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Stronger EPR‑steering 
criterion based on inferred 
Schrödinger–Robertson 
uncertainty relation
Laxmi Prasad Naik 1,2, Rakesh Mohan Das 3 & Prasanta K. Panigrahi 2*

Steering is one of the three in-equivalent forms of nonlocal correlations intermediate between Bell 
nonlocality and entanglement. Schrödinger–Robertson uncertainty relation (SRUR), has been widely 
used to detect entanglement and steering. However, the steering criterion in earlier works, based on 
SRUR, did not involve complete inferred-variance uncertainty relation. In this paper, by considering 
the local hidden state model and Reid’s formalism, we derive a complete inferred-variance EPR-
steering criterion based on SRUR in the bipartite scenario. Furthermore, we check the effectiveness of 
our steering criterion with discrete variable bipartite two-qubit and two-qutrit isotropic states.

EPR-steering is a nonlocal correlation intermediate between Bell nonlocality and quantum entanglement1–3. It 
is the ability to remotely affect or steer subsystems of a shared entangled quantum state by an arbitrary choice 
of local measurements on the subsystems without violating the no-signaling principle4. Wiseman et al. gave an 
operational definition of steering as a task between Alice and Bob. Alice prepares an entangled state and sends 
one part to Bob. Here, Bob does not trust Alice, and by performing local measurements, she has to convince 
him that the state is entangled3. If Bob’s steered quantum state cannot be explained by a local hidden state (LHS) 
model, then the state is said to exhibit steering. In contrast to Bell’s nonlocality and entanglement, steering 
demonstrates asymmetric behaviour in which one party can steer the other party, but vice versa is not always 
permitted5–8. Moreover, not every entangled state exhibits steering, and not every steerable state violates Bell 
inequality3. EPR-steering has a wide range of applications in many quantum information processing tasks, 
e.g., in one-sided device-independent quantum key distribution9–11, quantum networking tasks12–14, subchan-
nel discrimination15–17, quantum secret sharing18,19, quantum teleportation20, randomness certification21–23, and 
random number generation24 to mention a few. Recently, it has also been demonstrated to be a useful resource 
in noisy and lossy quantum network systems25,26.

Effective detection of steering exhibited by quantum states is crucial to realise applications of steerable 
quantum states. Uncertainty relations (UR) can be experimentally verified because it involves measurement of 
observables. There have been many works involving the use of UR’s for detection of entanglement27 for discrete 
variables and continuous variables28. Assuming that the description of quantum mechanics is correct, EPR’s 
condition of locality and sufficient condition of reality are satisfied, UR’s become an important tool for deter-
mining steering criteria. Many criteria in this direction, e.g., using the Heisenberg uncertainty relation (HUR)29 
and later involving a broader class of uncertainty relations have been proposed30–33. Additionally under differ-
ent measurement scenarios more optimal steering criteria34,35 were obtained using fine-grained36,37 and sum 
uncertainty relations35,38.

The criterion for experimental demonstration of steering was first proposed by Reid29, which is based on 
inferred-variances. Recently, a steering criterion using Schrödinger–Robertson uncertainty relation (SRUR) was 
also proposed. However, these earlier works used only Reid criterion and did not adopt the LHS model, hence 
did not use inferred-means in the lower bound39. A recent work involves inferred-variance based product and 
sum uncertainty relations in the presence of entanglement40. We aim to derive a steering criterion based on SRUR 
involving inferred-means and inferred-variances following up the analysis in41.

SRUR is a generalized relation and reduces to HUR when the covariance between two operators is zero, which 
is not always true. Hence SRUR provides a stronger bound than HUR. Classically the term �xpyp� − �xp��yp� 
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indicates the degree of statistical correlation or dependency between any two random variables x and y. The 
covariance term in SRUR is {�B̂1,B̂2�}

2
− �B̂1��B̂2� , where B̂1 and B̂2 are any two hermitian operators is termed as 

“quantum correlation coefficient”. If the two operators are statistically independent, then the covariance term 
vanishes. SRUR describes an inevitable relationship among the lowest order moments of the operators B̂1 and 
B̂2 i.e., {B̂q1, B̂

q
2} : q = 1, 2 , for which one needs to have access to the statistics or the expectation values of the 

two other operators viz., the anticommutator {B̂1, B̂2} and the commutator [B̂1, B̂2] which is obtained from two 
different and identical runs of the experiment.

