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Validating an algebraic approach 
to characterizing resonator 
networks
Viva R. Horowitz 1*, Brittany Carter 2,3,4, Uriel F. Hernandez 2,3,4, Trevor Scheuing 1 & 
Benjamín J. Alemán 2,3,4,5*

Resonator networks are ubiquitous in natural and engineered systems, such as solid-state materials, 
electrical circuits, quantum processors, and even neural tissue. To understand and manipulate these 
networks it is essential to characterize their building blocks, which include the mechanical analogs 
of mass, elasticity, damping, and coupling of each resonator element. While these mechanical 
parameters are typically obtained from response spectra using least-squares fitting, this approach 
requires a priori knowledge of all parameters and is susceptible to large error due to convergence to 
local minima. Here we validate an alternative algebraic means to characterize resonator networks 
with no or minimal a priori knowledge. Our approach recasts the equations of motion of the network 
into a linear homogeneous algebraic equation and solves the equation with a set of discrete measured 
network response vectors. For validation, we employ our approach on noisy simulated data from 
a single resonator and a coupled resonator pair, and we characterize the accuracy of the recovered 
parameters using high-dimension factorial simulations. Generally, we find that the error is inversely 
proportional to the signal-to-noise ratio, that measurements at two frequencies are sufficient to 
recover all parameters, and that sampling near the resonant peaks is optimal. Our simple, powerful 
tool will enable future efforts to ascertain network properties and control resonator networks in 
diverse physical domains.

Resonator networks are a  ubiquitous1 and diverse class of systems, found in both  natural2 and engineered con-
texts. They can range in scale from astronomical  systems3 to biological and neural  networks4–6, and from small-
scale micromechanical  lattices7,8 to large integrated  circuits9 and solid-state materials. These many-body systems 
exhibit rich collective behaviors, such as brain memory,  quantum10,11 and classical computation, and optical 
properties of solids, making them an important subject of study. To understand and engineer this behavior, 
it is necessary to characterize the network building  blocks7 (e.g., neurons, micromechanical resonators, ions, 
etc.) and their connectivity. For example, quantum processors and tunable mechanical metamaterials require 
detailed information about the building blocks before they can be reconfigured into a desired state. Despite many 
realizations, a useful and simple model for these networks is as a collection of coupled mechanical mass-spring 
resonators (Fig. 1a). Using this model, the building blocks are defined locally by the elasticity, mass, and damping 
of each resonator, while the connectivity is captured by coupling springs. For a linear response, the resonator 
network is governed by the equation of motion

where M,B, and K  are the mass, damping, and elasticity matrices, respectively, and �F is the external force. Here, 
we assume linear elasticity and aim to solve the inverse problem. Typically, the mechanical elements ( M,B,K  , 
and �F ) of these systems are characterized by analyzing amplitude and phase spectra with non-linear least squares 
(NLLS), where the mechanical elements are fitting parameters. NLLS fitting requires both solving the coupled 
differential equations (i.e., determining a closed-form solution for �x(ω) ) and a priori knowledge in the form of 
initial guesses for each of the network’s mechanical parameters. When conducting numerical optimization, initial 
guesses are crucial, since the solution may converge to a local minimum determined by the initial guesses, and 

(1)M �̈x + B�̇x + K�x = �F
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poor initial guesses can lead to inaccurate estimates of the true state of the  network12. Moreover, as the number 
of parameters increases, the optimization problem becomes more complex, and the number of potential local 
minima generally increases, making NLLS more  inaccurate12.

Recently, we developed an alternative, non-regressive algebraic approach to circumvent the issues of  NLLS12, 
a method we call Network Mapping and Analysis of Parameters, or  NetMAP13. In this approach, we transform 
Eq. (1) into

where M(ω) = −ω2
M + iωB+ K  , �f  is the amplitude of �F , and �Z(ω) is the complex response vector of the 

network, which includes the amplitude and phase for each resonator in the network measured at a frequency 
ω (Fig. 1b). We then measure and construct �Z(ω) at two or more values of ω , and use these measurements to 
rearrange Eq. (2) into an augmented homogeneous equation

where Z is a matrix of known, measured quantities determined by �Z(ω) . The vector �p consists of the desired, 
unknown elements of M, B, K  , and �f  (Fig. 1b, and see Supplementary Information section 2), and the solution 
space for �p is the null-space of Z . Whereas solving the equations of motion (shown as the bottom red arrow in 
Fig. 1b) allows us to obtain the spectrum of each resonator from the parameters, the purpose of NetMAP (top 
blue arrow in Fig. 1b) is to tackle the inverse problem: obtaining the underlying parameters from the available 
spectral data. This is crucial for characterizing networks by their fundamental building blocks. In contrast to 

(2)M(ω)�Z(ω) = �f

(3)Z�p = �0

Figure 1.  (a) A resonator network as a chain of mass and spring resonators. (b) We calculate the relationship 
between the complex amplitude �Z(ω) of the masses and the underlying parameters. NetMAP (top blue 
arrow) solves the inverse problem to calculating spectra (red arrow). (c) Steps of the validation process: (1) 
Modeling a mass-spring network, such as a monomer, shown here, or dimer. (2) Setting the parameters �pin to 
simulate. (3) Solving the equations of motion (EOM) and simulating spectra with noise. (4) Using simulated 
measurements of amplitude and phase at discrete frequency points to construct a matrix. (5) Using Singular 
Value Decomposition (SVD) to recover the parameters �̂p , and scaling the result as needed. Here f  is shown 
without a hat to identify it as a known quantity while the others are scaled to f  . (6) Calculating the percent 
error e to compare the recovered parameters to the set parameters. (7) Calculating the expected spectra for the 
recovered parameters, and calculating R2 to compare the simulated data and the expected curve. We find that R2 
is correlated with error e.
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NLLS, which might also obtain parameters from the available spectral data, NetMAP does not require a priori 
knowledge (i.e. neither exact nor approximate knowledge of the elements of M, B, or K  ) nor iterative computa-
tion, but instead solves for the vector �p directly with as few as two response vector measurements ( �Z(ω) ). In 
Carter et al.13 we used NetMAP to determine �p for small clusters of graphene nanoelectromechanical (NEMS) 
resonators and we found excellent agreement with expected parameter values and broader spectral response.

