scientific reports

OPEN Effects of variable-temperature heat reservoirs on performance of irreversible Carnot refrigerator with heat recovery

Zhe Zhang¹, Huan Su^{1,2⊠}, Guoqiang Dai¹, Xiaohua Li^{1,2} & Liping Zeng^{1,2}

The outlet temperature of the heat recovery reservoir is an important parameter in the design of refrigeration with heat recovery systems. In this paper the second law of thermodynamics has been applied to an irreversible Carnot refrigerator with heat recovery (CRHR) coupled to variabletemperature heat reservoirs. The refrigerating rate, input power, refrigeration coefficient, heat recovery coefficient, comprehensive coefficient of performance and exergy efficiency are chosen as the objective functions. The design rule chosen for this study is that the heat transfer area should be constrained. The mathematical expressions for assessing performance parameters with respect to area ratio, were derived for this study. These expressions are transcendental equations. The numerical solution method was employed to calculate the approximate solutions of the optimum performance parameters in a numerical example. The results indicate that the increase in the outlet temperature of heat recovery reservoir could lead to a rise in the maximum value of refrigerating rate and minimum value of input power; also it will lead to the decline in the maximum value of refrigeration coefficient, heat recovery coefficient, comprehensive coefficient and the exergy efficiency. When the ratio of heat recovery heat exchanger area to the summation of high temperature heat exchanger area and the heat recovery heat exchanger area is 1.0, the performance coefficients would attain their limit values and all of the condensing heat could be recycled. Our findings are helpful to the design and optimization to inform preparation of standard relating to the development of refrigerator with heat recovery.

List of symbols

- С Thermal capacitance rate (kW K⁻¹)
- *COP*_{int} Comprehensive coefficient
- F Heat transfer area (m²)
- f The ratio of the summation of high temperature heat exchanger area and the heat recovery heat exchanger area to the total heat exchanger area
- The ratio of heat recovery heat exchanger area to the summation of high temperature heat exchanger fo area and the heat recovery heat exchanger area
- Κ Heat transfer coefficient (kW K⁻¹ m⁻²)
- Heat recovery ratio п
- Р Input power (kW)
- Q The rate of heat transfer (kW)
- R Refrigerating capacity (kW)
- Т Absolute temperature (K)
- U Heat transfer coefficient (kW K⁻¹)

¹Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411101, China. ²Hunan Engineering Research Center of Energy Saving and Material Technology of Green and Low Carbon Building, Xiangtan 411104, China. ^{III}email: suhuan432@163.com

Greek letter

- Φ Internal irreversible factor
- ε Refrigeration coefficient
- $\varepsilon_{\rm R}$ Heat recovery coefficient
- η Effectiveness of heat exchanger

Subscripts

COP_{int} Corresponding to comprehensive coefficient

- f_{-opt} Optimum value
- h Parameters of the high temperature heat reservoir
- *H* High temperature side
- *HC* Temperatures of the working fluid in high temperature side
- *Hi* Inlet temperature of the high temperature reservoir
- *Ho* Outlet temperature of the high temperature reservoir
- *i* Indoor environment
- *l* Parameters of low temperature heat reservoir
- *L* Low temperature side
- *LC* Temperatures of the working fluid in low temperature side
- *Li* Inlet temperature of the low temperature reservoir
- *Lo* Outlet temperature of the low temperature reservoir
- o Outdoor environment
- P Input power
- *r* Parameters of the heat recovery reservoir
- *R* Heat recovery side
- *Ri* Inlet temperature of the heat recovery reservoir
- *Ro* Outlet temperature of the heat recovery reservoir
- ε Corresponding to refrigeration coefficient
- $\varepsilon_{\rm R}$ Corresponding to heat recovery coefficient
- η_{Π} The exergy efficiency

In the last decades, there has been a rapid development to combine space cooling and water heating systems for residences¹. This combined system is considered to be cost², environmental and energy efficient technology, which recycles some or all of the waste heat in the process of refrigeration for the demand of sanitary water, industrial heating or air reheating and so on³. Nowadays, finite-time thermodynamics analysis of thermodynamic systems has become a prominent topic in heat engine, refrigerator and heat pump and so on. Since the 1950s, finite-time thermodynamics has made significant progress after the landmark paper of Novikov⁴ and Chambadal⁵. In the 1970s, Finite-time thermodynamics was further advanced by Curzon and Ahlborn⁶. In recent years, many studies on second law of thermodynamics systems have been presented by many authors⁷. Zhang⁸ et al. studied the optimization of heat exchanger structure based on finite-time thermodynamics. Li Tao⁹ used finite-time thermodynamics to optimize the heat pump system and found that a reasonable selection of the heat transfer area of the heat exchanger can effectively improve the operating performance of the system. John¹⁰ utilized the Carnot cycle to evaluate the potential for waste heat recovery at a wastewater treatment plants. Chen et al.¹¹⁻¹⁷ have analyzed the performances of simple and regenerated, endoreversible and irreversible, constant and variable-temperature heat-reservoir air heat-pumps considering the heat load, heat-load density, coefficient of performance (COP) and so on. Sarkar¹⁸ studied the minimization of heat exchanger area or overall conductance of heat pumps and refrigerators for a specified capacity and the analytical results were confirmed by a detailed numerical simulation. Wu¹⁹ proposed an original sinusoidal wavy winglet type vortex generator and evaluated the grade of energy and to explore the irreversible loss during the heat transfer process in view of the second law of thermodynamics. Lei²⁰ optimized the heat exchanger area by using the finite time thermodynamics theory. Tan²¹ established an endoreversible Carmot cycle model by using finite time thermodynamics. The surface area distribution of three kinds of heat exchangers was optimized by numerical calculation method, and the maximum output power was obtained. Tyagi et al. $\frac{22-25}{2}$ applied the finite time thermodynamics to various endoreversible and irreversible cycles. They have investigated the effects of a finite rate of heat transfer or other major irreversibilities on the performance of different cycles. Ruibo²⁶ Applying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle model with variable-temperature heat reservoirs is established, the expressions of power (P) and efficiency (η) are derived. Based on the theory of finite-time thermodynamics, Meng Fankai²⁷ designed a channel structure of cooling air, and established a finite-time thermodynamic model of variable temperature heat source thermoelectric cooler based on heat pipe heat dissipation. The thermal resistance of the cold and hot ends of the device was analyzed by numerical simulation method. Wang²⁸ built an irreversible Carnot heat engine cycle model for space power plants by using finite time thermodynamics. The influences of internal irreversible effect and heat leakage loss on the optimum power output performance are analyzed, when thermal conductivity coefficients of the heat exchanger and cold exchanger are given. Wu²⁹ studied a reversible simple air refrigeration cycle by using classical thermodynamics. Through theoretical analysis and numerical calculations, the optimal performance of the refrigeration cycle is given. The influence of cycle temperature ratio on the optimal performance of refrigeration cycle is analyzed.