Additionally, there is no end to the list of observables, {B̂1, B̂2, B̂3, B̂4, B̂5, . . .} , of which one could construct 
moments of all orders and construct a generalized version of SRUR. A generalized version of SRUR involving 
higher order moments can also be constructed. Quantum mechanics can, in its entirety, be portrayed as a “theory 
of interactive moments”. This perspective emphasizes the fundamental role and significance of higher order 
moments in capturing the interactive nature of quantum phenomena of higher dimensional states. It is shown 
that a stricter entanglement condition is provided by the SRUR, using positive partial transpose for non-Gaussian 
entangled states42,43 and using covariance matrix entanglement criterion for Gaussian entangled states44. This 
has been later generalized by V Tripathi et al.45.

In the next section, we briefly discuss steering and the EPR-Reid criterion. We illustrate how EPR-Reid 
criterion helps in detection of steering. In “EPR-steering criterion using Schrödinger–Robertson uncertainty 
relation”, based on SRUR, we derive a steering criterion to detect steerability of states by incorporating the EPR-
Reid criterion and the LHS model. We then check the efficiency of the steering criterion in “Violation of our 
EPR-steering criterion”, using it on two-qubit and two-qutrit isotropic states for which corresponding steering 
inequalities were obtained. We conclude with a discussion on the strength and limitations of the steering crite-
rion, along with the future scope of our work. All the detailed derivation is included in “Appendix”.

Preliminaries
EPR‑steering
Consider a general unfactorizable bipartite pure state shared by two distant parties, Alice and Bob,

where {|un�}({|ψn�}) and {|vn�}({|φn�}) denote two different orthonormal bases in Alice’s and Bob’s system, 
respectively. This property of inseparability is called entanglement, which is one of the most useful resources 
in quantum information processing that has been studied extensively in the literature46–50. In steering scenario, 
Alice chooses to measure in the |un�(|ψn�) basis, then Bob’s state is projected into |vn�(|φn�) basis. The ability of 
Alice to influence (steer) Bob’s state, nonlocally was termed as steering by Schrödinger1,2,51.

Alice and Bob share an entangled quantum state, described by density matrix ρ̂ . The generalised local meas-
urements of Alice and Bob are denoted by M̂a|A and M̂b|B ( Ma(b)|A(B) ≥ 0,

∑

a(b) Ma(b)|A(B) = 1 ∀A(B) , where 
a and b denote the outcomes corresponding to the measurement operators M̂a|A and M̂b|B . A and B are Alice’s 
and Bob’s measurement settings, respectively. The quantum probability of their joint measurement is given as

where P(a, b) is the joint probability of obtaining outcomes a and b. Alice fails to steer Bob’s state, if and only if 
for all the measurements M̂a(b)|A(B) , the joint probability distribution P(a, b) for Alice’s and Bob’s measurements 
can be explained using an LHS model for Bob and a local hidden variable (LHV) model for Alice. The joint 
probability distributions can be written as

where η is a local hidden variable having probability distribution p(η) , satisfying p(η) ≥ 0 and 
∑

η p(η) = 1 . 
P(a|η) is the probability distribution for outcome a determined by the local hidden variable η and PQ is the 
quantum probability distribution for outcome b; PQ(b|η) = TrB[M̂b|Bρ̂η] (Q stands for quantum), correspond 
to a local hidden quantum state described by ρ̂η , which is unaffected by local measurements of Alice. The use 
of LHS to explain steering is a clear implication of the consistency of EPR’s condition of locality. Any constraint 
that can be obtained obeying Eq. (3) will form an EPR-steering criterion violation of which will demonstrate 
steering. The joint probability distribution and the state is said to admit an LHS model if Eq. (2) can be expressed 
having a decomposition of the form of Eq. (3) for all the choice of Alice’s and Bob’s measurements respectively.

It is important to note that Alice and Bob perform single measurements in each run of the experiment on the 
identically prepared states. And, Alice arbitrarily chooses to perform different measurement settings in each of 
the runs of the experiment, i.e., P(Ai|Aj) = P(Ai) and P(Aj|Ai) = P(Aj) where Ai and Aj are Alice’s measure-
ment settings. The probability of the result of a measurement is independent of the other measurement results. 
Mathematically, the probability P(ai|aj) = P(ai) and P(aj|ai) = P(aj) where ai and aj are the results which cor-
respond to different single measurements performed in each run by Alice.

