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A rapid and reference‑free 
imputation method for low‑cost 
genotyping platforms
Vinh Chi Duong 1,2,4, Giang Minh Vu 1,2,4, Thien Khac Nguyen 2, Hung Tran The Nguyen 1,3, 
Thang Luong Pham 2, Nam S. Vo 1,2* & Tham Hong Hoang 1,2*

Most current genotype imputation methods are reference‑based, which posed several challenges 
to users, such as high computational costs and reference panel inaccessibility. Thus, deep learning 
models are expected to create reference‑free imputation methods performing with higher accuracy 
and shortening the running time. We proposed a imputation method using recurrent neural networks 
integrating with an additional discriminator network, namely GRUD. This method was applied 
to datasets from genotyping chips and Low‑Pass Whole Genome Sequencing (LP‑WGS) with the 
reference panels from The 1000 Genomes Project (1KGP) phase 3, the dataset of 4810 Singaporeans 
(SG10K), and The 1000 Vietnamese Genome Project (VN1K). Our model performed more accurately 
than other existing methods on multiple datasets, especially with common variants with large minor 
allele frequency, and shrank running time and memory usage. In summary, these results indicated 
that GRUD can be implemented in genomic analyses to improve the accuracy and running‑time of 
genotype imputation.

In addition to whole-genome sequencing (WGS), due to reasonable cost and scalability, SNP microarray-based 
technology and low-pass sequencing has been widely used for obtaining genotype information in genome-wide 
association studies (GWAS)1, estimation of polygenic risk scores (PRS)2, and trait heritability  analysis3. However, 
to identify more loci, it is required larger sample size, more sequencing depth for low-pass sequencing, and a 
denser SNP array for microarray-based genotyping. Recently, this conundrum can be resolved by genotyp-
ing imputation, which predicts untyped variants using a haplotype reference panel. Most existing genotype 
imputation methods are reference-based, and the idea behind these methods is that people from the same 
or similar ancestor might share small sections of DNA sequence between them, thus, by considering phased 
genotypes obtained using SNP array or low-pass sequencing and the recombinations of haplotypes presenting 
in the haplotype reference panel, it is possible to predict the genotypes of unobserved variants. Hence, such 
approaches require a large-scale reference  panel4. Over the years, several methods have been developed by using 
this approach with the main algorithm being the Hidden Markov model (HMM) (i.e.  IMPUTE55,  BEAGLE56, 
 Minimac47,  MACH8, and  fastPHASE9). However, these methods posed a number of challenges to users, such as 
high computational costs for applying a large number of samples for genotype calling and problems related to 
reference panel inaccessibility for public research use.

Machine learning and deep learning models, which have been significantly improved in various fields, offered 
an alternative solution applied in genotype imputation in order to create reference-free methods performing 
with higher accuracy and shortening the running  time10–12. Kojima et al.13 proposed a bi-directional recurrent 
neural network (RNN)-based imputation technique that uses phased genotype as input data to estimate allele 
probabilities for unobserved variants. Despite the fact that the imputation accuracy of Kojima’s model was shown 
to be equivalent to other conventional methods, its running-time has been significantly higher compared to oth-
ers. This model’s imputation process takes approximately two times as long as using IMPUTE2, and has been 
around 50 times higher than  Minimac313.

In this paper, we proposed a deep learning-based imputation method called GRUD with the generator using 
GRU for RNN cells, couple with a sequential layer into the generator model to extract features for input vector 
patterns of bidirectional RNN. Also, we added a discriminator network based on generative adversarial network 
(GAN)14 model to enhance running-time, and imputation accuracy. Haplotype datasets from the 1000 Genomes 
Project (1KGP) phase  315,  SG10K16, and 1000 Vietnamese Genomes Project (VN1K) (https:// genome. vinbi gdata. 
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org), along with inhouse and simulated datasets from SNP microarray chips and low-pass sequencing were used 
to assess the performance of GRUD in the comparison with other existing techniques.

Results
Evaluation with 1KGP datasets
Infinium Omni2.5‑8 Beadchip
Among different setting of loss functions of the generator, squared Pearson’s correlation between allele dosages 
and true genotype counts-R2 calculated on MAF bins greater than 0.005 of the Equivalent model showed a 
similar pattern with the Lower model, which were significantly higher than that from the Higher model. Hence, 
the Equivalent model will be chosen to be evaluated in comparison with the other existing methods (Fig. 1A) 
(GRUD model, in short).