The performance of refrigerators with heat recovery coupled to three constant heat reservoirs has been researched using the second law of thermodynamics by our Team^{1,5,9,30}. The outlet temperature of the heat

recovery reservoir is an important parameter for heat recovery and the variable-temperature heat reservoir is much closer to actual conditions. The performance of the irreversible Carnot refrigerator with heat recovery (CRHR) coupled to variable-temperature heat reservoirs has not been studied by other researchers. El-Din³¹ applied the second law of thermodynamics to irreversible heat pumps and refrigerators with two variable temperature heat reservoirs. $Q_{\rm H}$ and $Q_{\rm L}$ were chosen to be the objective functions for heat pumps and refrigerators respectively. However, the results are imperfect due to the optimal variable *x* (thermal conductance ratio) contained in E_h and E_c ; these were treated as an invariable during the process of the derivation for maximization of $Q_{\rm H}$ and $Q_{\rm L}$. In this paper the second law of thermodynamics was applied to an irreversible Carnot refrigerator with heat recovery coupled to variable-temperature heat reservoirs. The refrigerating rate (*R*), input power (*P*), refrigeration coefficient (ε), heat recovery coefficient (ε_R), comprehensive coefficient of performance (*COP*_{int}) and exergy efficiency (η_{Π}) were chosen as the objective functions in this study. Equating the derivatives of those performance parameters with respect to area ratio, *f*, to zero, a group of transcendental equations would be derived. The numerical solution method was employed to calculate the approximate solutions of the optimum performance parameters in a numerical example. The influence of outlet temperature of the heat recovery reservoir on these performance parameters was analyzed in the numerical example.

Thermodynamic model

An irreversible Carnot refrigerator with heat recovery coupled to variable-temperature heat reservoirs and its surroundings are shown in Fig. 1a. There are three heat exchangers, including high temperature heat exchanger, low temperature heat exchanger and heat recovery heat exchanger, existing in the cycle.

Figure 1b shows the temperature-entropy diagram of an irreversible Carnot refrigerator with heat recovery which operates steadily between three variable temperature reservoirs. The working fluid in the refrigerator has two constant temperatures, T_{HC} and T_{LC} . The three heat exchangers are treated as counter flow heat exchanger with finite thermal capacitance rates, C_r , C_h and C_l .

In Fig. 1, A—the compressor; B—the heat recovery heat exchanger; C—the high temperature heat exchanger; D—the expander, E—the low temperature heat exchanger.

Generally, for a combined space cooling and water heating system, the inlet temperatures of high temperature reservoir (T_{Hi}) and heat recovery reservoir (T_{Ri}) can be treated as the outdoor environment temperature as described in Eq. (1) and the inlet temperature of low temperature reservoir (T_{Li}) can be treated as the indoor environment temperature as given in Eq. (2).

$$T_{Hi} = T_{Ri} = T_o \tag{1}$$

Figure 1. (a) The schematic of the refrigerator with heat recovery, (b) The temperature–entropy diagram of the CRHR cycle.

$$T_{Li} = T_i \tag{2}$$

where T_o and T_i are the outdoor and indoor environment temperature.

The rate of heat transfer at the high temperature side (Q_H) is defined by Eq. (3):

$$Q_H = C_h (T_{Ho} - T_{Hi}) \tag{3}$$

From Eq. (1), Eq. (3) becomes Eq. (4):

$$Q_H = C_h (T_{Ho} - T_o) \tag{4}$$

where C_h is the thermal capacitance rate of high temperature reservoir and T_{Ho} is the outlet temperature of the high temperature reservoir.

Using the LMTD method, Q_H can also be determined by Eq. (5):

$$Q_{H} = U_{h}F_{h}\frac{(T_{HC} - T_{o}) - (T_{HC} - T_{Ho})}{\ln\left[(T_{HC} - T_{o})/(T_{HC} - T_{Ho})\right]}$$
(5)

where U_h is the heat transfer coefficient of high temperature reservoir. F_h is the heat transfer area of high temperature reservoir. T_{HC} is the temperature of working fluid at the high temperature side.

