dataset possesses 

L(ci , ctj , yij) = yij
1

2
Dist

(

embed(ci), embed(ctj)
)2

+ (1− yij)
1

2
max

{

0, m− Dist(embed(ci), embed(ctj))
}2

hidden1 = BatchNorm(Dropout(Relu(Dense(X))))

hidden2 = BatchNorm(Dropout(Relu(Dense(hidden1))))

Z = Dense(hidden2)

Table 1.   The summary of the datasets used in our study.

Name Description No. cells No. types Download link Ref

PBMC Human PBMC cells 68,265 11 PBMC 19

Pancreas Human pancreas cells 16,382 14 Pancr​eas 11

Thymus Human thymus cells 223,792 44 Thymu​s link 36

Lung Human lung cells 30,717 17 Lung 11

CeNGEN C. elegans neuron cells 72,857 169 CeNGEN 38

Zebrafish Zebrafish embryo cells 26,022 24 zebra​fish 37

Dengue dataset PBMC of dengue fever patients 39,591 NA Dengue 20

Simulated dataset Simulated dataset created by Splatter package 500,000 10 – 18

https://www.10xgenomics.com/resources/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0
https://figshare.com/ndownloader/files/22891151
https://zenodo.org/record/5500511
https://figshare.com/ndownloader/files/24539942
https://github.com/Munfred/wormcells-data/releases/download/taylor2020/taylor2020.h5ad
https://ndownloader.figshare.com/files/24566651?private_link=e3921450ec1bd0587870
https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-9467/downloads
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distinct attributes, including imbalanced distributions among cell types, multicollinearity between cell types, a 
large number of cell types, a substantial number of cells, and challenges related to batch effects.

PBMC dataset
We used Zheng et al.19 Peripheral Blood Mononuclear Cells (PBMC) dataset freely available from 10X Genom-
ics. After preprocessing, we got total 68265 cells before splitting. This dataset contains rare cell types and the 
distribution of cell types is imbalanced. Moreover, the cell types in the dataset were highly correlated with each 
other make it difficult to differentiate them.

Pancreas dataset
The pancreas dataset is a human pancreatic islet scRNA-seq data from 6 sequencing technologies (CEL-seq, 
CEL-seq2, Smart-seq2, inDrop, Fluidigm C1, and SMARTER-seq)11.

Lung dataset
Human lung scRNA-seq data were obtained from 2 different sequencing technologies: 10X and Drop-seq11. It 
can be used for analyzing batch effect in single cell analysis.

Thymus dataset
The thymus dataset were from the single-cell RNA sequencing of cells inside human thymus36. This large dataset 
contains more than 250,000 cells which make it useful for evaluating methods scalability.

Zebrafish dataset
This dataset contains the data of zebrafish embryos cells during the first day of development, with and without a 
knockout of chordin, an important developmental gene. This dataset contain data from 2 different laboratories. 
After preprocessing, this dataset had dimension 26022 cells × 2000 genes and 24 cell types37.

CeNGEN dataset
This dataset are from The Complete Gene Expression Map of the C. elegans Nervous System (CeNGEN) project 
and contains FACS-isolated C. elegans neurons data sequenced on 10x Genomics38. This dataset is characterized 
by a large number of cell types and imbalanced distribution of cell types.

Dengue dataset
These data originate from PBMC cells taken from patients with acute dengue virus infection20. Because this 
dataset lacks labels, we utilized a PBMC dataset as a reference to annotate the cells in the dengue dataset for 
real-world application experiments.

Random split experiment
We divided the datasets into three subsets: training, validation, and test datasets. Employing stratified random 
splits through the StratifiedKFold function from the scikit-learn package with 10 splits, we designated the datasets 
in the first eight folds as the training dataset, the ninth fold as the validation dataset, and the last tenth fold as 
the test dataset. The ultimate ratio of training to validation to test datasets is 8:1:1. We used the gene expression 
matrix and the cell labels from the training data to train the MLP encoder. To prevent overfitting during the train-
ing of the MLP encoder, we monitored the loss changes in the validation dataset for early stopping. Following the 
training, we utilized the MLP encoder to embed gene expression matrices from both the training and test data-
sets. Finally, KNN was used to predict the labels of the test datasets with the train dataset serving as a reference.

