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Testing the power‑law hypothesis 
of the interconflict interval
Hiroshi Okamoto 1*, Iku Yoshimoto 2, Sota Kato 3, Budrul Ahsan 3 & Shuji Shinohara 4

War is an extreme form of collective human behaviour characterized by coordinated violence. We 
show that this nature of war is substantiated in the temporal patterns of conflict occurrence that 
obey power law. The focal metric is the interconflict interval (ICI), the interval between the end of a 
conflict in a dyad (i.e. a pair of states) and the start of the subsequent conflict in the same dyad. Using 
elaborate statistical tests, we confirmed that ICI samples compiled from the history of interstate 
conflicts from 1816 to 2014 followed a power-law distribution. We then demonstrate that the power-
law properties of ICIs can be explained by a hypothetical model assuming an information-theoretic 
formulation of the Clausewitz thesis on war: the use of force is a means of interstate communication. 
Our findings help us to understand the nature of wars between regular states, the significance of 
which has increased since the Russian invasion of Ukraine in 2022.

War is an extreme form of collective human behaviour characterized by two seemingly contradictory properties: 
violence and coordination. War is obviously an act of violence. It kills and injures people, destroying lands and 
facilities. By contrast, the use of violence in war is not necessarily haphazard. It is coordinated under the leader-
ship of political/military organizations to advance certain objectives. International relations theory is a discipline 
to study various events that occur in the international community. Whether one stands in any school of thought, 
such as realism or liberalism, understanding the causes of war is a central issue in international relations theory1.

Finding statistical patterns of war is pivotal as it promotes an inductive approach to wars. This approach, 
which has been reliably employed in the natural sciences, is meant to formulate a hypothesis to account for 
experimental or empirical observations, and then test predictions from this hypothesis. In international relations 
theory, in contrast, the theory-based approach, which attempts to derive a novel theory from plausible assump-
tions by deduction, has been more favoured for solving, for instance, war’s inefficiency puzzle2.

Robust statistical patterns, if found, can also be utilized to forecast conflict occurrences3. Forecasting conflicts 
is useful not only for scholarly evaluation of theories but also for supporting policymaking by international 
organizations to prevent, manage, or resolve conflicts or by individual states to establish national security. From 
this practical perspective, finding robust statistical patterns in any aspect of conflict is desirable.

Notably, scholars in complexity science have more enthusiastically sought statistical patterns of conflicts than 
scholars in the mainstream of international relations theory. The English physicist Lewis Fry Richardson made 
outstanding findings more than three-quarters of a century ago4,5. He found a power-law relationship between 
the severity of war, measured by battle deaths, and the frequency of war. These findings were later confirmed in 
more detailed studies6–13. The power-law distribution regarding war size, characterized as fat-tailed, implies the 
possible occurrence of black swan events, such as World War I (WWI) or World War II (WWII). The severity of 
other forms of human violence, such as civil war, insurgency, or terrorist attacks, has also been shown to follow 
the power law6,14–16. Finding statistical patterns in the severity of war and other human violence has inspired the 
exploration of the mechanism for the escalation of violence, typically attributed to ‘critical phenomena’ result-
ing from the operation of positive feedback loops6,7,15–20. This robust statistical pattern can also be used to infer 
the actual number of casualties of inadequately recorded wars or to examine the risk of the future occurrence of 
enormous wars such as WWI or WWII8,9,11,13,21.

While many of the previous studies have examined spatial features, such as the size of war, in their exploration 
of statistical patterns, this study focuses on temporal features, such as the timing of conflict occurrence, because 
temporal features are more fundamentally related to decision-making by states regarding military action, which 
is the core process of conflict occurrence. Furthermore, robust statistical patterns in the temporal features can be 
used more directly to predict the future occurrence of conflicts because prediction is a task along the temporal 
dimension. In fact, as the prediction of event occurrences, such as war, alliance formation, and revolutions, is at 
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the heart of international relations theory, scholars in the discipline have realized that a proper arrangement of 
time is required to achieve sophisticated predictions22,23. Whether we should explicitly theorize the relationship 
between time and the events under study23,24 or not25, it is now standard practice to account for time in model-
ling the occurrence of events by including splines or polynomials22,24 or by using Cox duration models26,27. These 
attempts suggest that time plays a vital role in international events26, the most notable of which is war. Therefore, 
exploring the temporal structures of conflict processes is a prerequisite to understanding and predicting wars.

In this study, we show that power law, which is well documented in the spatial aspects of conflicts, such 
as the size of war, also holds in their temporal aspects. Previous studies examining the timing of conflict 
occurrence11,28,29, which are few compared to those examining the size of war, suggest that the timing fails to 
follow power law. We argue that power law was unobserved in these studies because they looked at the timing of 
all conflicts rather than distinguishing dyads in disputes. To distinguish dyads, we propose to use the interconflict 
interval (ICI), the interval between the end of a conflict in a dyad and the start of the subsequent conflict in the 
same dyad. Using rigorous statistical tests, we confirmed that ICI samples compiled from the history of interstate 
conflicts followed a power-law distribution. To account for the empirically observed properties of ICIs, we then 
built a hypothetical model that incorporates the supposed nature of interstate conflicts. Finally, we evaluated the 
prediction of this model by further elaborating the temporal structure of the ICI distributions.

