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A nomogram model for predicting 
5‑year risk of prediabetes 
in Chinese adults
Yanhua Hu 1,11, Yong Han 2,3,11, Yufei Liu 4,5,11, Yanan Cui 1, Zhiping Ni 1, Ling Wei 1, 
Changchun Cao 6*, Haofei Hu 7,8* & Yongcheng He 9,10*

Early identification is crucial to effectively intervene in individuals at high risk of developing pre-
diabetes. This study aimed to create a personalized nomogram to determine the 5-year risk of 
pre-diabetes among Chinese adults. This retrospective cohort study included 184,188 participants 
without prediabetes at baseline. Training cohorts (92,177) and validation cohorts (92,011) were 
randomly assigned (92,011). We compared five prediction models on the training cohorts: full cox 
proportional hazards model, stepwise cox proportional hazards model, multivariable fractional 
polynomials (MFP), machine learning, and least absolute shrinkage and selection operator (LASSO) 
models. At the same time, we validated the above five models on the validation set. And we chose 
the LASSO model as the final risk prediction model for prediabetes. We presented the model with 
a nomogram. The model’s performance was evaluated in terms of its discriminative ability, clinical 
utility, and calibration using the area under the receiver operating characteristic (ROC) curve, decision 
curve analysis, and calibration analysis on the training cohorts. Simultaneously, we also evaluated the 
above nomogram on the validation set. The 5-year incidence of prediabetes was 10.70% and 10.69% 
in the training and validation cohort, respectively. We developed a simple nomogram that predicted 
the risk of prediabetes by using the parameters of age, body mass index (BMI), fasting plasma glucose 
(FBG), triglycerides (TG), systolic blood pressure (SBP), and serum creatinine (Scr). The nomogram’s 
area under the receiver operating characteristic curve (AUC) was 0.7341 (95% CI 0.7290–0.7392) for 
the training cohort and 0.7336 (95% CI 0.7285–0.7387) for the validation cohort, indicating good 
discriminative ability. The calibration curve showed a perfect fit between the predicted prediabetes 
risk and the observed prediabetes risk. An analysis of the decision curve presented the clinical 
application of the nomogram, with alternative threshold probability spectrums being presented 
as well. A personalized prediabetes prediction nomogram was developed and validated among 
Chinese adults, identifying high-risk individuals. Doctors and others can easily and efficiently use our 
prediabetes prediction model when assessing prediabetes risk.
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BMI	� Body mass index
Scr	� Serum creatinine
DBP	� Diastolic blood pressure
DM	� Diabetes mellitus
TG	� Triglyceride
LDL-C	� Low-density lipid cholesterol
IGT	� Impaired glucose tolerance
WC	� Waist circumference
ROC	� Receiver operating characteristic
ALT	� Alanine aminotransferase
ADA	� American Diabetes Association
HDL-C	� High-density lipoprotein cholesterol
PPV	� Positive predictive value
IFG	� Impaired fasting glucose
BUN	� Blood urea nitrogen
MAR	� Missing-at-random
NLR	� Negative likelihood ratio
T2DM	� Type 2 diabetes mellitus
PLR	� Positive likelihood ratio
AIC	� Akaike information criterion
LASSO	� Least absolute shrinkage and selection operator
NCDRS	� New Chinese Diabetes Risk Score
MFP	� Multivariable fractional polynomials
NPV	� Negative predictive value
CI	� Confidence intervals
HR	� Hazard ratios
Ref	� Reference
AUC​	� Area under the curve

Prediabetes is a condition characterized by a state of hyperglycemia, where blood sugar levels are higher than 
normal but lower than in diabetes1. According to 2013 estimates, 35.7% of Chinese adults had prediabetes2. Every 
year, approximately 5–10% of prediabetic people develop diabetes mellitus (DM), with 70% eventually becoming 
DM3. Prediabetic people have a higher risk of developing a number of complications related to diabetes, includ-
ing microvascular complications like kidney, retina, and nervous system problems, as well as macrovascular 
complications like cardiovascular disease4–6. Moreover, the hyperglycemia status prior to the onset of diabetes 
can cause deterioration in the nervous system, kidneys, retina, and macro-vessels7–9. This has led to a significant 
burden of prediabetes-related diseases and disorders on families and society. Consequently, it is crucial to develop 
a screening tool that can accurately identify those with undiagnosed prediabetes or at high risk of developing it. 
This will help diabetes prevention programs be implemented effectively.

Pre-diabetes is a term used to describe the transitional phase from normal glucose metabolism to diabetes and 
encompasses impaired fasting glucose (IFG) and impaired glucose tolerance (IGT)10. In China, the diagnostic 
criteria for pre-diabetes defined by the American Diabetes Association (ADA) are commonly used. Accordingly, 
a fasting plasma glucose (FPG) level of 5.6–6.9 mmol/L is regarded as the threshold for IFG11. It is possible 
to maintain blood glucose levels in patients with prediabetes and even restore their health through artificial 
interventions12. According to some studies, lifestyle modification plays a significant role in diabetes prevention 
and can reduce relative risk by 40% to 70%3. Preventive interventions initiated during the pre-diabetes stage are 
more efficient and cost-effective than interventions initiated after the onset of diabetes. The reason is that they 
can delay or prevent the progression from prediabetes to diabetes13,14.

Factors influencing prediabetes include age15,16, marital status15, educational attainment15, hypertension17, 
dyslipidemia18, gestational diabetes, body mass index (BMI)15,19, waist circumference (WC)19, diet patterns20, 
and 1-h plasma glucose levels21. Using the risk score model, it becomes easier to assess individuals’ prediabetes 
development status and screen out the high-risk population. The nomogram is an intuitive model for predicting 
the risk, providing accurate and individualized predictions for each person22. Many diabetes risk score models 
are now available to optimize diabetes risk estimation and make a diabetes risk assessment and patient interven-
tion decisions23–26. Several risk assessment tools for detecting those with prediabetes have been reported27,28. 
However, most of these studies were cross-sectional and relied heavily on logistic regression analysis to develop 
the model. In addition, the majority of these models were developed for Caucasians in developed countries, and 
there are very few scoring systems available for Asians. A risk score developed from one ethnic group may not 
be applicable to another29. In view of this, a prediabetes risk score or nomogram should be developed for the 
Chinese adult population.