Batch split experiment
Initially, we partitioned the datasets into two groups: train-validation datasets and test datasets, based on their 
batches (Table 2). Next, from the train-validation datasets, we further divided this dataset using stratified random 
split into train and validation datasets, with a ratio of 9:1 for training to validation. Similar to the random split 
experiment, we used the training and validation datasets for training the MLP encoder and implementing early 
stopping. The trained MLP encoder was subsequently employed to embed both the test and training datasets 
into an embedding space. Within this space, we used KNN to predict the labels of the test datasets, using the 
train dataset as a reference.

Table 2.   The batch split of the datasets.

Name Total number of batches No. batches in training-validation dataset No. batches in test dataset

Lung 16 15 1

Pancreas 9 8 1

CeNGEN 17 12 5

Zebrafish 2 1 1
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Unseen cell experiment
We performed stratified random splits on the PBMC datasets, dividing them into training, validation, and test 
datasets with a ratio of 8:1:1 for training to validation to test datasets. Then, we removed the CD19+B cells from 
the training and validation dataset. We used training dataset as reference to predict the annotation of test dataset.

Compared benchmark methods
Seurat
Seurat is a widely used R package that has been developed for analysis and exploration of single-cell RNA 
sequencing data. Seurat transfer the annotation data by using a canonical correlation analysis of a set of anchor 
genes that are highly variable and shared between the reference and new datasets9. We used Seurat v4.0 and fol-
lowed the transfer annotation from query datasets tutorial to perform label projection in this study.

SingleR
SingleR is an automatic annotation method for single-cell RNA sequencing implemented in R package10. In the 
SingleR pipeline, a Spearman coefficient is calculated for single-cell gene expression with each of the samples in 
the reference dataset, using only the variable genes in the reference dataset to increase the ability to distinguish 
closely related cell types. This process is performed iteratively using only the top cell types from the previous 
step and the variable genes among them until only one cell type remains. We used default parameter of SingleR 
R package in our study.

scANVI
scANVI is a semi-supervised model that employed Variational Inference to annotate a dataset of unlabelled 
query dataset from annotated reference dataset13. In our study, we used scANVI methods implemented in scvi-
tools Python package with default parameter. To perform label projection, we followed the reference mapping 
scvi-tools tutorial.

Concerto
Concerto leverages a self-distillation contrastive learning framework to learn cell embeddings in lower dimen-
sional space14. The learned cell embeddings are fed into KNN classifier to perform label projection task. In our 
study, we employed the Concerto source code downloaded from public repository (https://​github.​com/​melob​
io/​Conce​rto-​repro​ducib​ility. We used default parameter stated in the Concerto source code.

Symphony
Symphony12 utilizes a linear mixture model framework to iteratively assign soft-cluster memberships and com-
press the reference into a mappable entity with efficient summary statistics. The mapping algorithm then projects 
query cells into the reference’s low-dimensional space, computes soft-cluster assignments, and corrects query 
batch effects while maintaining the stability of the reference cell embedding. This enables the transfer of annota-
tions from reference to query cells. We used the Python implementation of Symphony, symphonypy, accessible 
at https://​github.​com/​potul​abe/​symph​onypy. The symphony parameter was configured using the default settings 
specified in the symphonypy source code.

K‑nearest neighbors (KNN)
The KNN classifier was employed for direct label transfer from raw data. We utilized the KNN implementa-
tion in scikit-learn, specifically the KNeighborsClassifier. A value of k = 10 was set for the number of neighbors 
parameter, while other parameters remained at their default settings.

Data preprocessing
The datasets underwent preprocessing to eliminate cells with high mitochondrial gene expression (more than 5 
percents of the cell total count), cells with minimal gene expression (number of genes per cell < 200), and genes 
that were only detected in a small number of cells (number of cells that expressed the gene < 3). Subsequently, 
We selected 2000 highly variable genes (HGV) using analytic Pearson residuals implemented in Scanpy package. 
Following this, we normalized the count of each cell to 10,000 counts and applied a log(x + 1) transformation. 
The resulting dataset was then divided into training, validation, and test sets with a ratio of 8 : 1 : 1. All of the 
preprocessing steps were performed using Scanpy package39. The summary of the dataset, reference, and down-
load link were provided in Table 1.