We used Minimac4, Beagle5.4 as the existing imputation techniques based on Li and Stephen model, and a 
deep-learning model of Kojima, to compare the imputation performance of our proposed model. The comparison 
of R2 values obtained by the squared correlation of WGS data and allele dosages from imputed genotype was 
displayed in Fig. 1B. The imputation accuracy for variants with MAF > 0.05 was slightly higher than Kojima, and 
significantly higher than Beagle5.4 and Minimac4. In terms of variants with MAF≤0.05, the R2 of our proposed 
model was higher or comparable to those of Beagle5.4 and Minimac4, but it was lower than Kojima. Overall, 
GRUD method (average R2=0.819, overall R2=0.948) performed comparably with Kojima (average R2=0.831, 
overall R2=0.946) (Table 1).

Regarding average memory usage, GRUD model only consumed 0.4389 GiB, nearly seven-time less than that 
of Kojima (2.8215 GiB) (Table 2) on Intel� Core™ i9-9900K CPU @ 3.60GHz × 16 and 62,7 GiB memory in a 
thread. In addition, the running-time of GRUD model was 743s, which was significantly shorter than Kojima’s 

Figure 1.  Accuracy assessment of GRUD model with 1000 genomes project phase 3 (1KGP3) data compared 
to other existing methods. (A) Comparison of R2 in MAF scales between different settings of the model namely 
Higher, Lower and Equivalent on 1KGP3 chromosome 22 (Omni2.5). Higher: the model trained with higher 
priority to high MAF; Lower: the model trained with higher priority to low MAF; Equivalent: the model trained 
with no priority to MAF. (B) Comparison of R2 values in linear MAF scale between the proposed method, 
Minimac4, Kojima, and Beagle5.4 imputation methods for 100 individuals in 1KGP3 on chromosome 22 (C) 
Comparison of R2 values between the proposed method and GLIMPSE for 21 individuals on chromosome 22 of 
1KGP3 dataset. MAF: Minor allele frequency; R2 : Squared Pearson correlation.

https://genome.vinbigdata.org
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(35,082s). It also should be noted that the running time of both methods depend on libraries and computational 
processors. In general, GRUD model was faster and took less resource than the Kojima method with default 
settings.

Low‑pass whole genome sequencing
We employed GLIMPSE as a representative of imputation and phasing methods designed for low-coverage 
sequencing data, and compared the imputation accuracy of our model and this method (Fig. 1C). Generally, the 
performance of GRUD on low-pass data was better than GLIMPSE, particularly for the variants with MAF>0.02. 
The average R2 per variant of GRUD and GLIMPSE was 0.0818234 and 0.165236, respectively (Table 1).

Evaluation with SG10K datasets
The comparison of performance between GRUD and HMM-based models on SG10K dataset was depicted in 
Fig. 2. The imputation accuracy of GRUD (average R2=0.116065, overall R2=0.966) was comparable with those 
of Beagle5.4 (average R2=0.23131, overall R2=0.974) and Minimac4 (average R2=0.22661, overall R2=0.967) 
(Table 1). Concerning variants with MAF≤0.05, the R2 value of GRUD was slightly lower compared to those of 
Beagle5.4 and Minimac4.

Evaluation with Vietnamese datasets
Regarding other SNP array platforms, we assessed the imputation performance of GRUD model on 2 Vietnam-
ese genotype datasets generated by GSAv3 (Fig. 3A) and APMRA (Fig. 3B) chip, using VN1K as a reference 
panel. In general, the R2 values of GRUD(average R2=0.416114, overall R2=0.94462) was not inferior to those of 
Beagle5.4(average R2=0.240624, overall R2=0.94349) and Minimac4(average R2=0.238438, overall R2=0.91792). 
Specifically, in the experiments with 94 samples genotyped by APMRA, the R2 values of GRUD were similar to 
those of Minimac4 and were slightly lower than Beagle5.4 for variants with MAF≤ 0.02, conversely with variants 
with MAF>0.05, the R2 of GRUD are approximate to Beagle5.4 and higher than Minimac4. Meanwhile, for 24 
samples genotyped by GSAv3, the imputation accuracy of GRUD(average R2=0.145081, overall R2=0.918) was 
comparable with the Beagle5.4 (average R2=0.16551, overall R2=0.943) and Minimac4 (average R2=0.168622, 
overall R2=0.909) (Table 1).