Several predictive models for prediabetes based on Chinese cohorts have emerged recently. Because of their 
small sample size, failure to use Cox proportional hazards models that take into account the factors of follow-
up time to build the model, and lack of evaluation of model accuracy and clinical value of use, the model’s 
generalization is somewhat limited30,31. Our research aimed to use Cox proportional hazards models to build 
a nomogram based on the data in the Chinese medical examination reports. Furthermore, we will thoroughly 
evaluate the model’s discrimination, clinical utility, and calibration. Our prediabetes risk prediction model was 
designed to assist physicians in predicting prediabetes and developing related intervention plans to help patients 
prevent or delay its onset.
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Methods
Study design
We followed the methods of Yong Han et al.32. We conducted a retrospective cohort study using data from the 
database provided by China Rich Healthcare Group. Baseline variables were selected as screening factors for the 
prediction model in this study. The dependent variable was incident prediabetes diagnosed during the five-year 
follow-up, represented as a dichotomous variable with 0 indicating non-prediabetes and 1 indicating prediabetes.

Data source
The raw data used in this study was obtained from the DATADRYAD database (https://​datad​ryad.​org/​stash), 
which was freely provided by Chen, Ying et al. (2018) in their publication "Association of body mass index and 
age with incident diabetes in Chinese adults: a population-based cohort study." Using this data for secondary 
analyses was permitted under Dryad’s terms of service without violating the authors’ rights.

Study population
To minimize selection bias, participants who underwent a health examination were non-selectively and 
consecutively chosen from 32 locations and 11 cities in China, including Beijing, Guangzhou, Nanjing, Suzhou, 
Shanghai, Shenzhen, Changzhou, Nantong, Hefei, Chengdu, and Wuhan. Non-traceable codes were used to 
encode participants to ensure their privacy. Data were retrieved from the China Rich Healthcare Group electronic 
medical record system, and the original study was approved by the Rich Healthcare Group Review Board. 
Informed consent was waived due to the study’s retrospective nature33.

The study initially enrolled 685,277 participants, of whom 501,089 were excluded, leaving a final sample of 
184,188 participants for analysis (as illustrated in Fig. 1). Eligible participants were those who had undergone 
health checks at least twice between 2010 and 2016. Exclusion criteria were established34 and included: (1) 
participants with missing information on baseline weight, FPG, gender, or height (n = 135,317); (2) those with a 
visiting period less than 2 years (n = 324,233); (3) individuals with extreme BMI values (< 15 kg/m2 or > 55 kg/
m2) (n = 152); (4) those with unknown diabetes status at follow-up (n = 6,630); (5) participants diagnosed with 
diabetes at baseline (n = 7112); (6) individuals with self-reported diabetes or FPG ≥ 6.9 mmol/L during follow-up 
(n = 4524); and (7) those with baseline FPG ≥ 5.6 mmol/L (n = 23,121).

Variables
Baseline variables
Based on previous research and clinical experience, we selected several variables as screening variables for the 
prediction model in this study34. The following variables were therefore used as screening variables based on the 
principles outlined above: (1) continuous variables: systolic blood pressure (SBP), age, low-density lipoprotein 
cholesterol (LDL-c), diastolic blood pressure (DBP), serum creatinine (Scr), total cholesterol (TC), alanine 
aminotransferase (ALT), high-density lipoprotein cholesterol (HDL-c), BMI, triglyceride (TG), FPG, blood urea 
nitrogen (BUN), aspartate aminotransferase (AST); (2) categorical variables: smoking status, family history of 
diabetes, gender, and drinking status.

During each visit to the health check center, participants were given a detailed questionnaire, which included 
questions about their lifestyle, demographic characteristics, family history of diabetes, and personal medical 
history. Trained staff measured the participants’ weight, blood pressure, and height. Weight was measured with 
an accuracy of 0.1 kg while wearing light clothing and no shoes. Height was measured accurately to within 
0.1 cm. BMI was calculated by dividing weight (kg) by height (m) squared. Blood pressure was measured using 
mercury sphygmomanometers. Participants fasted for at least 10 h before each appointment, and fasting venous 
blood samples were collected. HDL-c, Scr, AST, TC, FPG, BUN, TG, ALT, and LDL-c were measured on an 
autoanalyzer (Beckman 5800)34.

Handling of missing baseline variables
The number of participants with missing data of SBP, DBP, TC, TG, HDL-c, LDL-c, ALT, AST, BUN, Scr, smoking 
status, and drinking status was 16 (0.0087%), 17 (0.0092%), 4206 (2.28%), 4237 (2.30%), 83,351 (45.25%), 82,850 
(44.98%), 1539 (0.84%), 107,655 (58.45%), 18,552 (10.07%), 9756 (5.30%), 133,209 (72.36%), and 133,209 
(72.36%), respectively. Missing variables data were handled with multiple imputations35. The imputation model 
included BMI, SBP, age, HDL-c, gender, Scr, TC, ALT, DBP, TG, LDL-c, BUN, FPG, AST, family history of 
diabetes, drinking, and smoking status. The assumption of missing-at-random (MAR) is commonly employed in 
statistical analyses that deal with missing data36. Considering several variables among those selected for analysis 
exhibit significant missing data. For instance, smoking and alcohol consumption statuses, AST, and HDL-c. In 
order to validate whether their missingness is random, we divided the study population into two groups based 
on whether smoking consumption statuses, drinking consumption statuses, AST or HDL-c data were missing. 
By comparing the differences in age, gender, BMI and other indicators between the two groups, we analyzed 
whether the missingness of these variables was random. The comparison results showed that the differences 
between the two groups are relatively small (SD < 10%) for most indicators such as age, BMI, SBP, TG, FPG, and 
prediabetic incidence rate. This suggested that the missingness of data such as smoking and drinking status, AST, 
and HDL-c may be random (Table S1–S4).