Scalability analysis
For scalability analysis, simulated datasets were generated using Splatter R package18. The simulated datasets were 
generated using the following parameters: nGenes = 2000 and group.prob = rep(1/10,times = 10), while leav-
ing the other parameters at their default values. The number of cells in the training dataset = 100,000, 200,000, 
300,000, and 400,000 cells. The validation dataset and test dataset comprised 50,000 cells each, both derived 
from the same cell distribution as the training dataset. Then, each method was trained on each of the training 
datasets to make predictions regarding the annotations within the test dataset. Next, we calculated the runtime 
from the training until finishing prediction.

https://github.com/melobio/Concerto-reproducibility
https://github.com/melobio/Concerto-reproducibility
https://github.com/potulabe/symphonypy
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Hyperparameter analysis
We evaluated the accuracy and macro-F1 score of SCLSC across various input scenarios (utilizing all genes 
versus 2000 highly variable genes (HVGs)) and different encoder output dimensions (8, 16, 32, and 64) across 
PBMC, zebrafish, C. elegans, thymus, lung, and pancreas datasets. Additionally, we assessed the number of epochs 
required to trigger the early stopper in different encoder output dimension experiments. We conducted a paired 
Wilcoxon test to compare the accuracy and macro-F1 score between the scenarios of utilizing all genes and the 
2000-HVGs experiment. A P-value below 0.05 is deemed statistically significant.

UMAP visualization
Cells embedding were visualized by UMAP using umap-learn Python package. The umap parameters were set 
at their default values

Dendogram visualization
First, we computed the averages of the 2000 High Variable Genes (HVGs) and the embedded features for each 
corresponding cell type, which yielded cell type representations in both the original input space and the embed-
ding space. Then, we calculated the Euclidean distance matrix for these cell type representations in both spaces. 
Subsequently, we constructed dendrograms using single linkage based on the distance matrix. The dendograms 
were produced using hclust package.

Dengue dataset analysis
We compute a ranking for the highly differential genes in the cells labelled as CD19+ B cells using Wilcoxon 
method implemented in the rank_genes_groups function in Scanpy package39. Next, we performed gene set 
enrichment analysis of 15 highest rank differential genes. The enrichment analysis were performed using clus-
terProfiler package40.

Evaluation metrics
Accuracy
Accuracy score is the fraction of correct predictions. It is calculated as following:

where N is the total number of samples or instances.

Macro‑F1 score
The F1 score can be seen as an average of precision and recall, achieving its highest value at 1 and its lowest at 0. 
Because in some datasets there are some cell types that have significantly fewer instances than others, we used 
we used macro-averaging F1 score (macro-F1 score). Macro F1 score gives equal weight to each class, treating 
them independently, which can be useful when we want to ensure that each class is adequately represented in the 
evaluation. The macro F1 score is calculated as the average of the individual F1 scores for each class as following:

where C is the number of classes.

Adjusted Rand Index
The Rand Index is a measure used to assess the similarity between two data clusterings after batch removal. It 
evaluates the agreement between the true class labels and the predicted labels. In our study we used Adjusted 
Rand index (ARI) which is Rand index adjusted for chance. The formula for ARI is following:

Where RI is the Rand Index,E[RI] is the expected Rand Index under a random assignment, RImax is the maximum 
possible Rand Index given the marginal totals. The Adjusted Rand Index ranges from -1 to 1, where 1 indicates 
perfect agreement, 0 indicates random agreement, and negative values indicate worse than random agreement.

Normalized mutual info score
The Normalized Mutual Information (NMI) is a measure of the mutual dependence between two clustering 
results after batch removal. It is normalized to have a value between 0 and 1, with 1 indicating perfect agreement. 
The formula for NMI is:

where MI(U, V) is the mutual information between the two clusterings, H(U) and H(V) are the entropies of the 
individual clusterings.

Accuracy =
1

N

N
∑

i=1

Number of Correct Predictionsi

Total Number of Predictionsi

F1macro =
1

C

C
∑

i=1

2× Precisionclassi × Recallclassi
Precisionclassi + Recallclassi

ARI =
RI− E[RI]

max(RImax − E[RI], 0)

NMI(U ,V) =
MI(U ,V)

mean(H(U),H(V))
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Data availability
All the real single-cell RNA sequencing datasets used in this study had been previously published. References to 
these datasets, information about their accessibility, and downloadable links can be found in Table 1.

Code availability
The source code is accessible at https://​github.​com/​yaozh​ong/​SCLSC.
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