The interpretation can be given in terms of Bob’s conditional state i.e. Bob’s state assemblages. Prior to all 
experiments, Bob asks Alice to announce the set of possible ensembles of states into which Alice would like 
to project Bob’s state into i.e., EA : ∀A . For every run of the experiment, Alice prepares an entangled state and 
sends one part to Bob. Bob randomly picks an ensemble EA from the announced set and asks Alice to prepare 
it. Alice performs the measurement A and announces to Bob about his collapsed state σ̂A

a  corresponding to the 

(1)|�� =
∑

n

cn|un�|vn� =
∑

n

dn|ψn�|φn�

(2)P(a, b) = Tr

[

ρ̂(M̂a|A ⊗ M̂b|B)
]

(3)P(a, b) =
∑

η

p(η)P(a|η)PQ(b|η)
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result a that she has prepared. This experiment is performed over many runs and Bob confirms the probability 
Tr[σ̂A

a ] of its occurrence.
Alice can cheat Bob by adopting a strategy. In this strategy, instead of sending one part of an entangled state 

to Bob, Alice picks a state at random from some prior ensemble of states R = {pησ̂η} with σ̂ =
∑

η pησ̂η . Now, 
Alice announces to Bob about the state that is prepared from her knowledge of η and any stochastic map from η 
to a, where a is one of the results of the measurement A, which Bob had picked from the announced ensemble. 
Alice will fail to convince Bob that the state sent is entangled if and only if, for all of Alice’s choice of measure-
ments A and for all the corresponding eigenvalues of a , one can find an ensemble R of states with probability 
distribution pη and a stochastic map p(a|A, η) from η to a such that the Bob’s state can be explained by a local 
hidden state model,

For the state assemblages of Bob, if Alice cannot find an ensemble R, i.e., a local hidden state model σ̂η and 
a stochastic map p(a|A, η) , then the state is steerable. Alice cannot affect Bob’s unconditioned state TrA[ρ̂] , 
because that would violate superluminal communication4. In this strategy, we observe that in each run of the 
experiment, while Bob picks one of the ensembles EA announced by Alice and asks her to announce back to 
him about his collapsed state. Alice performs this step of the experiment through a stochastic map from η to a, 
corresponding to one of the results, a of the measurement A. The choice of which outcome of the measurement 
should be mapped from η to a, is completely arbitrary and random, i.e., P(ai|aj) = P(ai) , ∀ai , aj corresponding 
to results of Alice’s different measurements.

In a local hidden state model, the choices of measurements of Alice to infer the values of the measurements 
of Bob are arbitrary. The reason is, Alice’s probabilities are allowed to depend arbitrarily on the variables η . The 
local hidden state model description of steering uses the property of states. However, in an experimental situ-
ation, one is not concerned about what type of state is used to demonstrate steering rather we only rely on the 
measured data. As in the case of bell nonlocality and entanglement detection techniques we rely on the meas-
ured data only rather than the state properties i.e., local hidden variables and local hidden states, respectively. 
Therefore an experimental EPR-steering criterion should not depend on any assumption about the type of state 
being prepared rather depend only on the measured data.

Alice can attempt to infer different outcomes of Bob corresponding to different observables and assuming 
the LHV–LHS model, since Bob’s state corresponds to a local hidden quantum state, uncertainty relations can 
be used for Bob’s measurements. This was first realized by Reid29, who proposed an experimental EPR-steering 
criterion using HUR for continuous variable systems. We aim to derive an EPR-steering criterion using SRUR 
by incorporating LHS model and EPR-Reid criterion.

EPR‑Reid criterion
Reid proposed a modified version of EPR’s sufficient condition of reality which states that if without disturbing 
a system in any way one can predict the value of a physical quantity with some specified uncertainty then there 
exists a stochastic element of physical reality which determines this physical quantity with atmost that specific 
uncertainty, called as Reid’s extension of EPR’s sufficient condition of reality. This is attributed to the intrinsic 
stochastic nature exhibited in the preparation and detection of quantum states29,41.