Discussion
By applying deep learning in the field of genotype imputation, we developed a new method namely GRUD to 
tackle the existing issues of other available methods. Our pre-trained model could be applied directly to new 
samples to impute genotypes, while the other HMM models have to compute parameters for each scratch once 
a new batch is given. We exploited the sequential layer whose ability to learn non-linear combinations and to 
transform input data into gaussian distribution, which could facilitate the learning process of the model, enhanc-
ing the ability to mimic real values. Furthermore, the additional discriminator network serves as a supportive 
model during the training process, this provides feedback to the generator to improve the accuracy and training 
time by detecting mistakes in the generated data to fix in the next iteration. Due to the exchange information 
between two networks, GRUD model could achieve convergence fastly. In testing phase, the generator would be 
separately employed to predict genotype. Kojima model required running 3 RNN models including Lower MAF 
and Higher MAF model prior to being combined to generate the final results by Hybrid model, while GRUD 
runs only one RNN model, thereby, the computational time of GRUD reduced significantly.

Figure 2.  Accuracy assessment of GRUD model with SG10K data compared to other existing methods. MAF 
Minor allele frequency, R2 Squared Pearson correlation.
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Moreover, the imputation accuracy of GRUD model could be comparable with Kojima model and HMM-
based methods when performing in 1KGP, SG10K, and Vietnamese Genomic datasets derived from different 
platforms and diverse origins. There was a tendency of lower R2 values in rare variants, especially those imputed 
by deep-learning-based models which do not take into account the genetic background knowledge, the perfor-
mance of GRUD model was thereby shown a similar pattern with Kojima model. Moreover, despite the sequen-
tial layer improving running time, the imputation accuracy for variants with MAF≤0.02 was lower in R2 values 
compared to the Kojima model in 1KGP data. This is because there are less differences in genotype between 
samples at these loci, leading to the difficulty for the sequential layer to learn the features and update its weight. 
Nevertheless, the R2 of GRUD model is considerably higher than others for common variants with MAF>0.05, 
which accounts for 89,241 of 209,427 variants (42.6%) considered on chromosome 22 in 1KGP phase 3 dataset. 
In addition to 1KGP data and SG10K, the proposed model was shown comparable or even superior results with 
other methods for two in-house Vietnamese datasets which were generated by two popular SNP microarrays 
from Illumina and Affymetrix. Another important advantage of GRUD was the ability to efficiently perform on 
low-coverage sequencing data. Although the model was evaluated on data from 21 samples of 1KGP, the results 
showed positive signals, particularly for high-frequency variants, which are paid more attention in downstream 
 analyses17. This application could reduce the cost of obtaining genotype data, while still guaranteeing the accuracy 
of genetic information valuable in clinical practice as well as the implementation of precision medicine. Hence, 
GRUD might be a potential alternative to traditional methods for genotype imputation on multiple low-cost 
genotyping techniques.

Currently, the training input of GRUD model needs to have the same shape and fixed positions (e.g., chro-
mosome, start, end) with testing input, which poses several challenges when applying different shapes of input. 
According to the idea of the masked language  model18,19, we are looking forward to a trained model with sequenc-
ing data that is randomly hidden a number of positions for training in order to allow the model to perform on 
data generated from different platforms. Besides, we also suggested applying the transfer learning method in the 
issues of genotype  imputation20, this could be based on the technique designed with training for a certain task 
and is used as the foundation for others. It is possible to train the model with genotype data of a chromosome, 
and then apply it to the remaining others, which could reduce the number of epochs and potentially fit a dataset 
with small samples in the learning step to improve training time and also performance.

Methods
Related work
Generative adversarial networks (GANs) GAN architecture comprising two competing neural networks called the 
Generator—G and the Discriminator—D was firstly introduced in the field of computer vision. From the random 
noise z , G is able to generate a fake data G(z) , then the second component—D network makes an effort to dif-
ferentiate real and fake data from each other. Both networks constantly compete with each other. The generator 
network attempts to fool the discriminator network. At that point, the discriminator network adapts to the new 
fake data. This data is then utilized to enhance the generator network, and so forth.