Outcome measures
Our interesting outcome variable was pre-diabetes (dichotomous variable: 0 = non-prediabetes, 1 = pre-diabetes). 
Prediabetes is diagnosed based on IFG, and according to the ADA’s 2018 diagnostic criteria, FPG values in 
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prediabetic patients are set at 5.6 to 6.9 mmol/L11. Participants were censored either upon diagnosis of prediabetes 
or at their last visit. A five-year follow-up period was used.

Statistical analysis
The participants were randomly divided into two groups: the training and validation cohorts. Baseline 
characteristics of continuous variables were expressed as means with standard deviations or medians with 

Figure 1.   Flowchart of study participants. Figure showed the inclusion of participants. A total of 211,833 
participants were assessed for eligibility in the original study. 27,645 participants were excluded, which left 
184,188 subjects in the final analysis.
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quartiles for skewed distributions, while categorical variables were expressed as frequencies or percentages. 
Differences between the two cohorts were analyzed using t-tests for normally distributed continuous variables, 
Wilcoxon rank-sum tests for non-normally distributed variables, and chi-square tests for categorical variables. 
We also examined the training and validation cohorts’ baseline characteristics stratified by incident prediabetes.

In order to find a reliable and simple risk prediction model, we established five models for comparison on 
the training cohorts. First, we applied all risk factors to build a full model through the Cox proportional hazards 
model. Second, an akaike information criterion (AIC)-based backward step-down approach was employed to 
develop a parsimonious model (stepwise Cox proportional hazards model)37. Third, in order to determine the 
significant variables and functional form, we used the multivariable fractional polynomials (MFP) algorithm in 
an iterative manner to establish a stable model (MFP model) in the real world38. The fourth method employed 
in this study is gradient tree boosting, which is implemented using the eXtreme Gradient Boosting (XGBoost) 
system. This machine-learning method is highly effective and involves assembling weak prediction models to 
establish a more reliable and accurate prediction model39–41. Therefore, we used the XGBoost system to develop 
a machine-learning model. Fifth, the least absolute shrinkage and selection operator (LASSO) regression is the 
first variable screening method since it is suitable for reducing high-dimensional data and selecting the most 
useful prediction candidates42,43. To establish the LASSO model, candidates with non-zero coefficients were 
selected44. We would examine the performance of the above five models and choose one that required the fewest 
variables, was simple and practical, and performed well for future analysis. At the same time, we validated the 
above five models on the validation set.

To evaluate the discriminatory power of the predictive model, we plotted and calculated the receiver operating 
characteristic (ROC) curve and the area under the ROC curve (AUC) with 95% confidence intervals for the 
training cohorts. The specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), 
negative predictive value (NPV), and positive predictive value (PPV) were calculated according to standard 
definitions for the final model. Simultaneously, we validated the ROC curve and model performance in the 
validation cohort.

Besides, we obtained a prediabetic prediction formula from the final model. Predicted risk (time 
t) = 1-S0(t)Exp(LP). The final selected model was used to predict the probability at time t (in years) after the start of 
follow-up. LP = linear predictor from the final model. Exp = exponential of e. S0 (t) = baseline survival at time t 
(for ease of calculation an estimate was provided five years after the start of follow-up)45.

The nomogram was created by proportionally converting each regression coefficient in the final selected 
model to a 0-to-100-point scale46. A 100-point score was assigned to the effect of the variable with the highest 
β coefficient (absolute value). We combined independent variables to derive total points, which were converted 
into predicted probabilities of developing prediabetes. Basically, the nomogram score represented the prediction 
model score for each patient.

Besides, an assessment of the nomogram’s accuracy was performed using the calibration plot for five-year 
prediabetes probability47. For the purpose of determining the clinical utility of the prediabetes risk prediction 
model, a decision curve analysis was performed: the proportion of people showing true positive results minus 
the proportion of people showing false positive results, then calculated the net benefits of making a decision 
based on the relative hazard of false positives and false negatives48. It should be noted that we simultaneously 
evaluated the accuracy and clinical utility of the model in both the training cohort and the validation cohort.

We utilized the Kaplan–Meier method to calculate the survival estimates and time-to-event variables. In 
addition, we used the log-rank test to assess the likelihood of prediabetes-free survival among the four predicted 
probability of prediabetes groups.

We also analyzed the performance of each risk factor in the model for predicting prediabetes performance and 
its optimal cutoff using ROC curves. A DeLong test was used to compare the AUC of each risk factor. According 
to the TRIPOD statement, all results were reported49.

The statistical analyses were performed using R (http://​www.R-​proje​ct.​org, The R Foundation) and Empower-
Stats (X&Y Solutions, Inc, Boston, MA). All tests were two-tailed, and statistical significance was set at a P-value 
of less than 0.05.

Ethics approval and consent to participate
The Rich Healthcare Group Review Board reviewed and approved studies involving human participants, and 
retrospective information was retrieved. It was conducted in accordance with the ethical principles of the 
Declaration of Helsinki. The data are anonymous, and the Rich Healthcare Group Review Board waived the 
requirement for informed consent due to the study’s observational nature, as reported elsewhere34.

Results
The study had 184,188 eligible participants (53.06% males and 46.94% females). The selection process of 
participants was shown in Fig. 1. Overall, the mean age of the participants was 41.02 ± 12.10. The median 
follow-up period was 3.00 years, and 19,699 (10.70%) participants developed prediabetes during that time. A 
mean BMI of 22.99 ± 3.26 kg/m2 was recorded. Mean SBP and DBP were 117.82 ± 15.81 and 73.53 ± 10.60 mmHg, 
respectively. Regarding FPG, the mean was 4.77 ± 0.49 mmol/L.

Baseline characteristics of participants
A basic description of the demographics, anthropology, and clinical characteristics of the eligible participants was 
provided in Table 1. We divided all participants into the training cohort (n = 92,177) and the validation cohort 
(n = 92,011). The median follow-up period of the training and validation cohorts was 3.00 years, and 9859 and 

http://www.R-project.org
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9840 participants developed prediabetes, respectively. No statistically significant difference was observed among 
all baseline characteristics between the training and validation cohorts (all P > 0.05).