While NetMAP is a promising new technique, there are many unanswered questions regarding its accuracy 
in predicting the mechanical parameters of the network: How does the number n of response vectors, their signal-
to-noise ratio (SNR), or the frequency at which they were measured affect the accuracy of NetMAP? How do the 
actual values of the mechanical parameters or the dimension of the solution space of Eq. (3) affect the accuracy? 
To answer these fundamental questions, we simulate noisy response vectors for single-resonator (monomer) 
and coupled-pair (dimer) network clusters using predetermined mechanical parameters and then we use Net-
MAP to predict these parameters. We find that the accuracy of NetMAP predictions improves with the SNR, as 
does measuring response vectors near spectral peaks. While measuring additional vectors moderately improves 
accuracy, we find a minimum of two response vectors is sufficient, thus requiring a remarkably small number of 
measurements. Moreover, the dependence of the accuracy on the null-space dimension is nuanced; the accuracy 
of a 1D null-space solution varies with the input parameters.

Validation approach
To assess the accuracy of NetMAP, we statistically compare the input parameters to the recovered parameters 
and the actual simulated spectra to the expected spectra from the model. The steps of the validation process are 
shown in Fig. 1c (see Supplementary Information for details.) In the first step, we choose the size of mass and 
spring network to model ( Ncluster ). In this work, we modeled the monomer (a single resonator, Ncluster = 1 ) and 
the dimer (two coupled resonators, Ncluster = 2 ). We then set the network parameters �pin to fixed numerical 
values (step 2) and input them into the analytical solution of the equations of motion (EOM) to obtain an exact, 
noise-free complex response function for each resonator, zi(ω) (see Supplementary Information). The response 
vector �z(ω) solves Eq. (2) exactly and has Ncluster complex components.

To simulate a random experiment (step 3), we add real and imaginary noise to each response component 
to obtain Zi(σ ,ω) = zi(ω)+ Ŵx,i(σ ,ω)+ iŴy,i(σ ,ω) , where Ŵ(σ ,ω) is a pseudorandom number drawn from a 
zero-centered normal distribution of variance σ 2 and regenerated for each frequency ω . This simple noise model 
qualitatively agrees with experimental data in Carter et al.13. Next (step 4), we select a set of noisy response vectors 
�Z(σ ,ω) at n discrete frequencies (e.g. ωa and ωb in Fig. 1c, so n = 2 ). Each �Z(ω) provides two vector equations 
corresponding to the real and imaginary parts of Eq. (2), for a total of 2nNcluster linear equations, which we use to 
populate the matrix elements of Z . The matrix Z has dimensions 2nNcluster × N , where N = dim(�p) . (See Supple-
mentary Information sections 3.2 and 4.2 for general closed form of Z for the monomer and dimer, respectively).

To obtain the predicted parameters vector �̂p (step 5), we use the simulated Z to solve Z�p = �0 algebraically. 
An algebraic approach is not standard but is straightforward for describing resonator systems. Our solution, Net-
MAP, uses singular value decomposition (SVD), an algebraic approach to solving systems of equations with 
applications in medical  imaging14, antenna  arrays15, planar transmission  lines16, and movie  recommendations17. 
SVD is similar to eigensystem solvers, with singular values instead of eigenvalues and singular vectors instead of 
eigenvectors, while allowing the matrix Z to be rectangular rather than square. In using SVD to solve Z�p = �0 , 
we seek a singular value of zero and its corresponding singular vector, which is a solution for the physical param-
eters �p . The solution space for non-trivial �̂p will be at minimum one-dimensional (1D), but may have higher 
dimension. The solution-space dimension provided by SVD is open to interpretation, but commonly determined 
by the number of singular values with � ≪ 1 . We explore the accuracy of NetMAP with 1D, 2D, and 3D solu-
tion spaces. When we define higher-dimension solution spaces, we use the smallest � and their corresponding 
singular vectors �̂p

�
 in order of increasing value. In the 1D case, we scale �̂p so that the force f̂  equals the input 

force f  . For higher-dimensional solution spaces, we supply additional parameter constraints (see Supplementary 
Information section 2.5).

Finally, to test the NetMAP parameter predictions, we replicate steps 3–5 of the simulation for a total of 1000 
runs to generate a sample distribution for �̂p , and then use a one-sample statistical t-test,

to quantify the agreement between the j th predicted network parameter p̂j and the corresponding input param-
eter pj,in . For each �̂p  from the sample, we also compute the fractional error for each parameter 
ej =

∣
∣
∣p̂j − (pin)j

∣
∣
∣/(pin)j , and we calculate the correlation coefficient ( R2

i  ) between the expected spectra Ẑi(ω) and 
the simulated noisy spectra Zi(ω).