In recent years, a number of authors have proposed applying GAN into language models to address the issues 
of translation, summarization, etc.21,22. In the context of genotype imputation, considering genome as a long 
string data, the GAN has been potentially used to impute the unobserved variants by utilizing the haplotype 
reference panel to promote the application of low-cost genotyping approaches, such as SNP microarray chip 
and low-pass sequencing.

Figure 3.  Accuracy assessment of GRUD model with VN1K data compared to other existing methods. 
(A) The comparison of R2 values between our method, Minimac4 and Beagle5.4 on chromosome 22 of the 
GSAv3 dataset (24 samples). (B) The accuracy of R2 values between our method, Minimac4 and Beagle5.4 
on chromosome 22 of the APMRA dataset (94 samples). MAF Minor allele frequency, R2 Squared Pearson 
correlation.
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Recurrent neural network (RNN) is a popular algorithm for many applications in sequential or time series 
data thanks to its internal memory in deep learning model  architecture23. In short, RNN has 2 inputs: the present 
and the recent past, consequently, the data sequence contains essential information about what will happen next. 
However, one primary problem of traditional RNN is the difficulty in accessing information computed from a 
long time ago, which is called vanishing or exploding gradient. Therefore, other types of RNN cells such as Long 
Short-Term Memory (LSTM)24, and Gated Recurrent unit (GRU)25 were developed to handle this problem. The 
gates of these two cell types are capable of learning which data in a sequence should be kept or ignored. Thereby, 
it could pass relevant information through the long chain of sequences to make predictions. In prior evaluations, 
due to a simpler structure, GRU was shown to be more computationally efficient than  LSTM26, so we decided 
to use GRU cells for our generator model. In specific, the GRU cell consists of 2 main gates: Update gate Ŵu , and 
Reset gate Ŵr which determine what information should be passed to the next state, and these are also able to 
create output simultaneously. The general formula of both gates is defined as:

where W, U are coefficients specific to the gate, the σ is the sigmoid function, the xt is the input of timestep t, 
and the at−1 is the hidden state of timestep before. The information of the new memory will use the reset gate 
to store information related to the past:

where a′t is a forget value range from [−1, 1] . In the final step, the output of the network is to compute at—the 
vector containing all the information at time t and transmitting it. To do this, the update gate is required and 
determines what to collect from the current memory—a′t and information from the previous steps at − 1 :

Note that the sign ⊙ denotes the element-wise multiplication between two vectors.

Model
The genotype data could be split into two smaller groups: observed variants and unobserved variants. The 
observed variants are extracted from the genotyping array or sequenced by the low coverage sequencing, while 
the unobserved variants are not directly identified by genotyping methods, these would be predicted by impu-
tation models. In the imputation process, we assumed both the observed and unobserved variants were sorted 
according to their positions on the genome. Given the GRU cells we used to construct the model have restricted 
memory usage, a chromosome was split into different regions, and each region has approximately 1000 observed 
variants and unobserved variants in our experiments. Noteworthily, observed variants in the upstream and 
downstream extending section of the region were also included in the input data for the imputation model. Then, 
the imputation results from all regions are concatenated together in the final result.

Assuming that both observed and unobserved variants are biallelic. In other words, their alleles are rep-
resented by binary values (0 and 1 for reference (ref) and alternative (alt) allele, respectively). Our model was 
designed on the basis of GAN architecture comprising two components: Generator and Discriminator (Fig. 4). 
The generator is a deep network able to generate unobserved genotypes based on the input being observed 

(1)Ŵ = σ(Wxt + Uat−1)

(2)a′t = tanh(Wxt + Ŵr ⊙ Uat−1)

(3)at = Ŵu ⊙ a′t + (1− Ŵu)⊙ at−1

Figure 4.  An overview of GRUD model comprising two components: Generator and Discriminator. The 
generator is a deep network potentially being able to generate unobserved genotypes based on the input of 
observed variants, and the discriminator tries to distinguish the generated genotype with a haplotype reference 
panel to determine whether this is a real or fake genotype. RNN: Recurrent neural network.
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variants, and the discriminator tries to distinguish the generated genotype with a haplotype reference panel 
to determine whether this is a real or fake genotype. During the training process, two networks both compete 
and improve each other at the same time to get better and better imputation accuracy. After that, the generator 
would be separated from the discriminator to perform imputation with data from SNP microarray chip and 
low-pass sequencing.