From Eqs. (4) and (5), Eq. (6) is derived.

$$\ln \left[(T_{HC} - T_o) / (T_{HC} - T_{Ho}) \right] = N T U_h \tag{6}$$

From Eqs. (6), (7) is derived for determination of the outlet temperature of the high temperature reservoir.

$$T_{Ho} = T_o + \eta_h (T_{HC} - T_o) \tag{7}$$

where η_h is the effectiveness of the high temperature heat exchanger; and is defined by Eq. (8):

 $\eta_h = 1 - \exp(-NTU_h) \tag{8}$

Substituting Eq. (7) into Eq. (4) gives Eq. (9):

$$Q_H = \eta_h C_h (T_{HC} - T_o) \tag{9}$$

The rate of heat transfer at the heat recovery side (Q_R) is determined by Eq. (10):

$$Q_R = C_r (T_{Ro} - T_{Ri}) \tag{10}$$

Equation (11) is derived from Eq. (1) and Eq. (10) for determination of Q_R :

$$Q_R = C_r (T_{Ro} - T_o) \tag{11}$$

where C_r is the thermal capacitance rate of heat recovery reservoir.

Using the LMTD method, Q_R can also be determined by Eq. (12), as:

$$Q_R = U_r F_r \frac{(T_{HC} - T_o) - (T_{HC} - T_{Ro})}{\ln \left[(T_{HC} - T_o) / (T_{HC} - T_{Ro}) \right]}$$
(12)

where U_r is the heat transfer coefficient of heat recovery reservoir. F_r is the heat transfer area of heat recovery reservoir.

From Eqs. (11) and 12), Eq. (13) is derived:

$$\ln \left[(T_{HC} - T_o) / (T_{HC} - T_{Ro}) \right] = NTU_r$$
(13)

From Eqs. (13), (14) is derived:

$$T_{Ro} = T_o + \eta_r (T_{HC} - T_o) \tag{14}$$

where η_r is the effectiveness of the heat recovery heat exchanger; and is defined by Eq. (15).

$$\gamma_r = 1 - \exp(-NTU_r) \tag{15}$$

Substituting Eq. (14) into Eq. (11) gives Eq. (16):

$$Q_R = \eta_r C_r (T_{HC} - T_o) \tag{16}$$

The rate of heat transfer at the low temperature side, Q_L is determined by Eq. (17):

$$Q_L = C_l (T_{Li} - T_{Lo}) \tag{17}$$

From Eqs. (2), (18) can be obtained to determine Q_L :

$$Q_L = C_l (T_i - T_{Lo}) \tag{18}$$

where C_l is the thermal capacitance rate of low temperature reservoir. Using the LMTD method, Q_L can also be determined by Eq. (19), as:

$$Q_L = U_l F_l \frac{(T_i - T_{LC}) - (T_{Lo} - T_{LC})}{\ln\left[(T_i - T_{LC})/(T_{Lo} - T_{LC})\right]}$$
(19)

where U_l is the heat transfer coefficient of low temperature reservoir. F_l is the heat transfer area of low temperature reservoir.

From Eqs. (18) and (19), Eq. (20) is derived:

$$\ln \left[(T_i - T_{LC}) / (T_{Lo} - T_{LC}) \right] = NTU_l$$
(20)

From Eqs. (20), (21) can be derived:

$$T_{Lo} = T_i + \eta_l (T_i - T_{LC}) \tag{21}$$

where η_l is the effectiveness of the low temperature heat exchanger; and is defined by Eq. (22).

$$\eta_l = 1 - \exp(-NTU_l) \tag{22}$$

Substituting Eq. (21) into Eq. (18) gives Eq. (23):

$$Q_L = \eta_l C_l (T_i - T_{LC}) \tag{23}$$

The cycle is internally irreversible and the internal irreversibility parameter can be determined by Eq. (24):

$$\frac{Q_H + Q_R}{T_{HC}} = \Phi \frac{Q_L}{T_{LC}}$$
(24)

where Φ is the internal irreversibility parameter, which is always greater than 1 for an irreversibility cycle and equals to 1 for an endoreversible cycle.

The ratio of the heat transfer rate at the heat recovery side to the total heat emissions, n can be defined by Eq. (25), below:

$$n = \frac{Q_{RC}}{Q_{RC} + Q_{HC}} \tag{25}$$

where, *n* is defined as the heat recovery ratio.

The design rule chosen by this paper is that the heat transfer area should be constrained, as defined by Eq. (26):

$$F_h + F_r + F_l = F \tag{26}$$

The ratio of F_h and F_r to F is defined by Eq. (27):

$$f = \frac{F_h + F_r}{F} \tag{27}$$

And Eq. (28) defines the ratio of F_r to F_h and F_r .

$$f_0 = \frac{F_r}{F_h + F_r} \tag{28}$$

where f is the ratio of the summation of high temperature heat exchanger area and the heat recovery heat exchanger area to the total heat exchanger area. f_0 is the ratio of heat recovery heat exchanger area to the summation of high temperature heat exchanger area and the heat recovery heat exchanger area.

From Eqs. (26), (27) and Eqs. (28), (29), (30) and (31) are respectively derived:

$$F_h = f(1 - f_0)F$$
(29)

$$F_r = f_0 F \tag{30}$$

$$F_l = (1 - f)F \tag{31}$$

The equations above constitute the mathematical model for optimizing the performance of an irreversible Carnot refrigerator with heat recovery operating between the three variable-temperature heat reservoirs. From these equations, Eqs. (32) to (36) can be derived for description of the objective functions as given below:

$$R = Q_L = C_l \eta_l T_i - C_l \eta_l T_i \left[\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1 \right]^{-1}$$
(32)

$$P = Q_H + Q_R - Q_L = \left[(C_h \eta_h + C_r \eta_r) \frac{T_{Ro} - T_o}{\eta_r} - C_l \eta_l T_i + C_l \eta_l T_i \left[\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1 \right]^{-1}$$
(33)