Case studies
A monomer
To demonstrate NetMAP’s algebraic approach, we first consider a test case with a lightly damped monomer. For 
a general monomer, the noisy spectrum is given by

t0 ≡

∣
∣
∣

(
pin

)

j
− p̂j

∣
∣
∣

s.e.j
,
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For this test case, we arbitrarily choose �pin with parameters: mass m = 4 kg, damping coefficient b = 0.01 
N/(m/s), spring stiffness k = 16 N/m, and force amplitude f = 1 N. Moreover, we set the input error for this 
demonstration to σ = 5× 10−3 m . Figure 2a shows a simulated spectrum for the amplitude ( A ) and phase ( φ ) of 
Z(σ ,ω) ; Fig. 2b shows the real and imaginary parts of the same Z(σ ,ω) plotted in the complex plane. To obtain 

Z(σ ,ω) =
f

−ω2m+ iωb+ k
+ Ŵ(σ ,ω)+ iŴ(σ ,ω).
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Figure 2.  (a) Amplitude A(ω) and phase φ(ω) spectrum of the lightly damped monomer, with input 
parameters: mass m = 4 kg, damping coefficient b = 0.01 N

m/s , spring stiffness k = 16 N/m, and force amplitude 
f = 1 N. A subtle grey curve shows the exact spectrum while the datapoints in color show simulated spectrum 
measurements with standard deviation σ = 0.005 m. The black dashed line shows the output spectra Â(ω) and 
φ̂(ω) . The color scale corresponds to (b). (b) The complex amplitude Z = Aeiφ is plotted in the imaginary plane, 
where the datapoints are phasors, A is the distance from the origin, and phase φ is the polar angle. These are 
the same data as (a). Two measurements [ Z(ωa) and Z(ωb) , where ωa = 2.0000 rad/s and ωb = 2.0013 rad/s , 
black circles] are selected for input to NetMAP: one at the frequency of maximum amplitude and the other at a 
frequency corresponding to φ = − 3

4π . The remaining Z(ω) [colorful datapoints] are used only for validation, 
not for finding the recovered parameters. (c) Box and whisker plot showing the spread in recovered parameters, 
�pj/pj,in = (p̂j − pj,in)/pj,in , for 1D and 2D solutions with 1000 runs of the same parameters. For 2D-SVD, 
additional a priori information is required: we fix m = min in order to select the solution from the 2D solution 
space. (d) Error 〈e〉 and 1− R2 are correlated (1000 runs). We calculate 〈e〉 from a priori information, but we 
may predict it approximately from the R2 value. (e) Histogram and box plots of the percent error 〈e〉 (1000 runs), 
showing a half-normal distribution. (f) Expanding to a range of input noise σ for this lightly damped monomer 
(80 runs per σ ), we find that the 2D-SVD solution is slightly more accurate than the 1D-SVD solution. The 
3D solution is many orders of magnitude less accurate. The vertical grey line shows the input noise σ = 0.005 
m appearing in other subfigures (a–e) of this figure. The average percent error and the standard deviation are 
related by a power law. The average curve is calculated as a mean of the logarithm of the average errors and the 
shaded regions indicate 95% of the runs.
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�̂p , we use Z(σ ,ω) evaluated at the two frequencies ωa and ωb shown in Fig. 2a,b, which we then use to construct 
Z . For a monomer sampled at two frequencies, the equation Z�p = �0 written explicitly is:

where X(ω) = Re(Z(ω)) and Y(ω) = Im(Z(ω) . The simplest way to build Z is to read the values from complex 
plane plots, as in Fig. 2b. By solving Eq. (4) with SVD, we obtain solutions for the physical parameters m̂ , b̂ , and 
k̂ . The observed t-statistics for 1D, 2D, and 3D solution spaces is shown in Table 1. Given our large sample size 
(1000), t0 approximates the number of standard error intervals the predicted value deviates from the expected 
value. All p-values exceed the α = 0.05 by at least a factor of 10 , so we conclude all NetMAP predicted parameters 
for this trial agree with the set input values �pin.

A useful measure of the accuracy of NetMAP is the fractional discrepancy �pj/(pin)j = (p̂j − (pin)j)/(pin)j . 
The �pj/(pin)j distributions for the 1D and 2D null-spaces are shown in Fig. 2c. The 1D result recovers all 
parameters within 0.04% of the input values in 95% of the trials (Fig. 2c). The 2D discrepancy results are simi-
lar or better than the 1D; for example, the 95% confidence range for the elasticity is ∼ 2.5× 10−5% . The 95% 
confidence interval for the mean �pj/(pin)j are much tighter; for the 1D mass, �m1D

min
= (−4.9± 6.8)× 10−4%.

As an additional test of NetMAP accuracy, we compare the predicted Ẑ(ω) to the noisy simulated Z(σ ,ω) 
with correlation analysis. Ẑ(ω) is shown as a black-dashed curve in Fig. 2a,b. Using nR = 100 simulated spectral 
data points, we compute the correlation coefficients R2

X and R2
Y , where X = Re(Z) and Y = Im(Z) . For the data 

in Fig. 2b, the deviation of the R2 values from unity are 1− R2
X = 8.6× 10−8 and 1− R2

Y = 8.0× 10−8 , or an 
average of 1− R2 = 8.3× 10−8 . These R2 values indicate that the NetMAP prediction accounts for essentially 
all the variation of simulated spectra, despite calculating Ẑ(ω) from response vectors at just n = 2 frequencies.

The fractional error, ej =
∣
∣
∣p̂j − (pin)j

∣
∣
∣/(pin)j is a useful metric to assess the accuracy of NetMAP. However, 

an experimentalist without knowledge of input parameters cannot calculate the fractional error but they can 
calculate the coefficient of determination R2 . To elucidate the relationship between the average R2 and ej , we plot 
the average error �e� = 1

N−D

∑
ej versus 1− R2 for each of the 1000 simulated trials and for the 1D and 2D null-

spaces (Fig. 2d). For both dimensions, we observe a linear correlation ( R2
1D = 0.67, R2

2D = 0.4 ). For the 1D case, 
we observe 〈e〉 decreases as 

√
1− R2 ( R2

1D ∼ 0.74 , p ≪ 0.001 ). The correlation between 1− R2 and error provides 
a means for an experimentalist to assess the accuracy of recovered values without a priori information. The cor-
responding distributions for error 〈e〉 are provided in Fig. 2e. While the 2D error is lower than the 1D 
( �e�1D = 0.0144± 0.0003% vs. �e�2D = 0.0039± 0.0001% ), we had to specify two input parameters (pin)j to solve 
for �̂p . In general, for a D-dimensional null-space, D number of input parameters �pin are required to obtain a 
solution, which is a disadvantage in terms of a priori knowledge. Generally, 1D solutions are preferable and suf-
ficient to recover the parameters with low error.