In practical, loss function for training the model over unobserved variants presented in equation 4 is the 
cumulation of the generator model LG and the discriminator model LD , which both are binary cross entropy 
(BCE) between training and reference data.

Figure 5.  An detailed architecture of GRUD model. (A) The structure of the generator model. The proposed 
model uses a sequential layer before passing bidirectional GRU cells for extracting features. The line in the 
bottom illustrates a set of variants in their order on the genome where observed variants are in blue rounded 
square and unobserved are in white ones. Forward and backward RNNs are developed, building off of the 
observed variants. The input feature of the forward and backward RNNs is xvi for observed variant vi . With ĩ is 
the index for the closet observed variant i, Fi is the vector formed by concatenating the forward RNN’s output 
for observed variant vi and the output of the backward RNN for the observed variant vi+1 . yui is a binary variable 
representing the allele for unobserved variant ui . (B) Model structure of the discriminator. The input of this 
model is yu1 , . . . , yun where n is the number of unobserved variants, yun is the output of the softmax function in 
the generator.

Table 1.  R2 of the correlation of true genotype and imputed genotype provided by GRUD and other existing 
models calculated on chromosome 22 variants. Overall R2 : calculated for all variants on chromosome 22 
without being separated according to MAF bins. Average R2 : calculated for each variant. The bold terms 
indicated the highest values of each column

Omni2.5 -1KGP phase 3 LP-WGS-1KGP phase 3 Omni2.5-SG10K APMRA GSAv3

Overall R2 Average R2 Overall R2 Average R2 Overall R2 Average R2 Overall R2 Average R2 Overall R2 Average R2

Beagle5.4 0.92088 0.784155 – – 0.97395 0.23131 0.94349 0.240624 0.91097 0.16551

Minimac4 0.92922 0.849513 – – 0.96735 0.22661 0.91792 0.238438 0.90853 0.168622

GLIMPSE – – 0.88667 0.165236 – – – – – –

Kojima 0.94600 0.831173 – – – – – – – –

GRUD 0.94765 0.819914 0.90967 0.0818234 0.96568 0.116065 0.94462 0.416114 0.91762 0.145081

Table 2.  Running-time and average memory usage of the GRUD and Kojima model performing in 1KGP with 
Infinium Omni 2.5-8 Beadchip dataset. The bold terms indicated the lowest values of each row

GRUD Kojima

Running time (s) 743 35,081.99

Average memory usage (GiB) 0.4389 2.8215
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Generator
In the generator (Fig. 5A), from the data of observed variants, we built up a matrix containing allele information 
of samples in the form of binary data, and this data was transformed into vectors using one-hot encoding, then 
serving as the input for the further steps. The encoding input was put into a sequential layer which includes a 
linear layer, activation leakyRelu, and batch norm in order to extract features, add non-linearity, and normalize 
input into Gaussian distribution, respectively to get the feature matrix xv . After that, a forward GRU is applied 
on xv1 , . . . , xvn , and a backward GRU is similar to the forward with xvn , . . . , xv1 , with n is the number of observed 
variants. With ĩ being the index of the unobserved variant for the closest observed variant vi , Fĩ are defined as 
vectors obtained from the concatenation of the output of the forward oforwardi and the output of backward direc-
tions obackwardi+1

 . The probability of k = 0 or k = 1 to know yui that is a reference or an alternative is estimated 
by the softmax function:

For deep neural networks, vanishing gradients of parameters in backpropagation may lead to failure in param-
eters training (i.e., the weights of the blocks in the model do not update during the training process). To avoid 
this problem, we use the residual connection  method27 that provides a different trackway for data to reach later 
blocks of the network by skip-connection allowing ensemble data in specific blocks. Therefore, we applied skip-
connection to the generator model, which can be obtained by simple changes in the outputs of each layer RNN 
for l > 1 , with lth being the denote of the cardinal number GRU layer; si,l is the output of GRU cell of observed 
variant vi in lth GRU layer as follow:

Besides, the BCE loss function for training the generator model parameters to calculate the error of the model 
is denoted:

where N is the number of unobserved variants; ẑi is the predicted probability, while zi is the reference or alterna-
tive label. Besides, the loss function with γ > 0 had a higher priority to higher MAF of unobserved variant i, 
γ < 0 had a higher priority to lower MAF of unobserved variant i, and γ = 0 had no priority to MAF, called the 
Higher, Lower, and Equivalent model, respectively.