Consider two parties Alice and Bob sharing an entangled state. Now Alice makes a local measurement Ŷ  and 
makes an estimate, corresponding to the measurement X̂est(Ŷ) for the result of Bob’s measurement X̂ by infer-
ring from the outcomes of her own measurement Ŷ  . The idea of estimation is implemented to incorporate EPR’s 
sufficient condition of reality. Therefore the average inferred-variance of X̂ for an estimate X̂est(Ŷ) is given by

Alice’s estimate for Bob’s measurement is given by X̂est(Ŷ) = gŶ  , where the choice of g should be such that 
it gives the minimum error, i.e., g = �X̂⊗Ŷ�

�Ŷ2�  gives the optimal inferred-variance. Using EPR’s condition of locality 
Reid’s extension of EPR’s sufficient condition for reality and completeness of quantum mechanics (a limit on the 
product of inferred-variances) based on HUR for two noncommuting quadrature phase observables X̂1 and X̂2 
on Bob’s side is29 given as

This is known as EPR-Reid criterion. A state will show steering if Eq. (6) is violated, which has also been 
verified experimentally41.

EPR‑steering criterion using Schrödinger–Robertson uncertainty relation
Our derivation of EPR-steering is based on the works of29,41,52. Here, we use a different notation for the outcomes 
of measurement. Consider the outcomes A and B corresponding to observables Â and B̂ for Alice’s and Bob’s 
measurements respectively. Based on the result of Alice’s measurement A , she tries to infer the outcome of Bob’s 
measurement B . Best(A) is Alice’s estimate of Bob’s measurement outcome based on her outcome A. Using the 
EPR-Reid criterion the inferred-variance is written as

(4)σ̂A
a =

∑

η

pηp(a|A, η)σ̂η

(5)�2
inf X̂

2 =
〈

(

X̂ −
〈

X̂est(Ŷ)
〉)2

〉

.

(6)�2
inf X̂1�

2
inf X̂2 ≥ 1.
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The average is calculated by taking the average over all outcomes A and B by repeating the experiment 
over many runs, where each run involves a single pair of measurement on Alice’s and Bob’s side. The estimates 
involving different measurements is calculated following the EPR-Reid criterion. This scenario is similar to the 
detection of Bell nonlocality and entanglement. The inferred-variance �2

inf B is minimized (optimized) when 
Best(A) = �B�A . So the minimized inferred-variance �2

minB is as follows

where �2(B|A) stands for the conditional variance of Bob’s measurement outcome B provided the outcome A of 
Alice’s measurement is known. So we have the following condition:

Assuming that the statistics of the experimental outcomes of Alice’s and Bob’s measurements can be described 
by an LHS model in Eq. (3), the conditional probability distribution P(B|A) can be written as

Here, η is a classical random variable such that P(η) ≥ 0 and 
∑

η P(η) = 1 . Moreover, we can observe that 
the basic essence of adopting the LHS model is statistical independence of probabilities which is one of the most 
important prescriptions in the LHV theory by Bell53. If P(u) is a classical probability distribution which has a 
convex decomposition, i.e., P(u) =

∑

v P(v)P(u|v) , then the variance, �2u corresponding to the probability 
distribution P(u) is bounded by the average of the variances �2(u|v) over the conditional distribution P(u|v), 
i.e., �2u ≥

∑

v P(v)�
2(u|v) . Therefore, from Eq. (9) the variance of the conditional measurement outcomes 

B|A is given by

where the variance �2
Q(B|η) is calculated using the conditional quantum probability distribution, 

PQ(B|η) = Tr[B̂ρ̂η] . The average of the measurement operator B̂ specified by its outcome B is calculated cor-
responding to a local quantum hidden state described by ρ̂η . Therefore, using Eq. (11) the bound for �2

minB is 
given as follows

Consider Bob’s arbitrary local measurement operators B̂1 and B̂2 with their corresponding outcomes B1 and 
B2 respectively. These operators then satisfy the SRUR​54, i.e.,

where {B̂1, B̂2} is the anticommutator and [B̂1, B̂2] is the commutator of the two operators B̂1 and B̂2 respectively. 
��2

QB̂i�ρ̂ is the variance and �B̂i�ρ̂ is the average of the operator B̂i calculated for a quantum state ρ̂ . The above 
equation can be written in terms of the outcomes of Bob, given by

(7)�2
inf B =

〈

(

B− Best(A)
)2
〉

.

(8)

�2
minB =

〈

(

B− Best(A)
)2
〉

=
∑

A,B

P(A,B)
(

B− Best(A)
)2

=
∑

A

P(A)
∑

B

P(B|A)(B− �B�A)2

=
∑

A

P(A)�2(B|A).

(9)�2
inf B ≥ �2

minB.