So far, we have presented results for a fixed input noise ( σ = 5× 10−3 m.). To determine how the level of 
noise affects the error, we sweep σ through several orders of magnitude and run the simulation 80 times per noise 
value. The error 〈e〉 vs. σ is shown in Fig. 2f, with the σ = 5× 10−3 m trial indicated with a vertical gray line. We 
also compute the signal-to-noise ratio defined as SNR = A

σ
 and add it to the upper axis. We find that 〈e〉 for all 

solution space dimensions varies approximately linearly with σ (e.g. for 1D, �e� = βσα with α = 1.0004± 0.0016 ). 
The 2D-SVD error is the lowest, but is followed closely by the 1D error. The 3D error is several orders of mag-
nitude larger than either 1D or 2D.

A dimer
We now similarly analyze a two-mass (dimer) resonator system (Fig. 3). For this system, we set the input 
simulation parameters as follows: m1 = 1 kg, m2 = 10 kg, k1 = 1 N/m, k2 = 10 N/m, coupling spring 

(4)







−ω2
aX(ωa) −ωaY(ωa) X(ωa) −1

−ω2
aY(ωa) ωaX(ωa) Y(ωa) 0

−ω2
bX(ωb) −ωbY(ωb) X(ωb) −1

−ω2
bY(ωb) ωbX(ωb) Y(ωb) 0
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 =






0
0
0
0






Table 1.  Observed t-statistics and associated p-values for network parameters for the monomer shown in 
Fig. 2. Results for the 1D, 2D, and 3D solution spaces are shown.

p̂j
t0 ≡

∣∣∣(pin)j−p̂j

∣∣∣
s.e.j p-value

m̂1D 0.0803 0.9360

b̂1D 0.2961 0.7672

k̂1D 0.0805 0.9358

b̂2D 0.2961 0.7672

k̂2D 0.3719 0.7100

b̂3D 0.3657 0.7146
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k12 = 1 N/m, b1 = b2 = 0.1 N/(m/s),  f1 = 10 N, and noise σ = 0.005 m. The force is applied to m1 . This case 
represents an anti-crossing scenario where the coupling splits the resonant frequency degeneracy. The noisy spec-
tra of each resonator are shown in Fig. 3a–d, and we identify the two frequencies ω and corresponding responses 
(black circles) needed to construct Z and solve for �̂p. The fractional discrepancy �pj/(pin)j for 1D, 2D, and 3D 
solutions is shown in Fig. 3e (see Supplementary Information section 4.3 for t-test results); we also include the 
discrepancy for the isolated resonance frequencies ωj =

√
kj/mj  . We find that the damping of the undriven 

resonator, b2 , is the least accurate of the recovered parameters. Nonetheless, all parameters are recovered with 
an error standard deviation below 0.5%. The distributions for average fractional error 〈e〉 are provided in Fig. 3f, 
where �e�1D = 0.123± 0.002% , �e�2D = 0.060± 0.001% , and �e�3D = 0.060± 0.001% ). Using �̂p , we calculate 
and plot the recovered spectra Ẑ1(ω) and Ẑ2(ω) , shown as black dashed lines in Fig. 3a–d. As before, we plot 
the average error 〈e〉 versus 1− R2 (Fig. 3g) and the input noise σ (Fig. 3h), and we observe a similar correlation 
with 1− R2 and functional dependence �e� ∝ σ for all null-space dimensions (see Supplementary Information).

Optimizing frequency selection
We have thus far demonstrated NetMAP on a monomer and a dimer system using the minimum number 
( n = 2 ) of response vector measurements. Even in the presence of noise, the 1D null-space solution recovers 
all network parameters with high accuracy. While any choice of at least two frequencies for response vector 
measurements will allow the analysis to proceed, we expect some frequencies to yield better results than others, 
and that sampling response vectors at more frequencies will yield different results. To test these ideas, we varied 
the number and value of the sampling frequencies for both a monomer and a dimer system while characterizing 
the accuracy of NetMAP.

Monomer frequency optimization
In order to assess the accuracy as a function of the number of measurement frequencies n , we first consider a 
moderately damped ( Q = 16 ) monomer with m = 4 kg, b = 0.4 N/(m/s), k = 10 N/m, f = 1 N, σ = 5× 10−3 
m and we sweep n from n = 2 to 25. We start with two points near the resonance frequency ωres = 1.58 rad/s 
and add additional points sequentially to the right (i.e. higher frequency) and left (lower frequency) of the peak, 
with �ω = 0.01 rad/s separation between measurement points (Fig. 4a, see Supplementary Information sec-
tion 3.3 for the amplitude and phase spectra.). We replicate a given ω for a total of 100 runs. The SNR for the 
peak datapoint is A/σ = 3164 . Figure 4b shows the average error 〈e〉 vs. n for 1D, 2D, and 3D null-space solu-
tions, which we label as 1D-SVD, 2D-SVD, etc. For this monomer system, the 2D-SVD solution (orange curve 
in Fig. 4b) has the least error, then the 1D-SVD (blue), and the 3D-SVD (green) has the largest error. The average 