Discriminator
Reference haplotype panel was considered as real data (positive labels) during training. In addition, we stacked 
two linear layers which resemble a fully connected layer as hidden layers f. With n is the number of unobserved 
variants, the input of the discriminator is yu1 , . . . , yun which is the output of the softmax function in the generator. 
We summarized the discriminator in Fig. 5B, and the softmax layer was denoted as follow:

We defined BCE loss function for training process as follows:

where N is the number of unobserved samples, the p̂i is the prediction from the discriminator model, while pi 
is the real or fake label.

Experiments
Setup and training model
Evaluated model was set up with GRU for RNN cells with 40 hidden units and 8 stacked layers; the feature size of 
the input vector is 50. The hyperparameters for training process was established with 128 batch size, 100 epochs, 
0.001 learning rate, Adam  optimizer28, early stopping, and exponential learning  rate29 for decaying the learning 
rate by every epoch. The metric for evaluating the genotype imputation is R 2 value, which is the squared pearson 
correlation between allele dosages continuously ranged from 0 to 2 (i.e, the value approximately 0,1,2 indicate 
the genotypes of ref/ref, ref/alt, and alt/alt, respectively) and true genotype  counts30 as followed:

(4)L = LD + LG

(5)softmax(yuĩ ) =
exp(yuĩ )∑1

k=0 exp(yuĩk
)

(6)si,l = si,l + si,l−1

(7)LG(z, ẑ) = −
1

N

N∑

i=1

(2MAFi)
γ [zilogẑi + (1− zi)log(1− ẑi)]

(8)softmax(f (yui )) =
exp(f (yui ))∑1

k=0 exp(f (yuik ))

(9)LD(p, p̂) = −
1

N

N∑

i=1

[pilogp̂i + (1− pi)log(1− p̂i)]

(10)R2 =
(
∑N

i=1(xi − x̄)(yi − ȳ))2
∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
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where R2 is squared pearson correlation, N is the number of unobserved variants, xi and yi are predicted dosage 
values and ground truth of unobserved variants i, and x̄ and ȳ are the means of dosage, respectively. Therefore, 
“Overall R2 ” was calculated from whole variants passed into formula 10. In addition, “Average R2 per variant” 
was implemented on whole datasets following Dias et al.  method12. We also set up an experiment to investigate 
the difference of setting with our model by adding the weight to variants based on MAF to the loss function. All 
of the code was implemented in Python3.8, and PyTorch library version 1.8.1.

Datasets
To examine the accuracy of our proposed model and compare its performance to other existing imputation 
methods on different genotyping platforms including SNP microarray chip and low-pass sequencing, we used 
the data of chromosome 22 of 1000 genomes project (1KGP) dataset, SG10K, and 1000 Vietnamese genomes 
project (VN1K) dataset as reference panel. We filtered out variants with MAF<0.005 as the rare variants, which 
are not usually used for downstream analyses. Details of datasets are summarized in Table 3.

1000 Genomes Project The 1KGP phase 3 dataset contains WGS of 2504 people from 5 superpopulations: 
Africans (AFR), Admixed Americans (AMR), East Asians (EAS), Europeans (EUR), and South Asians (SAS). We 
simulated genotyping data for designed markers in Infinium Omni2.5-8 Beadchip (Omni2.5) of 100 individuals 
randomly selected from the 1KGP dataset for evaluating the imputation performance. The remaining 2404 WGS 
were utilized for constructing the reference panel. The number of variants obtained by Omni2.5 on chromosome 
22 is 31,325, and 1,078,043 variants requires imputation in reference panel.

In addition, we downloaded public low-pass sequencing 1KGP  data31 submitted to the NCBI Gene Expression 
Omnibus (GEO) under accession number GSE165845 as a test dataset. This dataset included 120 individuals 
sequenced in three replicates to the target coverage of 1.0x on an Illumina HiSeqX. In the current research, we 
only investigated 21 samples that intersected with 100 above individuals to save training time for models. The 
preprocessing data steps were followed by GLIMPSE  tutorial32 including call variants, and quality control for 
each sample using BCFtools mpileup. After preprocessing, the data contains 283,705 variants as observed data.