(10)

P(B|A) =P(A,B)

P(A)
=

∑

η

P(η)P(A|η)
P(A)

PQ(B|η)

=
∑

η

P(η|A)PQ(B|η).

(11)�2(B|A) ≥
∑

η

P(η|A)�2
Q(B|η)

(12)

�2
minB ≥

∑

A

P(A)�2(B|A)

≥
∑

A

P(A)
∑

η

P(η|A)�2
Q(B|η)

≥
∑

A,η

P(A, η)�2
Q(B|η)

≥
∑

η

P(η)�2
Q(B|η).

(13)

��2B̂1�ρ̂��2B2�ρ̂ ≥1

4

∣

∣

∣
�[B̂1, B̂2]�ρ̂

∣

∣

∣

2

+
(

�{B̂1, B̂2}�
2

− �B̂1��B̂2�
)2

ρ̂

.
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For any two vectors u and v in a linear vector space, the Cauchy–Schwartz inequality is given by

where || · ||2 is the L2 norm, �·� is the inner product and | · | is the modulus in the linear vector space. Using 
Eq. (12), the vectors, u and v can be defined as

From Eq. (12) and by making comparison with Eq. (16), we have, �2
minB1 ≥ ||u||22 and �2

minB2 ≥ ||v||22 . 
Hence, we employ Eq. (15) for the two outcomes B1 and B2 to obtain a lower bound for the product of variances 
�2

minB1 and �2
minB2 which is given by

We define the vector w using the inequality Eq. (17) as follows,

By utilizing Eq. (18) the product of the variances in Eq. (17) can be written in the following form as

Using Eq. (14) the above inequality can be written as,

where [B̂1, B̂2] is the commutator and {B̂1, B̂2} is the anticommutator of the operators B̂1 and B̂2 respectively, 〈Bi〉η 
is the mean w.r.t the probability distribution PQ(Bi|η) . Using the properties of convex functions and Jensen’s 
inequality, we have 

∑

α P(α)|α| ≥ |
∑

α P(α)α| for a given probability distribution P(α) , where α is a random 
variable. As a result, the RHS of Eq. (20) in terms of inferred-variances and averages can be written as (refer to 
“Appendix” for the derivation)

From Eq. (9), using the condition �2
inf B ≥ �2

minB and utilizing Eq. (9) in Eq. (21), we have the EPR-steering 
criterion based on SRUR which can be written as follows

Violation of our EPR‑steering criterion
The family of isotropic states in Cd ⊗ Cd , parameterized by p ∈ R , is given by

where 0 ≤ p ≤ 1 , |�+� =
∑d

i=1
|ii�√
d
 and I is the Identity operator. Here, we calculate the steerability of isotropic 

states for dimension d = 2 and d = 3 using Eq. (22).

(14)

��2
QB1���2

QB2� ≥
1

4

∣

∣�[B1,B2]�Q
∣

∣

2

+
(

�{B̂1, B̂2}�
2

− �B̂1��B̂2�
)2

Q

.

(15)||u||22||v||22 ≥ |�u, v�|2

(16)
u ≡{

√

P(η1)�Q(B1|η1),
√

P(η2)�Q(B1|η2), . . .}
v ≡{

√

P(η1)�Q(B2|η1),
√

P(η2)�Q(B2|η2), . . .}.

(17)

�2
minB1�

2
minB2 ≥||u||22||v||22 ≥ |�u, v�|2

≥
∣

∣

∣

∣

∣

∑

η

P(η)�Q(B1|η)�Q(B2|η)
∣

∣

∣

∣

∣

2

.

(18)
w ≡{P(η1)�Q(B1|η1)�Q(B2|η1),P(η2)�Q(B1|η2)�Q(B2|η2),

P(η3)�Q(B1|η3)�Q(B2|η3), . . .}

(19)�2
minB1�

2
minB2 ≥

∑

η

P(η)2�2
Q(B1|η)�2

Q(B2|η)

(20)
�2

minB1�
2
minB2 ≥

1

4

∑

η

P(η)2[|�[B1,B2]�η|2

+ (�{B1,B2}� − 2�B1��B2�)2η]

(21)
�2

minB1�
2
minB2 ≥

1

4

(

|�[B1,B2]�|inf
)2

+
(

1

2
�{B1,B2}�inf − (�B1��B2�)inf

)2

(22)
�2

inf B1�
2
inf B2 ≥

1

4

(

|�[B1,B2]�|inf
)2

+
(

1

2
�{B1,B2}�inf − (�B1��B2�)inf

)2

.