Figure 3.  For an example dimer system with selected parameters, we demonstrate sampling at n = 2 
frequencies, each at a resonance peak (black circles in (a–d)). (a) Amplitude A and phase φ spectra showing 
the motion of resonator 1 (R1). (b) Spectra of resonator 2 (R2). (c) Complex spectrum of R1, showing the same 
dataset as (a). (d) Complex spectrum of R2, showing the same dataset as (b). (e) Box and whisker plot showing 
the spread of recovered parameters as fractional discrepancy, �pj/pj,in = (p̂j − pj,in)/pj,in , for 1D, 2D, and 3D 
solutions over multiple trials. For 2D-SVD, an additional parameter, m1 , is fixed at m1,in in order to identify the 
solution within the 2D solution space. For 3D-SVD, m2 is also fixed. (f) Histogram and box plots of the average 
error 〈e〉 . (g) The average error 〈e〉 is correlated with 1− R2 . (h) High SNR is key to minimizing the error. The 
error 〈e〉 is proportional to the input noise σ.
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percent error of the parameters �p varies with the number of frequency points used in the SVD analysis. For this 
analysis, we add the frequency points in a specific order, starting with two points at each of the two amplitude 
peaks and sequentially adding points to the left and right of the peaks. The specific datapoints used for Fig. 4b 
are indicated in Fig. 4a. The 1D error gradually decreases with n , but with diminishing returns as the number of 
measurement points becomes large; the 1D mean errors for n ≥ 7 are statistically equivalent (see Supplementary 
Information section 3.4 for ANOVA post hoc analysis). The 2D error dependence on n is similar to the 1D, but 
plateaus after n = 4 . However, while the 2D solution has lower error than the 1D for low n , the two solutions 
appear to converge for n ≥ 9 ; at n = 25 the mean difference between 1 and 2D error is (0.008± 0.002)% . As 
with the first monomer test case, the 3D error is orders of magnitude larger than 1D or 2D error and does not 
decrease with n but instead oscillates with n as frequency points are incorporated to the left and right. Due to 
the high error of the 3D solution (sample distribution, �e�3D = (8± 15)% and see green curve in Fig. 4b), it is 
not recommended for this system.

To investigate the effect of frequency choice on the error, we consider two response vectors with frequencies 
ωa and ωb and measure 〈e〉 for 1D and 2D null-spaces as we vary the frequencies across resonance. We plot 〈e〉 vs. 
(ωa , ωb) in Fig. 4c, and find that both the 1D and 2D solution are optimized near the peak resonance frequency 
( ωres = 1.58 rad/s). The “cross” patterns indicate that if either ωa or ωb is on resonance, then the other frequency 
can take nearly any value and the error remains small. For the 1D case, however, there is a narrow diagonal line 
of high error ( 68.3%± 1.2% standard deviation), indicating that ωa and ωb must differ to obtain a low-error 1D 
solution. This diagonal line is absent in the 2D case, so that replicated �Z(ω) with the same frequency are pos-
sible and yield low error. To observe more general trends, we plot the average error for different choices of ωa 
while taking an average of all ωb values (Fig. 4d). This result shows that the optimal ωa to extract �Z(ωa) is near 
the resonant frequency, ωres . Moreover, by fixing ωa = ωres we determine which ωb will yield the lowest error. 
Figure 4e shows the average error vs. the complex phase of the response vector �Z(ωb) for varying ωb. From 
this plot, the error of the 1D solution reaches a minimum near φb = −3π/4 and φb = −π/4 , and is greatest at 
φb = φa ≈ −π/2 . In accord with Fig. 4c, the error of the 2D solution is minimum near φb = φa ≈ −π/2 . We 
see similar optimal phase choices for other monomer examples (see Supplementary Information section 6).

For the monomer under study, the 2D null-space solution generally has the lowest error. However, increasing 
the dimension of the solution space assumes the singular value of the additional degree of freedom is sufficiently 
small, i.e. � ≪ 1 . If this value is not small, the lower dimension null-space should have lower error because the 
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Figure 4.  Comparing various choices of frequency measurements for analyzing a monomer with m = 4 kg, 
b = 0.4 N

m/s , k = 10 N/m, f = 1 N, resonance frequency ωres = 1.58 rad/s, input noise σ = 0.0005 m. (a) 
Input (circled datapoints) and output (dashed black curve) spectrum for a simulated monomer with 25 circled 
points used for analysis. (b) To compare the number n of frequency measurements, we plot the average error 
for m,k,b as a function of the number of frequency points used in the SVD analysis. The lines show the mean 
error 〈e〉 of 100 simulated trials (shown as datapoints) for each number of frequency points. Violin plots show 
the distribution of 〈e〉 . (c–f) Comparing the choice of frequencies if there are n = 2 frequencies. (c) The average 
error of the SVD solution varies with the choice of the two frequencies ωa and ωb . The 1D solution fails when 
the two frequencies are the same. Both the 1D and 2D solution have better results when the measurements 
are taken near the peak of resonance. (d) The average error varies with the measured frequency ωa . Here the 
average is taken over all the results shown in (c), with ωb varying from 1.4 to 1.8 rad/s. (e) For a double ( n = 2 
frequency) measurement of a monomer, the average error 〈e〉 varies with the choice of frequencies measured. 
In this case, we fix ωa at the resonance peak and sweep ωb. We find that the optimum second frequency occurs 
when the phase at ωb is near φb = −π

4  or φb = − 3π
4  . The colored bands correspond to 95% of the solutions. (f) 

The second smallest singular value �2 predicts the average error of the SVD solutions across all combinations of 
frequencies from trials shown in (c).
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singular vector corresponding to the large singular value does not solve the homogeneous Eq. (3). To test this 
idea, we plot the average error for 1D, 2D, and 3D null-spaces against the value of the second smallest singular 
value ( �2 ) for each solution, as shown Fig. 4f (for this plot, we use the full set of swept frequency pairs from 
Fig. 4c). We find that the 2D solution, which uses both the first and second singular vectors, is more accurate 
when �2 is small, while the 1D solution improves in accuracy as �2 grows (see Supplementary Information sec-
tion 3.4 for the 1D solution error as a function of both �1 and �2 ). The 3D solution additionally uses the singular 
vector corresponding to the third singular value ( �3 ≥ �2) . As expected, the 3D solution has consistently higher 
error than either 1D or 2D.