SG10K Consortium In order to asssess the performance of GRUD for a large dataset, we evaluate our method 
using SG10K  dataset16, which consists of genotype profiling of 1,339,154 variants in chromosome 22 obtained 
by sequencing 4810 Singaporeans (Table 3). We split data into two separate datasets containing 70%, and 30% of 
the number of samples for training, and testing. Similar to 1KGP phase 3 dataset, the genotyping data of testing 
dataset was simulated with 26,656 variants of Omni2.5.

1000 Vietnamese Genomes Project In addition to 1KGP and SG10K, we also used another in-house dataset, 
1000 Vietnamese Genomes Project (VN1K), including the WGS data of 1008 unrelated Vietnamese individu-
als (https:// genome. vinbi gdata. org). Participants of the VN1K project were recruited from Kinh ethnic all over 
Vietnam, from the North to the South, and equally divided among both genders. This dataset obtaining a total 
of 585,131 variants on chromosome 22, also used as the reference panel.

94 VN1K samples were genotyped by an Axiom™ Precision Medicine Research Array (APMRA), among them, 
24 samples were genotyped one more time by the Infinium™ Global Screening Array-24 v3.0 Beadchip (GSAv3) 
and these genotype data was used to test new imputation method with the true set being their WGS data. The 
procedure of model training used the data of the remaining 914 samples.

Ethics declarations
In the VN1K study, subjects provided informed consent and the study was approved by the Vinmec International 
Hospital Institutional Review Board with number 543/2019/QD-VMEC.

Data availability
The 1KGP phase 3 (https:// www. inter natio nalge nome. org/), low-pass sequencing data of 1KGP (under accession 
number GSE165845 in GEO dataset), SG10K (https:// www. npm. sg/) and information of SNP array Omni2.5-8 
Beadchip (humanomni2.5.8 Beadchip kit) are publicly available on the internet. The VN1K WGS and genotyping 
datasets are available under agreement at MASH data portal (https:// genome. vinbi gdata. org/).

Code availability
The script for calculating averaged R2 per variant is in https:// github. com/ Torka maniL ab/ imput ation_ accur acy_ 
calcu lator. Source codes of GRUD model are available from: https:// github. com/ vinhd c10998/ GRUD.

Table 3.  Summary of reference panels used in comparing genotype imputation performance. 1KGP phase 3: 
1000 Genomes Project phase 3; VN1K: 1000 Vietnamese Genomes Project; chr22: chromosome 22

Reference Panel—chr22 Number of samples Number of variants Platform
Number of variants in 
platform

SG10K 3367 1,339,154 Infinium Omni2.5-8 BeadChip 26,656

1KGP phase 3 2404 1,078,043 Infinium Omni2.5-8 BeadChip 31,325

1KGP phase 3 2404 1,078,043 Illumina HiSeqX 283,705

VN1K 914 585,131 Axiom™ Precision Medicine Research 
Array 11,966

VN1K 914 585,131 Infinium™ Global Screening Array-24 
v3.0 BeadChip 8,873

https://genome.vinbigdata.org
https://www.internationalgenome.org/
https://www.npm.sg/
https://genome.vinbigdata.org/
https://github.com/TorkamaniLab/imputation_accuracy_calculator
https://github.com/TorkamaniLab/imputation_accuracy_calculator
https://github.com/vinhdc10998/GRUD


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:23083  | https://doi.org/10.1038/s41598-023-50086-4

www.nature.com/scientificreports/

Received: 10 May 2023; Accepted: 15 December 2023

References
 1. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).
 2. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 

(2019).
 3. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body 

mass index. Nat. Genet. 47, 1114–1120 (2015).
 4. Das, S., Abecasis, G. R. & Browning, B. L. Genotype imputation from large reference panels. Annu. Rev. Genomics Hum. Genet. 

19, 73–96 (2018).
 5. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-

wide association studies. PLoS Genet. 5, e1000529 (2009).
 6. Browning, B. L., Zhou, Y. & Browning, S. R. A One-Penny imputed genome from next-generation reference panels. Am. J. Hum. 