(23)ρ
p
d =

(

1− p
) I

d2
+ p|�+���+|
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For dimension d = 2 , two qubit isotropic state, our choice for Bob’s measurement operators, B̂1 and B̂2 are 
spin half observables, i.e., B̂1 = ŜBx,B̂2 = ŜBy,B̂3 = ŜBz with their corresponding outcomes, SBx , SBy , and SBz , 
respectively. We obtain a steering inequality for two-qubit isotropic state. Therefore, Eq. (22) for spin observables 
can be written as

where �2
inf SBi = �(SBi − SestBi

(SAi ))
2� = �(SBi − giSAi )

2�, gi =
�SAi⊗SBi �

�S2Ai �
 , i = x, y, z . Calculation of inferred-vari-

ance and inferred-mean for two-qubit isotropic state gives �2
inf SBx = �2

inf SBz = 1
4
(1− p2) , �{SBx , SBz }� = 0 , 

(�SBx �2)inf = (�SBy �2)inf = (�SBz �2)inf =
p2

4
 , (�SBx ��SBz �)inf =

(1−2
√
2)p2−1

16
 . Using these values in Eq. (22), we 

obtain the following condition that satisfies the inequality:

Violation of Eq. (23), i.e. p > 0.56 , will detect steerable two qubit isotropic states giving a better bound com-
pared to the result of41, which demonsrates steerabilty of two-qubit Werner states for p > 0.61 , using Heisenberg 
uncertainty relation. The two-qubit Werner states also show the same steerability condition3. The optimal con-
dition for steerability of two qubit isotropic state for an infinitely large number of measurements is p > 0.503.

For dimension d = 3 , two qutrit isotropic state, our choice of Bob’s operators B̂1 and B̂2 following the com-
mutation relation [B̂1, B̂2] = ιB̂3 , given as

We calculate the inferred variances and inferred means of the above operators gives 
�2

inf B1 = 2
3
(1− p2),�2

inf B2 = 1
3
(1− p2) , |�[B1,B2]�|2inf =

p2

27
 , �{B1,B2}�inf = 0 , ( �B̂1�2)inf = 2p2

27
 , (�B̂2�2)inf = p2

27
 

and ( �B1��B2�)inf = − p2

36
 and obtain the following steering condition by using Eq. (20)

Violation of the above condition i.e. p > 0.900 , will detect steerable two qutrit isotropic states. giving a better 
bound compared to the result of41, which demonsrates steerabilty of two-qubit Werner states for p > 0.903 , using 
Heisenberg uncertainty relation3. The optimal condition for steerability of two qutrit isotropic state is p > 0.416 
for infinitely large number of measurements.

An important point to note is that steering bound for qutrit systems using our criterion is not a very strict 
bound since it involves few measurements. The experimental detection of steerable states depends crucially on 
the choice of measurements. Hence, the quest for an optimal choice of measurements to detect steerability of a 
state is a huge challenge. With an optimal choice, better bounds can be achieved using our criterion. It is also 
required to do larger number of measurements for fine graining of steering bounds. Recently, a covariance matrix 
method for arbitrary N number of observables is developed. It involves covariances of observables and utilized 
for stronger detection of entanglement in bipartite high dimensional states45. This method is a generalization of 
SRUR, which involves only two observables. One of the major advantages of the covariance matrix criterion is 
that there is no need of knowledge about the type of states or the correlations in order to choose the optimal set 
operators for the detection of entanglement45. Since SRUR is a special case of the covariance matrix criterion, 
the LHS model and Reid’s formalism can be incorporated to obtain inferred variances and expectation values of 
operators to formulate a complete inferred covariance matrix criterion for the detection of steering for arbitrary 
set of observables which could be used to capture stronger and optimal steering bounds of quantum states.

Conclusion
We utilized the local hidden state (LHS) model and Reid’s criterion in Schrödinger–Robertson Uncertainty 
Relation (SRUR) and obtained the EPR-steering criterion for bipartite systems, which can be experimentally 
verified. We then used our EPR-steering criterion to detect steerability for dimensions, d = 2 and d = 3 systems. 
We observed that with our choice of observables, the steerability of the states could be detected, however the 
bounds can be further improved by selecting optimal measurement operators. Hence, the construction of opera-
tors which would detect steerable states optimally is a major challenge. Adopting an LHS model and Reid crite-
rion one could obtain a completely inferred variance based steering criterion using variance based uncertainty 
relations, sum based uncertainty relations generalized for arbitrary number of operators involving higher order 
moments of the operators. One of the future aspects of our criterion is to look for steering bounds in continu-
ous variable systems. Furthermore, this criterion can be implemented using measurements corresponding to 
positive operator-valued measures (POVM). Many works show the correspondence between joint measurability 
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and steering. Therefore, it would be interesting to look for the correspondence between steering and uncertainty 
relations involving incompatible POVMs.