Table 2 displayed the baseline characteristics of the two cohorts based on their five-year incident prediabetes 
status. Participants who developed prediabetes during the study showed higher levels of SBP, TG, age, DBP, FPG, 
BMI, TC, ALT, Scr, LDL-C, AST, BUN, and a higher prevalence of males, ever or current smokers and drinkers in 
both the training and validation cohorts (all P < 0.01). Conversely, they had lower levels of HDL-C. Additionally, 
in the validation cohort, there was a higher proportion of participants with a family history of diabetes among 
those who developed prediabetes compared to those who did not. However, there was no statistically significant 
difference in the family history of diabetes in the training cohort (P = 0.054).

Univariate and multivariate analysis
Based on a univariate and multivariate Cox proportional hazards model in the training cohort, Table S5 showed 
risk factors for incident prediabetes. The univariate analysis showed that age (HR = 1.034), female (HR = 0.622), 
BMI (HR = 1.121), SBP (HR = 1.025), DBP (HR = 1.029), FPG (HR = 5.728), TG (HR = 1.186), LDL-C (HR = 1.244), 
HDL-C (HR = 0.733), ALT (HR = 1.004), AST (HR = 1.006), BUN (HR = 1.145), Scr (HR = 1.015), ever smoking 
(HR = 0.894), never smoking (HR = 0.700), ever drinking (HR = 0.784), and never drinking (HR = 0.599) were 
associated with incident prediabetes (all P < 0.05), family history of diabetes was not associated with prediabetes 
(P = 0.773). The multivariate analysis showed that age (HR = 1.020), female (HR = 0.918), BMI (HR = 1.047), SBP 
(HR = 1.008), DBP (HR = 1.003), FPG (HR = 4.611), TG (HR = 1.067), HDL-C (HR = 1.214), LDL-C (HR = 0.947), 
ALT (HR = 1.003), BUN (HR = 0.967), and Scr (HR = 1.006) were associated with incident prediabetes (all 
P < 0.05). However, AST, smoking and drinking status were not associated with prediabetes (all P > 0.05).

Table 1.   Baseline characteristics of the training and validation sets. Values are n(%), mean ± SD, or medians 
(quartiles). BMI, Body mass index; AST, Aspartate aminotransferase; SBP, Systolic blood pressure; TC, Total 
cholesterol; FPG; Fasting plasma glucose; DBP, Diastolic blood pressure; TG, Triglyceride; ALT, Alanine 
aminotransferase; HDL-c, High-density lipoprotein cholesterol; BUN, Blood urea nitrogen; LDL-c, Low-
density lipid cholesterol; Family history, Family history of diabetes; Scr, Serum creatinine.

Characteristic Training set Validation set P-value

Participants 92,177 92,011

Incident prediabetes 0.993

 No 82,318 (89.3%) 82,171 (89.3%)

 Yes 9859 (10.7%) 9840 (10.7%)

 Age (year) 41.0 ± 12.1 41.0 ± 12.1 0.302

 BMI (kg/m2) 23.0 ± 3.3 23.0 ± 3.3 0.439

 SBP (mmHg) 117.8 ± 15.8 117.9 ± 15.9 0.198

 DBP (mmHg) 73.5 ± 10.6 73.5 ± 10.6 0.574

 FPG (mmol/L) 4.8 ± 0.5 4.8 ± 0.5 0.036

 TC(mmol/L) 4.7 ± 0.9 4.7 ± 0.9 0.509

 TG (mmol/L) 1.0 (0.7–1.5) 1.0 (0.7–1.5) 0.362

 HDL-c (mmol/L) 1.4 ± 0.3 1.4 ± 0.3 0.959

 LDL-c (mmol/L) 2.7 ± 0.7 2.7 ± 0.7 0.292

 ALT (U/L) 17.5 (12.5–26.7) 17.5 (12.6–26.7) 0.405

 AST (U/L) 22.0 (17.6–27.7) 22.0 (17.6–27.6) 0.990

 BUN (mmol/L) 4.6 ± 1.2 4.6 ± 1.2 0.060

 Scr (umol/L) 69.5 ± 15.2 69.6 ± 16.2 0.168

Gender 0.528

 Male 48,843 (53.0%) 48,890 (53.1%)

 Female 43,334 (47.0%) 43,121 (46.9%)

Smoking status 0.734

 Current 14,920 (16.2%) 14,985 (16.3%)

 Ever 3215 (3.5%) 3164 (3.4%)

 Never 74,042 (80.3%) 73,862 (80.3%)

Drinking status 0.535

 Current 1545 (1.7%) 1486 (1.6%)

 Ever 11,524 (12.5%) 11,572 (12.6%)

 Never 79,108 (85.8%) 78,953 (85.8%)

Family history 0.533

 No 90,373 (98.0%) 90,173 (98.0%)

 Yes 1804 (2.0%) 1838 (2.0%)



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22523  | https://doi.org/10.1038/s41598-023-50122-3

www.nature.com/scientificreports/

Comparison of different models
We established five prediction models, including the stepwise, full, MFP, machine learning, and LASSO models. 
We screened among 17 candidate variables (BMI, SBP, age, HDL-c, gender, Scr, TC, ALT, DBP, family history of 
diabetes, TG, LDL-c, BUN, FPG, AST, drinking, and smoking status) employing the five different models. The 
above 17 variables are included in the full model except for TC. 14 variables from the data transformation were 
included in the MFP model, 13 in the stepwise model, and 17 in the machine learning model. While the LASSO 
model only included 6 variables. In the training cohort, AUCs of the machine learning, LASSO, full, stepwise, 
and MFP models were 0.8252, 0.7341, 0.7351, 0.7350 and 0.7343 (Fig. 2A). In the validation cohort, we validated 
the above 5 models. AUCs of the machine learning, LASSO, full, stepwise, and MFP models were 0.7403, 0.7336, 
0.7343, 0.7342 and 0.7341, respectively (Fig. 2B). The AUC of these five models was relatively close. The machine 
learning model, although having the largest AUC in the training cohort, was somewhat inconvenient for practical 
clinical application given the large difference in AUC between the development and validation groups and the 
unavailability of a formula or nomogram. Since the LASSO model was able to predict the 5-year prediabetes risk 
accurately and had fewer risk factors incorporated, we opted to use it as the final prediction model for prediabetes.