$$\varepsilon = \frac{Q_L}{Q_H + Q_R - Q_L} = \frac{C_l \eta_l T_i - C_l \eta_l T_i [\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1]^{-1}}{[(C_h \eta_h + C_r \eta_r) \frac{T_{Ro} - T_o}{\eta_r} C_l \eta_l T_i - C_l \eta_l T_i [\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1]^{-1}}$$
(34)

$$\varepsilon_{R} = \frac{Q_{R}}{Q_{H} + Q_{R} - Q_{L}} = \frac{(T_{Ro} - T_{o})C_{r}}{[(C_{h}\eta_{h} + C_{r}\eta_{r})\frac{T_{Ro} - T_{o}}{\eta_{r}}C_{l}\eta_{l}T_{i} - C_{l}\eta_{l}T_{i}[\frac{(T_{Ro} - T_{o})(C_{h}\eta_{h} + C_{r}\eta_{r})}{\Phi_{C_{l}\eta_{l}}(T_{Ro} - T_{o} + \eta_{r}T_{o})} + 1]^{-1}}$$
(35)

$$COP_{\text{int}} = \varepsilon + \varepsilon_R = \frac{C_l \eta_l T_i - C_l \eta_l T_i [\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1]^{-1} + (T_{Ro} - T_o)C_r}{[(C_h \eta_h + C_r \eta_r)\frac{T_{Ro} - T_o}{\eta_r} C_l \eta_l T_i - C_l \eta_l T_i [\frac{(T_{Ro} - T_o)(C_h \eta_h + C_r \eta_r)}{\Phi C_l \eta_l (T_{Ro} - T_o + \eta_r T_o)} + 1]^{-1}}$$
(36)

$$\eta_{\Pi} = \frac{E_L + E_R}{E_p} = \left[\frac{2T_o + \frac{\eta_h(T_{Ro} - T_o)}{\eta_r}}{2T_i - \frac{p}{C_l}} - 1\right]\varepsilon + \left[1 - \frac{2T_o + \frac{\eta_h(T_{Ro} - T_o)}{\eta_r}}{T_{Ro} + T_o}\right]\varepsilon_R$$
(37)

In these equations, $\eta_h = 1 - \exp[-U_h(1-f_0)\dot{f}F/C_h]$, $\eta_r = 1 - \exp[-U_r\dot{f}f_0F/C_r]$, $\eta_l = 1 - \exp[-U_l(1-f)F/C_l]$.

Where *R* is the refrigeration rate; *P* is the input power; ε is the refrigeration coefficient; ε_R is the heat recovery coefficient; which is defined as the ratio of heat recovery rate to the input power. COP_{int} is the comprehensive coefficient, which is the summation of refrigeration coefficient and heat recovery coefficient. E_p is the input electricity exergy of the CRHR; E_L is the cold exergy; E_R is the recovery heat exergy; E_H is the heat exergy emitted to the surroundings directly, which is a part of the exergy loss; Π is the other exergy loss of the CRHR.

In Eqs. (32) to (37) the superscript point on f means that f is chosen to be the optimization variable when the parameters such as $C_{h}C_{r}C_{b}U_{h}U_{r}U_{b}F_{T}_{i}T_{o}T_{Ro}f_{o}$ and Φ are specified. Maximizations or minimizations of these performance parameters with respect to f give Eqs. (38) to (43):

$$dR/df \ge 0 \tag{38}$$

$$dP/df \ge 0 \tag{39}$$

$$d\varepsilon/df \ge 0 \tag{40}$$

$$d\varepsilon_R/df \ge 0 \tag{41}$$

$$dCOP_{\rm int}/df \ge 0$$
 (42)

$$d\eta_{\Pi}/df \ge 0 \tag{43}$$

By calculating $dR/df = 0, dP/df = 0, d\varepsilon/df = 0, d\varepsilon_R/df = 0, dCOP_{int}/df = 0$ and $d\eta_{\Pi}/df \ge 0$; the maximums/minimums of $R, P, \varepsilon, \varepsilon_R$, COP_{int} and η_{Π} can be obtained. From Eqs. (32) to (43), six of the objective functions are obviously the transcendental equations and the analytical formulas cannot be obtained for the optimum performance parameters. In this paper, the numerical solution method was used to calculate the approximate solution by Matlab software. The influence of temperature variations of heat recovery reservoir on the optimal performance parameters can be researched by substituting different values of T_{Ro} . In this way, the influence of f_0 and Φ also can be studied.

Results and discussion

The specified parameters and numerical examples are listed in Table 1^{30,31}:

There are two main input variables in this paper, one of which is that the value range of the ratio of the summation of high temperature heat exchanger area and the heat recovery heat exchanger area to the total heat exchanger area (f) is 0–1, and the other is T_{Ro} , which is the outlet temperature of heat recovery reservoir. Because the heat recovery in this paper is used to produce sanitary water and industrial heating. Therefore, the lowest temperature of the T_{Ro} must be higher than the ambient temperature, and the highest temperature should not exceed the temperature of the condenser in the refrigeration cycle. Hence, in this paper, the temperature range of the T_{Ro} is selected as 310-370 K.

$C_h \mathrm{kW/K}$	C _r kW/K	C _l kW/K	$F \mathrm{m}^2$	$U_h kW/(K m^2)$	$U_r kW/(K m^2)$	$U_l kW/(K m^2)$	T _i K	ТоК
5.0	3.0	5.0	4	1.0	1.0	1.0	293	308

Table 1. Specified parameters.