Our monomer case studies shed light on NetMAP best practices. For the above case study, the error gener-
ally decreases modestly as the number n of measured response vectors increase; before plateauing, the 1D error 
decreases by ∼ 5× with n = 7 and the 2D error decreases by ∼ 1.5× with n = 4 . In either case, n = 2 suffices. 
The 1D solution is preferred to the 2D because it requires minimal prior knowledge and has reasonably low error 
(i.e. < 1% ). However, the 2D error is consistently lower (mean of ∼ 8.3× across all n ) if �1 ∼ �2 ≪ 1 . To obtain 
the lowest error with the 1D solution, �Z(ω) should be measured on resonance ( φa ≈ −π/2 ) and π/4 radians off 
resonance, where φb = −3π/4,−π/4 . The sampling frequencies from Fig. 2 were selected in this way. Finally, 
given the error is proportional to the noise, it is beneficial to perform noise-filtered, long-integration experi-
mental measurements of Z(ωa) and Z(ωb).

Dimer frequency optimization
We now repeat the optimal-frequency analysis for a dimer system with the following input parameters: m1 = 8 kg, 
m2 = 1 kg, k1 = 2 N/m, k2 = 7 N/m, coupling spring k12 = 5 N/m, b1 = 0.5 N/(m/s), b2 = 0.1 N/(m/s), f1 = 1 N, 
and noise σ = 5× 10−5 m. Oscillating force is applied to m1 . The simulated spectra are shown in Fig. 5a,b (see 
Supplementary Information section 4.5 for corresponding amplitude and phase spectra); the spectral peaks 
inferred from the Z2(ω) spectrum are at ωres = 0.774 rad/s and ωres = 3.501 rad/s. The higher frequency peak 
of Z2(ω) has a markedly smaller maximum amplitude. The average errors for up to n = 50 sampled response 
vectors are shown in Fig. 5c. The error for 1D solutions starts at �e�1D = (0.50± 0.30)% (standard deviation, 
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Figure 5.  Analysis of optimal frequencies for NetMAP with an example two-mass (dimer) resonator system, 
with m1,in = 8 kg, m2,in = 1 kg, k1,in = 2 N

m , k12,in = 5 N
m , k2,in = 7 N

m , b1,in = 0.5 N
m/s , b2,in = 0.1 N

m/s , 
f1 = 1 N , and σ = 5× 10−5 m. a,b) Complex spectrum of R1 (a) and R2 (b), showing the simulated spectrum 
with noise (colorful datapoints) and the spectra recovered parameters Ẑ(ω) (black dashed line, for 1 trial). 
White plus signs indicate datapoints that are added as n increases from 2 to 50, and numbers indicate the 
order in which the points are included, with odd numbers for the larger peak and even numbers (not all 
shown) for the smaller peak illustrating how we alternate adding the frequency points. Only one resonant 
frequency, ωres = 0.774 rad/s (blue points), appears in the spectrum of R1 (a), but a small second peak at 
ωres = 3.501 rad/s (yellow points) appears in the spectrum of R2 (b). (c) The average error varies with the 
number of datapoints n used in the analysis, with 1D-SVD (blue), 2D-SVD (orange), and 3D-SVD (green). 
Simulated with 99 trials per each of 49 values of n , totalling 4851 trials. (d) If n = 2 datapoints are used, the 1D 
solution is most accurate when a measurement is taken at each of the two resonant peaks. (e,f) The accuracy 
of the 2D and 3D solutions also varies with the pair of frequencies chosen. In general, it is less accurate for the 
two frequencies to be equal or nearly equal (dark diagonal lines). (g) Replotting (d) in terms of R2 phase rather 
than frequency shows greater detail. Subfigures (d–g) are simulated with 240,000 trials. (h) When ωa is fixed at 
the lower resonant peak, ωa = 0.774 rad/s, then the accuracy of the 1D solution is optimized when ωb is at the 
higher resonant peak, 3.533 rad/s (blue dip). The 2D solution is not accurate when each measurement is at one 
of the two resonant peaks (sharp orange peak). Shaded areas show 95% of simulated 〈e〉 results and lines show 
〈e〉 . Simulated with 1600 trials per each of 199 values of ωb , totalling 318,400 trials.
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SD) for n = 2 , and improves with increasing n down to �e�1D = (0.125± 0.077)% (SD) at n = 50 . Analyzing the 
1D case with ANOVA (see Supplementary Information), we see that solutions with n ≥ 16 have equivalent error 
and provide a modest ∼ 2.5× error improvement over the n = 2 solution. Compared to 1D solutions, the error 
for 2D solutions is higher, ranging from a minimum error of (2.37± 1.88)% (SD) at n = 12 up to (215± 208)% 
(SD) at n = 2 . There is a pattern that repeats for every fourth additional frequency point: when a measurement 
is added near the stronger 0.774 rad/s peak, the 2D solution improves, and when a measurement is added near 
the 3.501 rad/s peak, the 2D solution becomes less accurate. For this analysis, we add the frequency points in a 
specific order, starting with two points at each of the two amplitude peaks and sequentially adding points to the 
left and right of the peaks. Some of the measurements are numbered in Fig. 5a,b to indicate the order in which 
they are included into Fig. 5c. The 3D solution has the overall lowest error for 2 ≤ n ≤ 11 , with a minimum 
�e�3D = (0.052± 0.037)% (SD) at n = 11 , but then suffers an abrupt loss in accuracy for n ≥ 12 where the error 
jumps to (99± 79)% (SD). To determine the optimal frequencies, we measure the average error with n = 2 and 
sweep both frequencies ωa and ωb across a range that covers both spectral peaks (Fig. 5d–f. Each solution space 
dimension has a high-error diagonal band corresponding to ωa = ωb . For the 1D solution, the lowest error 
occurs when one frequency is at the top of one peak and the other frequency is at the top of the other peak. The 
spectral peaks have the two highest SNR values that also sample both resonances. The 2D and 3D error patterns 
are more complex and more forgiving in terms of frequency choice; in both cases, it is sufficient to have one 
frequency near a spectral peak resonance, but the lowest error still occurs by sampling near each spectral peak.