Identification of risk factors
Out of 17 clinical features, only 6 potential predictors with non-zero coefficients in the LASSO regression model 
were identified based on data from 92,177 participants in the training set, as shown in Fig. 3A,B. These potential 
predictors were age, BMI, FPG, TG, Scr, and SBP. The study population ranged in age from 20 to 96 years old. 
BMI ranged from 15.0 to 45.64 kg/m2. FPG levels ranged from 0.59 to 5.59 mmol/L. TG levels ranged from 0.01 
to 24.30 mmol/L. Scr ranged from 19.17 to 1116.60 μmol/L. SBP had a wide distribution from 66 to 222 mmHg. 
Table 3 showed the LASSO model selected the 6 variables, including FPG (HR 4.5577, 95% CI 4.3363–4.7903), 
BMI (HR 1.0494, 95% CI 1.0427–1.0561), age (HR 1.0184, 95% CI 1.0168–1.0199), TG (HR 1.0687, 95% CI 

Table 2.   Baseline characteristics for the training and validation cohorts by incident prediabetes status. Values 
are n(%), mean ± SD, or medians (quartiles). BMI, Body mass index; AST, Aspartate aminotransferase; SBP, 
Systolic blood pressure; TC, Total cholesterol; FPG; Fasting plasma glucose; DBP, Diastolic blood pressure; 
TG, Triglyceride; ALT, Alanine aminotransferase; HDL-c, High-density lipoprotein cholesterol; BUN, Blood 
urea nitrogen; LDL-c, Low-density lipid cholesterol; Family history, Family history of diabetes; Scr, Serum 
creatinine.

Characteristic

Training cohort Validation cohort

Non-diabetes Prediabetes P value Non-diabetes Prediabetes P value

Participants 82,318 9859 82,171 9840

Age (year) 40.3 ± 11.7 46.9 ± 13.7  < 0.001 40.3 ± 11.7 46.5 ± 13.5  < 0.001

Gender  < 0.001  < 0.001

 Male 42,466 (51.6%) 6377 (64.7%) 42,629 (51.9%) 6261 (63.6%)

 Female 39,852 (48.4%) 3482 (35.3%) 39,542 (48.1%) 3579 (36.4%)

BMI (kg/m2) 22.8 ± 3.2 24.3 ± 3.3  < 0.001 22.8 ± 3.2 24.4 ± 3.3  < 0.001

SBP (mmHg) 117.0 ± 15.4 124.4 ± 17.1  < 0.001 117.0 ± 15.5 124.6 ± 17.3  < 0.001

DBP (mmHg) 73.1 ± 10.4 77.2 ± 11.2  < 0.001 73.1 ± 10.4 77.3 ± 11.2  < 0.001

FPG (mmol/L) 4.7 ± 0.5 5.0 ± 0.4  < 0.001 4.7 ± 0.5 5.0 ± 0.4  < 0.001

TG (mmol/L) 1.0 (0.7–1.5) 1.3 (0.9–1.9)  < 0.001 1.0 (0.7–1.5) 1.3 (0.9–1.9)  < 0.001

HDL-C(mmol/L) 1.4 ± 0.3 1.3 ± 0.3  < 0.001 1.4 ± 0.3 1.3 ± 0.3  < 0.001

LDL-C(mmol/L) 2.7 ± 0.7 2.8 ± 0.7  < 0.001 2.7 ± 0.7 2.8 ± 0.7  < 0.001

TC(mmol/L) 4.6 ± 0.9 4.8 ± 0.9  < 0.001 4.6 ± 0.9 4.9 ± 0.9

ALT(U/L) 17.0 (12.2–26.0) 21.0 (14.9–32.0)  < 0.001 17.0 (12.3–26.0) 21.0 (14.9–32.0)  < 0.001

AST(U/L) 21.9 (17.4–27.4) 23.5 (19.0–29.8)  < 0.001 21.8 (17.5–27.3) 23.5 (19.0–29.7)

BUN (mmol/L) 4.6 ± 1.2 4.8 ± 1.2  < 0.001 4.6 ± 1.2 4.8 ± 1.2  < 0.001

Scr (umol/L) 69.2 ± 15.2 72.7 ± 15.3  < 0.001 69.3 ± 16.3 72.7 ± 15.5  < 0.001

Smoking status  < 0.001  < 0.001

 Current 12,776 (15.5%) 2144 (21.7%) 12,838 (15.6%) 2147 (21.8%)

 Ever 2795 (3.4%) 420 (4.3%) 2789 (3.4%) 375 (3.8%)

 Never 66,747 (81.1%) 7295 (74.0%) 66,544 (81.0%) 7318 (74.4%)

Drinking status  < 0.001  < 0.001

 Current 1293 (1.6%) 252 (2.6%) 1212 (1.5%) 274 (2.8%)

 Ever 9993 (12.1%) 1531 (15.5%) 10,026 (12.2%) 1546 (15.7%)

 Never 71,032 (86.3%) 8076 (81.9%) 70,933 (86.3%) 8020 (81.5%)

Family history 0.054  < 0.001

 No 80,732 (98.1%) 9641 (97.8%) 80,581 (98.1%) 9592 (97.5%)

 Yes 1586 (1.9%) 218 (2.2%) 1590 (1.9%) 248 (2.5%)
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1.0519–1.0859), SBP (HR 1.0097, 95% CI 1.0084–1.0109) and Scr (HR 1.0062, 95% CI 1.0049–1.0075). The 
results showed that the six variables were all positively associated with incident prediabetes.

We demonstrated the prediction performance of each risk factor for 5-year incident prediabetes in the 
training and validation cohorts (Table S6, Figure S1A, S1B). FPG had the highest AUC among all the risk factors, 
significantly greater than other risk factors (P < 0.001).

In addition, we generated time-dependent ROC curves for the LASSO model in the training and cohorts 
(Fig. 4A). Simultaneously, in the validation cohort, we validated the time-dependent ROC curve (Fig. 4B). 