Optimal value of R

The plot of *R* vs. *f* is shown in Fig. 2 for three values of T_{Ro} under the condition that: $\Phi = 1$ and $f_0 = 0.5$. The plot of f_{-opt-R} vs. T_{Ro} is shown in Fig. 3 for three values of f_0 and two values of Φ .

In Fig. 2, the optimal values of f denoted as f_{-opt-R} , at which the refrigerating rate would attain their maximum values, are denoted as R_f . In this case the optimal values of f are $f_{-opt-R} = 0.508$, 0.505 and 0.503; the maximums of refrigeration rate are $R_f = 80.07$ kW, 103.45 kW and 121.18 kW corresponding to $T_{Ro} = 328$ K, 338 K and 348 K respectively. The greater is the T_{Ro} , the greater would be the refrigeration rate. Figure 3 shows that $T_{Ro}\Phi$ and f_0 all have effects on f_{-opt-R} . The value of f_{-opt-R} moves closer to a constant value gradually, along with an increase in T_{Ro} . This constant value is influenced by Φ . The smaller is the value of f_0 , the smaller would be the f_{-opt-R} .

The plot of R_f vs. T_{R_0} is shown in Fig. 4 for three values of f_0 and two values of Φ . Figure 4 shows an increase in R_f with an almost corresponding increase in T_{R_0} . The smaller is the value of f_0 , the greater would be the R_f . The greater is the value of Φ , the smaller would be R_f .

Optimal value of P

The plot of *P* vs. *f* is shown in Fig. 5 for three values of T_{Ro} under the condition that: $\Phi = 1$ and $f_0 = 0.5$. In Fig. 5, the optimal values of *f* denoted as f_{-opt-P} , at which the input power attain minimum values are denoted as P_f . In this case the optimal values of *f* are $f_{-opt-P} = 0.467$, 0.465 and 0.463. The minimum values of input power are $P_f = 43.86$ kW, 82.38 kW and 126.58 kW, corresponding to $T_{Ro} = 328$ K, 338 K and 348 K respectively. The greater is the T_{Ro} , the greater would be the input power.

The plot of f_{-opt-P} vs. T_{Ro} is shown in Fig. 6 for three values of f_0 and two values of Φ . Figure 6 shows that T_{Ro} , Φ and f_0 all have effects on f_{-opt-P} . Different from the curves of f_{-opt-R} vs. T_{Ro} , the curves of f_{-opt-P} diverge from each other along with an increase in T_{Ro} .

Figure 2. *R* vs. *f* for three values of T_{Ro} .

Figure 3. f_{-opt-R} vs. T_{Ro} for three values of f_0 and two values of Φ .

.....

Figure 4. R_f vs. T_{Ro} for three values of f_0 and two values of Φ .

Figure 5. P vs. f for three values of T_{Ro} .

Figure 6. f_{-opt-P} vs. T_{Ro} for three values of f_0 and two values of Φ .

Figure 7. P_f vs. T_{Ro} for three values of f_0 and two values of Φ .

The plot of P_f vs. T_{Ro} is shown in Fig. 7 for three values of f_0 and two values of Φ . Figure 7 shows that P_f increase along with an increase in T_{Ro} . The smaller is the value of f_0 , the greater would be the P_f . The greater is the value of Φ , the greater is P_f .

Optimal value of ε

The plot of ε vs. *f* is shown in Fig. 8 for three values of T_{Ro} under the condition that: $\Phi = 1$ and $f_0 = 0.5$. In Fig. 8, there is only one optimal value of *f*, denoted as $f_{-opt-\varepsilon}$, at which the refrigeration coefficient attains maximum values, denoted as ε_f . In this case the optimal value of *f* is $f_{-opt-\varepsilon} = 0.483$; the maximum values of refrigeration coefficient are $\varepsilon_f = 1.83$, 1.26 and 0.96 corresponding to $T_{Ro} = 328$ K, 338 K and 348 K respectively. The greater is the T_{Ro} , the smaller would be the refrigeration coefficient.

The influence factors on $f_{-opt-\varepsilon}$ can be analyzed by the following plots. Figure 9a shows the plot of $f_{-opt-\varepsilon}$ vs. T_{Ro} for three values of f_0 and two values of Φ . T_{Ro} is shown to have no effect on $f_{-opt-\varepsilon}$. Figure 9b shows the plot of $f_{-opt-\varepsilon}$ vs. f_0 under the condition that: $\Phi = 1$ and $T_{Ro} = 328$ K. In the range of the available value of $f_{0,0} \leq f_0 \leq 1$, $f_{-opt-\varepsilon}$ has a maximum value and a minimum value. When $f_0 = 0$, $f_{-opt-\varepsilon}$ attains its maximum value (about 0.55); when $f_0 = 0.7$, $f_{-opt-\varepsilon}$ attains its minimum value (about 0.481). Figure 9c shows the plot of $f_{-opt-\varepsilon}$ vs. Φ under the condition that $f_0 = 0.5$ and $T_{Ro} = 328$ K. $f_{-opt-\varepsilon}$ vs. Φ is approximate to the monotonous linear relationship. The greater is the Φ , the greater would be the value of $f_{-opt-\varepsilon}$.

The influence factors on ε_f can be analyzed by the following plots. Figure 10a shows the plot of ε_f vs. T_{Ro} for three values of f_0 and two values of Φ .

The maximum ε_f decreases dramatically along with the increase of T_{Ro} . From Eq. (11) the heat recovery rate Q_R is shown to increase monotonically with T_{Ro} due to the specified values of T_o and C_r . That means the greater is T_{Ro} , the larger would be the recycled heat and the lower is refrigeration coefficient. Figure 10b shows the plot of ε_f vs. f_0 under the condition that $\Phi = 1$ and $T_{Ro} = 328$ K and Fig. 10c shows the plot of ε_f vs. Φ under the condition

Figure 8. ε vs. f for three values of T_{Ro} .