To see the detail of the 1D case, we plot the Fig. 5d dataset as a function of complex phases of Z2(ωa) and 
Z2(ωb) in Fig. 5g (see Supplementary Information section 4.5 for phase spectra plots). The Z2(ω) phase φ2(ω) 
is one-to-one, unlike φ1(ω) , so there is no ambiguity about which value of φ2 corresponds to which value of 
ω . The phase plot shows consistently low error for quadrants II and IV, corresponding to recommended phase 
values φ2 ∈ [0,π ] for one measurement and φ2 ∈ [π , 2π ] for the other. In terms of the complex spectrum of 
Z2(ω) (Fig. 5b), these phase values correspond to the upper and lower loops (spectral peaks). High error occurs 
in quadrants I and III, where the two response vectors are sampled on the same loop while the other is not 
sampled. Moreover, dark bands of high error occur when either phase is equal to 0 or π , which correspond to 
response vectors near the origin of the complex plane with near zero SNR. We further examine the behavior of 
the 1D and 2D solutions near the spectral peaks by fixing ωa = 0.774 rad/s and sweeping ωb , as shown in Fig. 5h. 
For the 1D case, error decreases as ωb → 3.533 rad/s, which corresponds to the higher frequency spectral peak, 
where it reaches a minimum of 0.5% . The 2D case has similar behavior, but spikes to a maximum over 100% 
when ωb = 3.533 rad/s, indicating a failure in the 2D null-space accuracy when the response vectors are sampled 
directly on resonance. Thus, for a dimer with two resonant peaks and a 2D solution, measuring near—but not 
on—the spectral peaks is ideal.

Accuracy varies with input parameters
So far, we have presented case studies of monomer and dimer resonator systems with fixed input parameters, �pin . 
However, it is possible that the error behavior we observe depends on the choice of �pin . To probe the dependence 
of the error on the input parameters themselves, we run a full, replicated 2k factorial experiment for a general 
dimer system by varying the mechanical parameters (see Supplementary Information section 2.6 for Factorial 
Methods). We screened and ranked the mechanical parameters as predictors of average error for a dimer solved 
using 1D-SVD; including up to two-factor interactions, the order from most predictive to least is: f  , m1 , m2, k12 , 
and the k1 · k2 interaction (see Supplementary Information section 7 for full effects model results). We previously 
discussed using 1− R2 and �2 as indicators of average error (Figs. 3g and 4d).

To gain a deeper understanding of how the parameters �p of the resonant system affect the SVD accuracy, we 
plot the average error as a function of varied parameters in a few example dimer cases (Fig. 6). Each cartoon 
in Fig. 6 shows one parameter in orange that we vary while keeping all others fixed. We identify the two peak 
frequencies ωres using a peak-finding  function18 and plot them below each cartoon to illustrate their variation 
with the parameter. To improve the accuracy of the NetMAP results, we choose 4 additional frequencies on each 
side of the two peak frequencies ωres for a total of n = 10 frequencies for analysis. To demonstrate the impact 
of signal to noise ratio (SNR) on the error as we vary each parameter, we plot the ωres datapoints with higher 
SNR in orange, highlighting how the error falls as SNR increases. Increasing the driving force (Fig. 6a) or the 
non-driven mass m2 (Fig. 6b) causes the SNR to increase and the error in the recovered parameters to decrease 
correspondingly. This matches our findings that error is inversely proportional to SNR, and we generally find 
that more accurate recovered parameters result for dimer systems with high force amplitude and larger m2 . We 
observe the error increases as we increase the coupling spring stiffness k12 from 0 to 20 N/m (Fig. 6c), and this 
is usually true for dimers. For this dimer system, a lower k1 corresponds to more accuracy (Fig. 6d), but this is 
not generalizable to all dimer systems. As k2 is varied in Fig. 6e, the resonance peaks show an anticrossing near 
k2 = 20 N/m, and the 1D solution loses accuracy near the anticrossing. This is a specific result for this particular 
dimer system. To see how an anticrossing affects a dimer system with different input parameters, we consider the 
system shown in Fig. 6f, with an anticrossing near k2 = 7 N/m, and find, in contrast, that the 1D solution has 
higher accuracy near the anticrossing, suggesting that anticrossings may increase or decrease the error and the 
variation in error is likely associated with the SNR. Furthermore, to illustrate the effect on accuracy when the 
peak-finder fails to identify one of the resonance peaks, we allow the peak-finder to miss the higher ωres peak 
for k2 = 10 to 12 N/m, and find that the 1D solution loses accuracy while the 2D solution gains accuracy in that 
range. Thus, Fig. 6 shows a detailed view of how the parameter values affect the accuracy of the algebraic solution.

The frequency optimization and factorial studies provide broader NetMAP best practices for the dimer sys-
tem. Driving with a higher amplitude force improves accuracy. For our case study in Fig. 5, the error decreases 
modestly as the number of frequency points increases, though n = 2 measured response vectors are sufficient. 
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As it was for the monomer case, the 1D solution is preferred to the 2D or 3D because it requires minimal prior 
knowledge of the parameters, while still having reasonably low error, and because the 2D and 3D solutions have 
erratic accuracy, depending heavily on the particular frequency points sampled in our example in Fig. 5. To 
obtain the lowest error with the 1D solution, �Z(ω) should be measured at each of the two resonance peaks of the 
dimer spectrum. The two sampling frequencies in Fig. 3 were selected in this way. As with the monomer case, 
the error is proportional to the noise, so it is beneficial to perform noise-filtered, long-integration experimental 
measurements of Z(ωa) and Z(ωb).