Figure 2.   Comparison of the AUC of different models. (A) In the training set, the AUCs of the machine 
learning, LASSO, full, stepwise, and MFP models were 0.8252, 0.7341, 0.7351, 0.7350 and 0.7343, respectively. 
(B) In the validation set, the results of the validation suggested the corresponding AUCs of those models were 
0.7403, 0.7336, 0.7343, 0.7342, and 0.7341, respectively.

Figure 3.   Risk predictors selection using the LASSO regression model. (A) Optimal predictor (lambda) 
selection in the LASSO model with tenfold cross-validation by minimum criteria. The area under the receiver 
operating characteristic curve was plotted versus log (lambda). Dotted vertical lines were drawn at the optimal 
values by using the minimum criteria and the 1 SE of the minimum criteria; (B) The LASSO coefficient profiles 
of the 17 predictors were shown. A coefficient profile plot was developed against the log (lambda) sequence. A 
vertical line was drawn at the value selected with tenfold cross-validation, resulting in 6 predictors with nonzero 
coefficients (lambda = 0.0095).
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These curves showed that the AUCs for predicting the risk of prediabetes at various future time points using the 
LASSO model remained consistent. This suggests that the LASSO model has good predictive value for incident 
prediabetes at different time points in the future.

Development of the nomogram
A corresponding nomogram was also created to provide a simple and quantitative way of predicting the devel-
opment of prediabetes within five years using age, BMI, FPG, TG, SBP, and Scr (Fig. 5). Points were assigned 
for each variable value of the nomogram, and the sum of the points for each variable value was obtained. A 
five-year probability of prediabetes risk was calculated using this method. And the algorithm of prediabetes 
risk was as follows: Predicted risk (5-year) = 1-S0 (5-year)Exp(LP). LP = 1.51681 * FPG (mmol/L) + 0.01820 * age 
(years) + 0.04821 * BMI (kg/m2) + 0.00963 * SBP (mmHg) + 0.06648 * TG (mmol/L) + 0.00617 * Scr (umol/L). 
S0 (5-year) = 0.999993.

Prediction performance of the nomogram
Discrimination
The AUC of the nomogram in the training cohort was 0.7341 (95% CI 0.7290–0.7392). And the validation cohort. 
In the validation of the model, we found that the AUC was 0.7336 (95% CI 0.7285–0.7387) (Table 4, Fig. 2). 
According to the best threshold, the sensitivity rates for the training and validation cohorts were 68.00% and 
65.35%, and the specificity rates were 67.13% and 69.91%. Notably, there was a relatively high NPV in both the 
training and validation cohorts.

Model accuracy evaluation
Furthermore, we determined whether the 5-year prediabetes risk predicted by the nomogram matched the 
observed 5-year risk in the training cohorts. At the same time, we also need to validate the model’s accuracy 

Table 3.   Variables selected using Lasso regression model. FPG; Fasting plasma glucose; SBP, Systolic blood 
pressure; BMI, Body mass index; TG, Triglyceride; Scr, Serum creatinine; HR, Hazard ratios; CI, Confidence 
interval.

Variable Beta Standard error HR (95% CI) P value

FPG (mmol/L) 1.5168 0.0254 4.5577 (4.3363, 4.7903) < 0.0001

Age (years) 0.0182 0.0008 1.0184 (1.0168, 1.0199) < 0.0001

BMI (kg/m2) 0.0482 0.0033 1.0494 (1.0427, 1.0561) < 0.0001

SBP (mmHg) 0.0096 0.0006 1.0097 (1.0084, 1.0109) < 0.0001

TG (mmol/L) 0.0665 0.0081 1.0687 (1.0519, 1.0859) < 0.0001

Scr (umol/L) 0.0062 0.0007 1.0062 (1.0049, 1.0075) < 0.0001

Figure 4.   Time-dependent ROC curve. We plotted the time-dependent ROC curves for the LASSO model in 
the training cohort (A) and validated it in the validation cohort (B). The curves demonstrated that using the 
present model, the AUCs for predicting the risk of incident prediabetes at various future time points remained 
relatively stable. This indicates that the model has a strong and consistent predictive value for all cases of 
incident prediabetes at different future time points.
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in the validation cohort. Both training and validation sets of calibration curves showed excellent agreement 
between predicted possibilities and actual observations (Fig. 6A,B). According to these results, a nomogram 
could accurately predict the five-year incidence of prediabetes in a Chinese population.

Clinical use of the nomogram
Figure analyzed the LASSO model’s decision curves in the training cohorts. Figure 7B represents the results of 
the clinical decision curve validated in the validation cohort. The black line represented the net benefit, assum-
ing that none of the participants developed prediabetes. In contrast, light gray lines were net benefits when 
prediabetes was considered for all participants. The area between the black line (no treatment line) and the light 
gray line (all treatment lines) in the model curve showed the model’s clinical utility. In general, the farther the 
nomogram curve was from the black and light gray lines, the better its clinical utility. As an example, if a patient’s 
threshold probability was 17% in the LASSO model, the net benefit would be about 20%, which was equivalent 
to performing 20 additional prediabetes screenings (such as oral glucose tolerance tests) per 100 Chinese adults 
when without a significant change in the incidence of prediabetes.

Figure 5.   Nomogram to predict the risk of prediabetes for Chinese adults. Each risk predictor’s score is plotted 
on the appropriate scale. A vertical line is drawn from each patient’s score on the appropriate scale to the top 
points scale in order to determine the patient’s score for each risk predictor. All scores are summed to obtain 
the total points score. Using the bottom portion of the total points scale, we can predict the probability of 
prediabetes occurring.

Table 4.   Prediction performance of the nomogram for the risk of prediabetes. AUC, Area under the curve; CI, 
Confidence interval; NPV, Negative predictive value; PPV, Positive predictive value; NLR, Negative likelihood 
ratio; PLR, Positive likelihood ratio;

AUC​

95% CI Best threshold of predicted prediabetes 
probability Specificity (%) Sensitivity (%) PPV (%) NPV (%) PLR NLRLower Upper

Training cohort 0.7341 0.7290 0.7392 0.3537 67.13 68.00 20.74 94.31 2.069 0.477

Validation cohort 0.7336 0.7285 0.7387 0.3720 69.91 65.35 21.52 94.11 2.172 0.496
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Associations between predicted prediabetes probability and 5‑year incident prediabetes
We divided both the training and validation cohorts into two groups based on whether they developed 
prediabetes in the future or not. We then compared the predicted probability of prediabetes at baseline between 
these two groups. The results revealed that participants who developed prediabetes had a higher predicted 
probability, while those who did not develop prediabetes had a lower predicted probability (Figure S2A, S2B).