Figure 9. (a) $f_{-opt-\varepsilon}$ vs. T_{Ro} for three values of f_0 and two values of Φ , (b) $f_{-opt-\varepsilon}$ vs. f_0 , (c) $f_{-opt-\varepsilon}$ vs. Φ .

that $f_0 = 0.5$ and $T_{Ro} = 328 \text{ K}$. ε_f vs. f_0 as well as ε_f vs. Φ are approximate to the monotonous linear relationships. The greater is the f_0 , the greater would be the value of ε_f . The greater is the Φ , the smaller would be ε_f .

Optimal value of ε_R

The plot of ε_R vs. f is shown in Fig. 11 for three values of T_{Ro} under the condition that: $\Phi = 1$ and $f_0 = 0.5$. In Fig. 11, the optimal value of f is denoted as $f_{-opt-\varepsilon_R}$, at which the heat recovery coefficient attains its maximum values, denoted as ε_{Rf} . In this case the optimal values of f are $f_{-opt-\varepsilon_R} = 0.467$, 0.465 and 0.463. The maximum values of refrigeration coefficient are $\varepsilon_f = 1.37$, 1.09 and 0.95 corresponding to $T_{Ro} = 328$ K, 338 K and 348 K respectively. The values of $f_{-opt-\varepsilon_R}$ is the same as $f_{-opt-\rho}$ due to the definition of ε_R in Eq. (35). The greater is the T_{Ro} , the smaller would be the heat recovery coefficient.

The influence factors on $f_{-opt-\varepsilon R}$ can be analyzed by the following plots. Figure 12a shows the plot of $f_{-opt-\varepsilon R}$ vs. T_{Ro} for three values of f_0 and two values of Φ . The curves in Fig. 12a are the same as Fig. 6. Figure 12b shows the plot of $f_{-opt-\varepsilon R}$ vs. f_0 under the condition that $\Phi = 1$ and $T_{Ro} = 328$ K. In the range of the available value of f_0 , $(0 \le f_0 \le 1) f_{\varepsilon R}$ has a minimum value. When $f_0 = 0$, $f_{-opt-\varepsilon R}$ gradually tend to be 1; when $f_0 = 0.72$, $f_{-opt-\varepsilon R}$ attains its minimum value (about 0.46). Figure 12c shows the plot of f_{ε_R} vs. Φ under the condition that $f_0 = 0.5$ and $T_{Ro} = 328$ K. $f_{-opt-\varepsilon}$ vs. Φ is approximate to the monotonous linear relationship. The greater is the Φ , the greater would be the value of $f_{-opt-\varepsilon R}$.

The influence factors on ε_{Rf} can be analyzed by the following plots. Figure 13a shows the plot of ε_{Rf} vs. T_{Ro} for three values of f_0 and two values of Φ . The maximum ε_{Rf} declines sharply along with an increase in T_{Ro} , due to the input power *P* is increasing faster than Q_R . Figure 13b shows the plot of ε_{Rf} vs. f_0 under the condition that $\Phi = 1$ and $T_{Ro} = 328$ K and Fig. 13c shows the plot of ε_{Rf} vs. Φ under the condition that $f_0 = 0.5$ and $T_{Ro} = 328$ K. ε_f vs. f_0 as well as ε_f vs. Φ are approximate to the monotonous linear relationships. The influence rules of f_0 and Φ on ε_{Rf} is similar to ε_f .

Optimal value of COP_{int}

From definition of COP_{int} in Eq. (36) that there must be an optimal value of f, denoted as $f_{-opt-COP_{int}}$, at which the comprehensive coefficient could attain its maximum values, denoted as COP_{intf} .

Figure 10. (a) ε_f vs. T_{Ro} for three values of f_0 and two values of Φ , (b) ε_f vs. f_0 , (c) ε_f vs. Φ .

Figure 11. ε_R vs. *f* for three values of T_{Ro} .

The influence factors on ε_{Rf} can be analyzed by the following plots. Figure 14a shows the plot of $f_{-opt-COPint}$ vs. T_{Ro} for three values of f_0 and two values of Φ . The curves in Fig. 14a are almost horizontal straight lines. The variation of T_{Ro} has a small influence on $f_{-opt-COPint}$. Figure 14b shows the plot of $f_{-opt-COPint}$ vs. f_0 under the condition that $\Phi = 1$ and $T_{Ro} = 328$ K. In the range of the available value of f_0 , $(0 \le f_0 \le 1)$ $f_{-opt-\varepsilon R}$ has a maximum value and a minimum value. When $f_0 = 0$, $f_{-opt-\varepsilon}$ attains its maximum value (0.56); when $f_0 = 0.71$, $f_{-opt-\varepsilon}$

Figure 12. (a) $f_{-opt-\varepsilon R}$ vs. T_{Ro} for three values of f_0 and two values of Φ , (b) $f_{-opt-\varepsilon R}$ vs f_0 , (c) $f_{-opt-\varepsilon R}$ vs. Φ .

attains its minimum value (about 0.473). Figure 14c shows the plot of $f_{-opt-COPint}$ vs. Φ under the condition that $f_0 = 0.5$ and $T_{Ro} = 328$ K. $f_{-opt-COPint}$ vs. Φ is approximate to the monotonous linear relationship. The greater is the Φ , the greater would be the value of $f_{-opt-COPint}$.