Discussion
For an experimentalist, NetMAP offers a means to analyze amplitude and phase data in order to reveal the physi-
cal parameters for each individual resonator and the coupling between the resonators. This phase-sensitive data 
is standard for lock-in amplifier measurements. However, for NetMAP to be useful, the experimentalist must 
measure the amplitude and phase for each resonator in the network, which in some cases may be challenging. The 
SNR range we describe here (e.g. 103, or 30 dB SNR) is attainable to experimentalists working with a wide variety 
of systems, including electronic or micromechanical resonator networks. See Carter et al.13 for an experimental 
example of using NetMAP in a NEMS system.

In cases where NetMAP returns an inadequate R2 value, it may be advantageous to combine NetMAP and 
NLLS fitting by using the results from NetMAP as the initial guesses for an iterative solution, and thereby improv-
ing R2 . Since R2 correlates with the error in the parameters, this is expected to improve the accuracy of the results.
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Figure 6.  Varying dimer parameters affects the resonance frequencies and average error. In (a–e), the input 
parameters are m1 = 1 kg , m2 = 10 kg , k1 = 1 N/m, k12 = 1 N/m, k2 = 10 N/m, damping b1 = b2 = 0.1 N

m/s , 
and force amplitude f1 = 10 N, except the single parameter that is varied: force amplitude in (a), mass 2 in 
(b), coupling spring in (c), spring k1 in (d), and spring k2 in (e). In (f), k2 is varied and the input parameters are 
m1 = 5 kg , m2 = 3 kg , k1 = 12 N/m, k12 = 1 N/m, b1 = 1 N

m/s , b2 = 0.5 N
m/s , and f1 = 10 N. The resonator 

cartoons above each plot indicate the strength of parameters with line thickness, and the varied parameter is 
indicated in orange in the cartoon. The average error of the recovered parameters is plotted as a function of the 
varied parameter for three solution space dimensions, with 1D-SVD (blue), 2D-SVD (orange), and 3D-SVD 
(green). Error for individual simulations 〈e〉 is shown as datapoints and the average error across the simulations 
〈e〉 is shown as lines.
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We have shown how well NetMAP performs for a linearized monomer (single mass) and dimer (double mass) 
system, but further investigation is needed to evaluate its performance in larger and nonlinear systems. Our 
calculations (see Supplementary Information section 2) show that, even as the number of resonators increases, 
only two discrete frequencies are needed for the required response vectors �Z . For a larger system, the size of the 
response vectors would scale with the number of resonators, increasing the size of the matrix Z , which may 
require solution spaces of higher dimension. We are building an understanding of the parameter space in which 
NetMAP will be useful. Future work will explore NetMAP performance in larger systems using similar techniques 
to discover best practices for using NetMAP as the systems scale up. We anticipate that similar results may hold 
for larger networks, enabling characterization of larger systems. Moreover, future work will explore the use of 
NetMAP to extract the mechanical parameters of nonlinear resonator  networks19,20; in one potential path, the 
network could first be driven in the linear regime and characterized by NetMAP. Then, the network would be 
driven into the nonlinear regime and characterized via traditional methods (e.g. NLLS) with a much reduced 
and simplified parameter space.

The potential applications of NetMAP are wide, encompassing both natural phenomena like atomic solids, the 
brain, and celestial bodies, as well as diverse synthetic systems, including solid-state and optical qubit  arrays10,11,21, 
photonic/phononic  crystals22,23, and neural  networks24. These systems play a pivotal role in applications such as 
neuromorphic and quantum  computing10,25, strongly correlated  phases21, and  metamaterials26. Consequently, 
there is a vibrant effort to comprehend, control, and engineer their collective behavior, and NetMAP could be 
beneficial. A particularly important application of NetMAP could be to a programmable NEMS  network22,23, 
which is a promising testbed for generalized resonator assemblies. The aim of these programmable networks is 
to finely tune the resonator building blocks and coupling to modify the collective properties of the network, and 
thereby enable applications like reconfigurable phononic  crystals24,25, tunable thermal  transport27,28, computing 
and  simulation29,30, and more. Recent progress in NEMS networks includes demonstrating collective phenomena 
in modular  assemblies7 and  lattices27,29 and developing tools to tune individual  resonators31 and  coupling32–34. 
However, there is a critical need for scalable, spatially resolved characterization methods to assess mechanical 
properties, resonator configurations, and network states, a need for which NetMAP is ideally suited.

Conclusions
In this study, we have presented and validated NetMAP, an efficient and reliable algebraic approach for calculat-
ing the physical parameters of resonator networks. We have tested NetMAP’s accuracy for monomer and dimer 
systems as a function of the number of samples, choice of frequency points, and null-space dimension, and we 
provided a method for estimating the percent error using quantities available to an experimentalist. The spectra 
must be measured for each resonator at a minimum of two frequencies, ideally measured near resonance. We have 
developed NetMAP to measure the physical parameters of a MEMS system of coupled graphene  resonators13. 
Future work includes exploring larger systems, including a two-dimensional grid of resonators; relating to other 
physical resonator systems, including RLC circuits; simulating nonlinear springs; and considering systems where 
the topology of the system is unknown. NetMAP enables the characterization of the building blocks and con-
nectivity of a diverse array of resonator networks, which promises to enhance the ability to design, tune, and 
program engineered resonator networks, such as micromechanical systems, and to better understand natural 
resonator systems, such as neural networks.

Data availability
The simulated data supporting the findings of this study are available from the corresponding author upon 
reasonable request.
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