We then stratified the participants into four groups based on the quartiles of predicted prediabetes prob-
ability at baseline. The Kaplan–Meier survival curves for 5-year prediabetes-free survival probability were plot-
ted and stratified by the predicted probability groups (Fig. 8A,B). The results showed significant differences in 

Figure 6.   Calibration curves. It was found that the calibration curves for the 5-year probability of incident 
prediabetes demonstrated excellent agreement between the predicted probability and the actual observation in 
both training and validation sets (A, B). According to these results, the nomogram accurately predicted 5-year 
incidences of prediabetes in Chinese adults.

Figure 7.   The decision curve analysis of the nomogram model for 5-year prediabetes risk in the training cohort 
(A) and validation cohort (B). When no participant is thought to acquire prediabetes, the black line shows the 
net benefit. When prediabetes is considered for all participants, the light gray line represents the net benefit. A 
model’s clinical utility is indicated by the area between the “no treatment line” (black line) and the "all treatment 
line" (light gray line). The more distance between the model curve and the black and light gray lines, the better 
the nomogram’s clinical value.
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the probability of prediabetes-free survival between the different predicted probability groups (log-rank test, 
P < 0.0001). As the predicted probability increased, the probability of prediabetes-free survival decreased, indi-
cating that individuals with the highest predicted probability were at the greatest risk of developing prediabetes. 
These findings demonstrated the excellent performance of the LASSO model.

Validation of the nomogram in participants with BMI ≥ 24 kg/m2

Additionally, considering BMI as an important risk factor for prediabetes and obesity as a high-risk population 
for prediabetes, we would validate our model in the population with BMI ≥ 24 kg/m2 based on the available data. 
According to the results, our model also demonstrated good performance in the population with BMI ≥ 24 kg/m2 
(Table S7, Figure S3, S4). Therefore, this also further suggested that our model has a certain generalization value.

Discussion
This study developed and validated a personalized prediction nomogram predicting 5-year incident prediabetes 
by cost-effective and readily available parameters among Chinese adults, which could be a tool for clinicians to 
identify high-risk individuals for prediabetes. The prediction model included six parameters: age, FPG, BMI, Scr, 
SBP, and TG. The model evaluation, and internal validation revealed that our nomogram performed exceptionally 
well in terms of prediction.

Although several risk assessment tools for detecting those with prediabetes have been reported27,28,50–53. A 
cross-sectional study from the Middle East established the Prediabetes Risk Score by sex, waist circumference 
(WC), age, BMI, and blood pressure. The AUC of the score was 80%, and the cut-off point of 16 yielded 
sensitivity and specificity of 86.2% and 57.9%, respectively50. Another study from the National Health and 
Nutrition Examination Survey (NHANES) developed a predictive model for pre-diabetes by age, BMI, waist 
circumference, history of high blood glucose, antihypertensive drug use, daily physical activity, family history 
of diabetes, and fruit & vegetable intake. The sensitivity and specificity of using the model (cutoff of ≥ 9) was 
60.2% and 61.4% for pre-diabetes53. However, most of the studies were cross-sectional and relied heavily on 
logistic regression analysis to develop the model. Furthermore, the majority of these models were created for 
Caucasians in developed countries. Only a few reliable prediabetes prediction models were established in the 
Chinese population, including different risk predictors. Besides, the incidence rate of prediabetes, their prediction 
performance, and clinical usefulness varied greatly. In 2016, Ouyang Peng et al.30 developed a risk score using 
binary logistic regression analysis to predict the risk of prediabetes based on factors such as age, history of 
hypertension, BMI, DBP, family history of diabetes, and TG. The AUC of their model was 0.713 (95% CI 0.686 
to 0.740). However, when screening the variables, they did not consider the FPG, BUN, Scr, ALT, and AST. 
Studies have shown that these variables contribute to prediabetes or diabetes54–57. Furthermore, the authors did 
not conduct a decision curve analysis to assess the clinical utility of the model, nor a calibration curve analysis to 
assess the model’s accuracy. Additionally, a comparison and screening of other methods for incident prediabetes 
risk prediction were not performed. After all, screening variables directly using logistic regression models is 
not a good alternative, given the inherent colinearity and interaction effects between the screening variables. 
Furthermore, it is critical to consider the effect of follow-up time on outcomes for predictive models, as there 