The influence factors on COP_{intf} can be analyzed by the following plots. Figure 15a shows the plot of COP_{intf} vs. T_{Ro} for three values of f_0 and two values of Φ . The maximum COP_{intf} declines sharply along with an increase in T_{Ro} . Figure 15b shows the plot of COP_{intf} vs. f_0 under the condition that $\Phi = 1$ and $T_{Ro} = 328$ K and Fig. 15c shows the plot of COP_{intf} vs. Φ under the condition that $f_0 = 0.5$ and $T_{Ro} = 328$ K. COP_{intf} vs. f_0 as well as COP_{intf} vs. Φ are approximate to the monotonous linear relationships.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 show the completed approximate solutions of a numerical example. The results of this numerical solution example are under the specified conditions, but the influence factors on the performance parameters are of general significance. With specified heat transfer coefficients and thermal capacitance rates there must be a maximum value of the refrigerating rate, refrigeration coefficient, heat recovery coefficient or comprehensive coefficient and a minimum value of the input power existing in the cycle. The increase of the outlet temperature of heat recovery reservoir could lead to a rise in the maximum value of refrigeration coefficient, heat recovery coefficient, heat recovery coefficient and comprehensive coefficient. The rise of f_0 is beneficial to the performance coefficients. The rise of Φ is harmful to them.

Optimal value of η_{Π}

The plot of η_{Π} vs. f is shown in Fig. 16 for three values of T_{Ro} under the condition that: $\Phi = 1$ and $f_0 = 0.5$. The plot of $f_{-opt-\eta_{\Pi}}$ vs. T_{Ro} is shown in Fig. 17 for three values of f_0 and two values of Φ .

In Fig. 16, the optimal values of η_{Π} denoted as $f_{-opt-\eta_{\Pi}}$, at which the exergy efficiency would attain their maximum values, are denoted as η_{Π_f} . In this case the optimal values of η_{Π} are $f_{-opt-\eta_{\Pi}}=0.4942$, 0.4958 and 0.4927; the maximums of exergy efficiency are $\eta_{\Pi_f}=0.2035$, 0.1532 and 0.1248 corresponding to $T_{Ro}=328$ K, 338 K and 348 K respectively. The greater is the T_{Ro} , the smaller would be the exergy efficiency. Figure 17 shows that $T_{Ro}\Phi$ and f_0 all have effects on $f_{-opt-\eta_{\Pi}}$. The value of $f_{-opt-\eta_{\Pi}}$ moves closer to a constant value gradually,

Figure 13. (a) ε_{Rf} vs. T_{Ro} for three values of f_0 and two values of Φ , (b) ε_{Rf} vs. f_0 , (c) ε_{Rf} vs. Φ .

along with an increase in T_{Ro} . This constant value is influenced by Φ . The smaller is the value of f_0 , the smaller would be the $f_{-opt-\eta_{\Pi}}$.

Conclusion

In this paper, we applied the second law of thermodynamics to an irreversible Carnot refrigerator with heat recovery coupled to variable-temperature heat reservoirs. The heat recovery process involves the recycling of waste heat generated during refrigeration for various purposes, such as sanitary water supply, industrial heating, and air condensation. Through the use of numerical solutions, we were able to obtain accurate results for a specific example. Our study yielded several key findings, which are summarized below:

- (1) With specified heat transfer coefficients and thermal capacitance rates there must be an optimal value of f at which the performance parameter attains maximum or minimum value. The outlet temperature of heat recovery reservoir (T_{Ro}) can have an effect on $f_{-opt-R}, f_{-opt-P}, f_{-opt-\varepsilon_R}, f_{-opt-COP_{int}}$ and $f_{-opt-\eta_{II}}$; but it has no effect on $f_{-opt-\varepsilon_R}$.
- (2) The increase in the outlet temperature of heat recovery reservoir (T_{Ro}) could lead to a rise in the maximum value of refrigerating rate (R_f) and minimum value of input power (P_f) ; also it will lead to the decline in the maximum value of refrigeration coefficient (ε_f) , heat recovery coefficient (ε_{Rf}) , comprehensive coefficient (COP_{intf}) and the exergy efficiency $(\eta_{\Pi f})$.
- (3) The rise of f_0 is beneficial to the performance coefficients, but it could lead to a decline in R_f . When $f_0 = 1.0$ the performance coefficients would attain their limit values and all of the condensing heat could be recycled. The rise of Φ can be harmful to the performance coefficients.

Figure 14. (a) $f_{-opt-COPint}$ vs. T_{Ro} for three values of f_0 and two values of Φ , (b) $f_{-opt-COPint}$ vs. f_0 , (c) $f_{-opt-COPint}$ vs. Φ .

Figure 15. (a) COP_{intf} vs. T_{Ro} for three values of f_0 and two values of Φ , (b) COP_{intf} vs. f_0 , (c) COP_{intf} vs. Φ .

Figure 16. η_{Π} vs. *f* for three values of T_{Ro} .

Figure 17. $f_{-opt-\eta_{\Pi}}$ vs. T_{Ro} for three values of f_0 and two values of Φ .