Genet. 103, 338–348 (2018).
 7. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
 8. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. Mach: Using sequence and genotype data to estimate haplotypes and 

unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).
 9. Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring 

missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).
 10. Song, M. et al. An autoencoder-based deep learning method for genotype imputation. In AI and Data Science in Drug Development 

and Public Health: Highlights from the MCBIOS 2022 Conference, vol. 16648714, 51 (Frontiers Media SA, 2023).
 11. Sun, Q. et al. Magicalrsq: Machine-learning-based genotype imputation quality calibration. Am. J. Hum. Genet. 109, 1986–1997 

(2022).
 12. Dias, R. et al. Rapid, reference-free human genotype imputation with denoising autoencoders. Elife 11, e75600 (2022).
 13. Kojima, K. et al. A genotype imputation method for de-identified haplotype reference information by using recurrent neural 

network. PLoS Comput. Biol. 16, 1–21. https:// doi. org/ 10. 1371/ journ al. pcbi. 10082 07 (2020).
 14. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).
 15. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74. https:// doi. org/ 10. 1038/ natur e15393 (2015).
 16. Wu, D. et al. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell 179, 736–749 (2019).
 17. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. 

Genet. 46, 1173–1186 (2014).
 18. Liu, Y. et al. Roberta: A robustly optimized Bert pretraining approach. arXiv preprintarXiv: 1907. 11692 (2019).
 19. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. 

arXiv preprintarXiv: 1810. 04805 (2018).
 20. Hosna, A. et al. Transfer learning: A friendly introduction. J. Big Data 9, 102 (2022).
 21. Bhargava, R., Sharma, G. & Sharma, Y. Deep text summarization using generative adversarial networks in Indian languages. 

Procedia Comput. Sci. 167, 147–153 (2020).
 22. Ahn, J., Madhu, H. & Nguyen, V. Improvement in machine translation with generative adversarial networks. arXiv preprintarXiv: 

2111. 15166 (2021).
 23. Wang, J., Li, X., Li, J., Sun, Q. & Wang, H. NGCU: A new RNN model for time-series data prediction. Big Data Res. 27, 100296 

(2022).
 24. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
 25. Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv preprintarXiv: 

1406. 1078 (2014).
 26. Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 

arXiv preprintarXiv: 1412. 3555 (2014).
 27. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 770–778 (2016).
 28. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprintarXiv: 1412. 6980 (2014).
 29. Li, Z. & Arora, S. An exponential learning rate schedule for deep learning. arXiv preprintarXiv: 1910. 07454 (2019).
 30. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3: Genes| Genomes| Genetics 1, 457–470 

(2011).
 31. Li, J. H., Mazur, C. A., Berisa, T. & Pickrell, J. K. Low-pass sequencing increases the power of GWAS and decreases measurement 

error of polygenic risk scores compared to genotyping arrays. Genome Res. 31, 529–537 (2021).
 32. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data 

using large reference panels. Nat. Genet. 53, 120–126 (2021).

Acknowledgements
We would like to thank Ms. Anh Phuong Dinh and Mr. Cuong Quoc Do for useful supports.

Author contributions
V.C.D. and H.T.T.N. constructed the architecture of GRUD model. V.C.D. and G.M.V. preformed the assess-
ment of GRUD accuracy performance. D.C.V., T.K.N., and G.M.V. wrote the manuscripts and carried out data 
interpretation. T.H.H., N.S.V., and T.L.P. conceptualized the study. All authors reviewed the manuscripts.

Competing interests 
V.C.D, G.M.V, T.K.N, T.L.P, N.S.V, and T.H.H are current employees of GeneStory JSC, Vietnam, a company that 
develops and markets products for genetic testing. The other authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.S.V. or T.H.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1371/journal.pcbi.1008207
https://doi.org/10.1038/nature15393
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2111.15166
http://arxiv.org/abs/2111.15166
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.07454
www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:23083  | https://doi.org/10.1038/s41598-023-50086-4

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	A rapid and reference-free imputation method for low-cost genotyping platforms
	Results
	Evaluation with 1KGP datasets
	Infinium Omni2.5-8 Beadchip
	Low-pass whole genome sequencing

	Evaluation with SG10K datasets
	Evaluation with Vietnamese datasets

	Discussion
	Methods
	Related work
	Model
	Generator
	Discriminator

	Experiments
	Setup and training model
	Datasets

	Ethics declarations

	References
	Acknowledgements