Figure 8.   Kaplan–Meier event-free survival curve. Kaplan–Meier event-free survival curve in the training 
cohort (A) and validation cohort (B). We divided the participants into four groups based on the quartiles of 
predicted prediabetes probability at baseline. Kaplan–Meier survival curves for 5-year prediabetes-free survival 
probability stratified by the predicted probability groups. There were significant differences in the probability 
of prediabetes-free survival between the different predicted probability groups (log-rank test, P < 0.0001). 
Prediabetes-free survival probabilities decreased as predicted probability increased, which indicated that those 
with the highest predicted probability faced the highest risk of prediabetes.
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may be differences in model prediction performance due to different follow-up times. Furthermore, age, BMI, 
TG, and DBP are continuous predictors of risk. Categorizing them into groups will result in a loss of information 
and a reduced ability to detect real relationships58,59. In 2021, Jiahua Wu et al.31 developed a model to predict 
the risk of prediabetes in middle-aged and elderly populations in China based on WC, HbA1c, family history of 
diabetes, and FPG. The AUCs were 0.702. Consistent with our nomogram, they also screened variables using the 
Cox proportional hazards model. However, the study did not establish time-dependent ROC curves or explicitly 
propose specific timing for predicting the risk of prediabetes. Moreover, the authors did not perform a decision 
curve analysis to evaluate the clinical utility of the model or assess the calibration of predicted risk against actual 
risk. Furthermore, they did not conduct internal and external validation of the prediction model, which may 
restrict the generalizability of their findings. The New Chinese Diabetes Risk Score (NCDRS), developed in 2013, 
provides a suitable risk measurement for type 2 diabetes mellitus (T2DM)60. NCDRS is a DM risk assessment 
that includes age, gender, WC, BMI, SBP, and family history of DM60. In 2020, Tao Mao et al.61 validated the 
predictive value of NCDRS in prediabetes. Because the NCDRS included relatively few risk predictors and did not 
include laboratory indicators, the prediabetes model may have insufficient accuracy and prediction performance. 
Thus, their model’s predictive ability was relatively low, AUC = 0.694 (95% CI 0.683–0.705). In order to ensure 
prediction accuracy, we need to incorporate relatively more risk factors into the risk prediction model. It is worth 
pointing out that the sample sizes of the models mentioned above are relatively small. Our nomogram filled 
these gaps compared to the similar studies discussed above. Considering the size of the sample (n = 184,188) 
and the fact that participants were from multiple centers, our findings may be more applicable to Chinese 
individuals. In our screening process, we utilized machine learning, LASSO regression, and the multivariate 
fractional polynomials algorithm to account for collinearity and interaction among variables. Additionally, we 
established predictive equations using LASSO regression models to capture the impact of follow-up time on 
incident prediabetes and constructed time-dependent ROC curves. We conducted a thorough evaluation of 
the model for clinical usefulness, discrimination, and calibration, as well as internal validation. Our nomogram 
employs continuous variables to more precisely and individually predict risks.

Diabetes causes numerous complications, as well as severe physical and psychological distress for patients and 
a financial burden on the healthcare system. Because there are no specific symptoms, it is often undiagnosed. It 
may, however, be possible to increase screening yields and economic efficiency through oral glucose tolerance 
tests62. This study used the LASSO model with relatively good predictive performance to construct the nomogram. 
And using the risk predictors, we developed a formula to calculate prediabetes risk, which clinicians could use 
to identify high-risk individuals accurately. Since our nomogram items are routine clinical variables available 
to clinicians, clinicians can easily adopt them. It can also guide them in timing prediabetes screenings and 
reduce the time and effort spent on prevention and treatment for those at low risk for prediabetes. Furthermore, 
both training and validation groups showed high predictive performance, indicating good generalizability. In 
addition, it must be noted that the incidence of prediabetes in our study population was lower than in other 
similar studies (10.7% vs. 20.0–26.3%)30,31. A closer analysis of the relevant indicators revealed higher levels of 
age and BMI in their study population, as well as a higher proportion of family history of diabetes, smoking, and 
alcohol consumption. Studies have shown that these indicators are all critical influencing factors for diabetes 
or prediabetes15,16,19,63–65. Therefore, it is not surprising that the incidence of prediabetes was lower in our study 
population. It is known that the prevalence of the disease affects the positive and negative predictive values of 
diagnostics66. The comparatively low positive predictive value resulted from a low disease prevalence67. PPV 
increased with a rise in target disease prevalence when sensitivity and specificity were constant61.

The present study has the following strengths: (1) This study benefits from a large sample size and participants 
recruited from multiple institutions. (2) We developed five different prediction models: LASSO, full, stepwise, 
machine learning, and MFP. (3) We performed a nomogram to ensure the precision and clinical utility of the 
model. (4) Using risk predictors, we developed a formula to help clinicians quickly and accurately calculate the 
risk of prediabetes in individuals. Other similar studies can be verified externally with this information. (5) We 
perform a complete evaluation of the model for clinical use, discrimination, and calibration. (6) The results were 
validated to ensure reliability.

Despite the good performance of the nomogram, the study has some potential limitations. First of all, this was 
a second retrospective study. There were no other prediabetes risk factors in the raw data, such as medical history, 
waist/hip ratio, and lifestyle factors. However, despite the large sample size and participants from multiple centers, 
this study demonstrates excellent prediction performance in both training and validation groups, indicating high 
generalizability of the nomogram based on the existing six risk factors. Second, no oral glucose tolerance test or 
glycosylated hemoglobin measurements were conducted. According to one study, 55% of Asian diabetics were 
diagnosed based on FPG alone68. Hence, neglecting the consideration of IGT may overlook its potential impact 
on predicting the development of diabetes. In the future, we can consider designing our studies or collaborating 
with other researchers, to conduct an oral glucose tolerance test for all participants. Therefore, we can use the 
two criteria of IFG and IGT to diagnose the states of prediabetes, which will make our assessment of prediabetes 
more scientific. Third, although we used multiple imputations to replace missing values, this could still lead to 
bias as some variables had missing values of up to 50% or even more than 70%. For instance, smoking and alcohol 
consumption statuses are both missing over 70%, AST is missing 58.45%, and HDL-c is missing 45.25%. Fourth, 
due to the significant variations in dietary habits and a partial familial predisposition observed in type 2 diabetes 
patients, the prediction model should adequately reflect the regional differences and accurately predict outcomes 
in different areas of China. And the raw data did not provide more information on the regional differences. Based 
on current data, we are unable to build models using populations from some regions and validate the models 
using populations from other regions. In the future, we can consider designing our studies or collaborating with 
other researchers to collect as many variables as possible and reduce missing values, including information on 
regional differences. Therefore, the model we construct could adequately reflect the regional differences and 
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accurately predict outcomes in different areas of China. Fifth, although the performance was tested, it will still 
need to be tested in clinical or other related settings before it can be widely accepted or applied.

Conclusion
We have developed and validated a personalized prediction nomogram for the 5-year risk of incident prediabetes 
in Chinese adults. Our model includes BMI, age, SBP, Scr, FPG, and TG as risk factors. The nomogram 
demonstrates excellent performance in training and validation cohorts for estimating prediabetes risk and is 
highly generalizable. Lifestyle, physical activity, and mental health should be considered in further improving 
the prediabetes risk prediction model. Also, prediabetes risk nomogram still require much clinical and other 
work before they can be widely adopted and used.

Data availability
Data could be downloaded from the ‘DATADRYAD’ database (https://​datad​ryad.​org/​stash).
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