Data availibility
All data generated or analysed during this study are included in this published article.

Appendix
Consider the inequality developed in Eq. (20). For Bob’s two outcomes B1 and B2 , corresponding to measurement 
operators B̂1 and B̂2 we have the following expression

The terms on RHS of the Eq. (27), 
∑

η P(η)|�[B1,B2]�η| and 
∑

η P(η)
(

�{B1,B2}�
2

− �B1��B2�
)

η
 can be defined 

as vectors with their inner products written as follows

where [B̂1, B̂2] = ιB̂3 and {B̂1, B̂2} = B̂4 . Here, we witness one of the important applications of LHV, i.e., the 
sufficient condition of reality. It is very important to note that in the LHS model, the choice of the operators 
{Â1, Â2, Â3} for Alice is completely arbitrary. In this model, the operators are allowed to depend arbitrarily on 
the hidden variable η and hence play no role in the LHS model of Bob. For all the measurement outcomes Ai , 
corresponding to the operators Âi , that exhaust Alice’s measurement set of operators, the inequality (28) can be 
written in the following form

where [Â1, B̂2] = ιÂ3 , {Â1, Â2} = Â4 , all the P’s are the joint probability distribution for different outcomes Ai and 
classical random variable η . P(Ai) for i = 1, 2, 3, 4 corresponds to the outcomes Ai of the measurement observa-
bles Âi . Here, we utilize the Bayes rule and the marginal distribution P(Ai) =

∑

η P(η,Ai) =
∑

η P(η|Ai)P(Ai) 
where, Ai and Aj are the outcomes corresponding to Alice’s different measurements Âi and Âj respectively. η is the 
local hidden variable correlated to the local hidden state ση . For a real variable u, |u|2 and u2 are convex functions. 
Hence, by Jensen’s inequality, 

∑

u P(u)|u| ≥ |
∑

u P(u)u| . Therefore, expression (29) is lower bounded as follows
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We consider the last term of the expression (30), derive and explain how product of the expectation values 
of the outcomes B1 and B2 of Bob corresponding to his measurement operators B̂1 and B̂2 can be jointly inferred 
from Alice’s three measurements as follows

The inferred value of the product of the expectation values of Bob’s outcomes B1 and B2 corresponding to his 
measurements B̂1 and B̂2 i.e., 〈B1〉〈B2〉 cannot be obtained from a local hidden state for Bob from the outcomes 
A1 and A2 of Alice’s two measurements Â1 and Â2 . In the operational definition of steering Alice sends a local 
hidden state σA

a  to Bob, by picking from an ensemble R =
∑

η pησ̂η and doing a stochastic map from the LHV 
η to the result a of the measurement Â in each run of the experiment. Alice randomly chooses any one of the 
results of the measurement A corresponding to which, she wants Bob’s state to collapse into. For the inferred 
value of the product of the expectation value of two operators Alice has to encode two outcomes corresponding 
to her choice of two incompatible measurements and since LHS is a quantum state Alice cannot perform this due 
to the incompatibility of the measurement operators. Hence, Alice cannot obtain the inferred product from the 
two measurements. However, Alice can infer the product of the expectation values by performing three different 
incompatible measurements Â1 and Â2 and Â1 − Â2 respectively. Therefore the inferred value of the product of 
the expectation value is given as

where we denote B0 as outcome corresponding to Bob’s measurement B̂0 = B̂1 − B̂2 and A0 corresponding to 
Alice’s measurement Â0 = Â1 − Â2 respectively. The Eq.(32) is given as follows

In the above Eq. (33), the expectation values of Bob’s measurement outcomes conditioned on Alice’s meas-
urement outcomes is written as

We use the derivation of Eq. (33) in Eq. (30) and obtain a complete inferred expression on the RHS of the 
Eq. (27)

The above expression can be further simplified into the following form
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We obtain the complete expression involving the variances of the operators B̂1 and B̂2 which is given as
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