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Received: 24 May 2023; Accepted: 14 December 2023 Published online: 27 December 2023

References

- 1. Gong, G. *et al.* A new heat recovery technique for air-conditioning heat-pump system. *Appl. Therm. Eng.* **28**(s17–18), 2360–2370 (2008).
- Gong, G. & Chen, F. Thermodynamic simulation of condensation heat recovery characteristics of a single stage. Appl. Energy 91(1), 326–333 (2012).
- 3. Wang, C., Gong, G., Su, H. & Yu, C. W. Efficacy of integrated photovoltaics-air source heat pump systems for application in central-South China. *Renew. Sustain. Energy Rev.* 49, 1190–1197 (2015).
- 4. Han, T., Zheng, Y. & Gong, G. Exergy analysis of building thermal load and related energy flows in buildings. *Indoor Built Environ*. 1420326X15612881.
- 5. Chambadal, P. Les Centrales Nucleaires 43-48 (Armand Colin, 1957).
- 6. Curzon, F. L. & Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43(1), 22-24 (1975).
- Wang, C., Gong, G., Su, H. & Yu, C. W. Dimensionless and thermodynamic modelling of integrated photovoltaics-air source heat pump systems. *Sol. Energy* 118, 175–185 (2015).
- 8. Zhang, P. *et al.* Configuration optimization analysis of heat exchangers based on finite time thermodynamics. *Cryogen. Supercond.* **50**(01), 57–61. https://doi.org/10.16711/j.1001-7100.2022.01.010 (2022).
- Li, T. Finite time thermodynamics optimization of indirect sewage source heat pump system. Harbin Univ. Commerce https://doi. org/10.27787/d.cnki.ghrbs.2021.000454 (2021).
- John, S. & Kyle, H. Assessment of the exergy and power density potential in the effluent flow of wastewater treatment plants. Sustain. Energy Technol. Assess. 53, 1–10 (2022).
- Ni, N., Chen, L., Wu, C. & Sun, F. Performance analysis for endoreversible closed regenerated Brayton heat-pump cycles. *Energy Convers. Manage.* 40(4), 393–406 (1999).
- 12. Chen, L., Wu, Č. & Sun, F. Steady flow combined refrigeration cycle performance with heat leak. *Appl. Therm. Eng.* **17**(7), 639–645 (1997).
- Chen, L., Wu, C. & Sun, F. Influence of internal heat leak on the performance of refrigerators. *Energy Convers. Manag.* 39(s1–2), 45–50 (1998).
- 14. Chen, L., Ni, N., Sun, F. & Wu, C. Performance of real regenerated air heat-pumps. *Int. J. Electr. Power Energy Syst.* 19(3), 231–238 (1999).
- Chen, L. *et al.* Performance analysis of a closed regenerated Brayton heat pump with internal irreversibilities. *Int. J. Energy Res.* 23(12), 1039–1050 (1999).
- Bi, Y., Chen, L. & Sun, F. Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump. *Appl. Energy* 85(7), 607–617 (2008).
- Sarkar, J. & Bhattacharyya, S. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs. *Energy Convers. Manag.* 48(3), 803–808 (2007).
- Sarkar, J., Bhattacharyya, S. & Gopal, M. R. Analytical minimization of overall conductance and heat transfer area in refrigeration and heat pump systems and its numerical confirmation. *Energy Convers. Manag.* 48(4), 1245–1250 (2007).
- 19. Jiafeng, W. *et al.* Thermo-hydraulic performance and exergy analysis of a fin-and-tube heat exchanger with sinusoidal wavy winglet type vortex generators. *Int. J. Therm. Sci.* **172**, 107274 (2022).
- Lei, T. *et al.* Optimal distribution of heat exchanger area for maximum efficient power of thermoelectric generators. *Energy Rep.* 8, 10500 (2022).
- 21. Tan, W. *et al.* Optimal heat exchanger area distribution and low-temperature heat sink temperature for power optimization of an endoreversible space Carnot cycle. *Entropy* **23**(10), 1285 (2021).
- Tyagi, S. K., Kaushik, S. C. & Singhal, M. K. Parametric study of irreversible Stirling and Ericsson cryogenic refrigeration cycles. Energy Convers. Manag. 43(17), 2297–2309 (2002).
- Tyagi, S. K. et al. Ecological optimization of an irreversible Ericsson cryogenic refrigerator cycle. Int. J. Energy Res. 29(13), 1191– 1204 (2005).

- Tyagi, S. K. et al. Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle. Int. J. Therm. Sci. 45(8), 829–840 (2006).
- Tyagi, S. K., Wang, Q., Xia, P. & Chen, G. M. Optimisation of an irreversible Carnot refrigerator working between two heat reservoirs. *Int. J. Exergy* 7(1), 76–88 (2010).
- 26. Ruibo, W. *et al.* Optimizing power and thermal efficiency of an irreversible variable-temperature heat reservoir lenoir cycle. *Appl. Sci.* **11**, 15 (2021).
- Meng, F., Chen, Z. & Xu, C. Structure desian and performance analysis on heat pipe-cooled thermoelectric refrigerator with variable temperature heat source. J. Southeast Univ. Nat. Sci. Ed. 52(02), 309–319 (2022).
- Tan, W. *et al.* Performance analysis and optimization of an irreversible Carnot heat engine cycle for space power plant. *Energy Rep.* 8, 6601 (2022).
- 29. Wu, B. et al. Figures of merit optimization for reversible simple air refrigeration cycle. College Phys. 42(09), 40-43 (2023).
- Su, H. *et al.* Thermodynamic optimization of an irreversible Carnot refrigerator with heat recovery reservoir. *Appl. Therm. Eng.* 110, 1624–1634 (2017).
- El-Din, M. M. S. Performance analysis of heat pumps and refrigerators with variable reservoir temperatures. *Energy Convers.* Manag. 42(2), 201–216 (2001).

Acknowledgements

The authors are grateful for the support of the Natural Science Foundation of Hunan Province, China (2022JJ30194), Excellent youth funding of Hunan Provincial Education Department (18B383), the Natural Science Foundation Youth Project of Hunan Province (2018JJ3102) and National Key R&D Project (2018YFE0111200).

Author contributions

Z.Z. and H.S. wrote the main manuscript text, G.D. simplified the formulas, X.L. and L.Z. prepared figures. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to H.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023