Results
Terminology: interstate war, militarized interstate dispute, and armed conflict
First, we specify the definitions of interstate wars, militarized interstate disputes, and armed conflicts. Precise 
definitions of the first two terms are provided by the Correlates of War (COW) Project (https://​corre​lates​ofwar.​
org/). An interstate war is a series of sustained battles between the armed forces of two or more states that have 
resulted in at least 1,000 battle deaths30. A militarized interstate dispute is defined as a set of incidents involving 
the deliberate, overt, government-sanctioned, and government-directed threat, display, or use of force between 
two (or more) states30,31. Interstate wars are a subset of militarized interstate disputes. Therefore, a quotient set 
of militarized interstate disputes by interstate wars is a set of militarized interstate disputes short of wars.

In a militarized interstate dispute, military action taken by one or both states is preceded by political issues, 
such as conflicting national interests or disagreements over foreign policy. The inclusion of both interstate wars 
and militarized interstate disputes short of wars in our analysis is appropriate if we stand on the view that the use 
of force, in any form, should be a way to resolve international issues, whereas previous studies on the severity 
of militarized interstate disputes have focused only on interstate wars7,9,11. Our view resonates with the famous 
thesis of Prussian general and war philosopher Carl von Clausewitz32:

“War is merely the continuation of policy by other means” (Clausewitz 183233)

He derived a corollary from this thesis, arguing that:

“The political object—the original motive of the war—will thus determine both the military objective to 
be reached and the amount of effort it requires.” (Clausewitz 183233)

The use of force in an actual war must be proportional to the political objectives. Thus, Clausewitz’s arguments 
motivated us to address militarized interstate disputes short of wars and interstate wars without distinction. In 
this paper, militarized interstate dispute will be concisely referred to as armed conflict or just conflict.

Dataset of interstate conflict
We used Dyadic MID Version 4.02 (MID 4.02), a dataset provided by the COW Project30. The dataset records 
armed conflicts between 1816 and 2014. Each conflict is specified by a dyad (a pair of states) engaged in the 
conflict and the start and end dates of the conflict.

Interconflict interval
We sought to identify robust statistical patterns behind the temporal structure of the occurrence of interstate 
conflicts. The interconflict interval (ICI) is the critical quantity to this end and is defined as the interval between 
the end of a conflict in a dyad and the start of the next conflict in the same dyad (Fig. 1). We obtained 2,369 ICI 
samples from MID 4.02, each measured in days. These ICI samples were collected from all dyads.

Testing the power‑law hypothesis of ICIs
First, the distribution of these 2369 ICIs binned with a width of 365.25 days (~ one year) was examined in log–log 
and linear-log plots. Falling into a straight line in a log–log or linear-log plot is characteristic of a power-law or 
exponential distribution, respectively. The linear regression results in both plots suggested that the ICIs followed 
a power-law distribution ( R2 = 0.9179 , Fig. 2a) instead of an exponential distribution ( R2 = 0.6905 , Fig. 2b).

We also examined the power-law fitting using a more elaborate statistical test proposed by Clauset et al. 
(2009)34, which we call the Clauset-Shalizi-Neuman (CSN) test. The empirical distributions of the ICI samples 
would have an artificial upper bound because of the limitations of the recording period, even if they were gener-
able from power-law distributions with infinitely extended tales (see Methods for further details). To consider 
the possible existence of artificial upper bounds, we used a modified version of the CSN test (mCSN test).

The power-law hypothesis to be examined using the mCSN test is mathematically expressed as follows: 
p(x) = x−γ /Z(γ ) ( xmin ≤ x ≤ xmax ). Here, the argument x takes an integer value; γ is the exponent of the 
power-law distribution; xmin and xmax are the lower and upper bounds of the range where the power law holds, 
respectively; and Z(γ ) =

∑xmax
x=xmin

x−γ is the normalization constant equal to the partition function. The details 
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of the mCSN test are provided in the Methods. In brief, we first estimated the exponent γ and lower bound xmin 
and then calculated the p-value. Let γ̂  and x̂min be the estimated values of γ and xmin , respectively. The upper 
bound xmax was used as the control parameter. Therefore, γ̂  and x̂min as well as the p-value were given as a func-
tion of xmax . Clauset et al. (2009)34 proposed conservative decision criteria: If p ≤ 0.1 , the power-law hypothesis 
is ruled out; otherwise, it is plausible. The same criteria were used in this study.

The results of the mCSN tests are shown in Fig. 3. The p-value exceeded the criteria of 0.1 (indicated by 
the horizontal dashed line in Fig. 3a) for up to xmax slightly longer than 20,000 days (~ 55 years) (Fig. 3a). In 
Fig. 3b,c, we observe that γ̂  and x̂min are almost constant with xmax ; γ̂  is approximately 1.3 and x̂min is approxi-
mately 250 days ( < 1 year). From these observations, we conclude that the ICI obeys the power law for the range 
of 250–20,000 days. Approximately 80% of the ICI samples were within this range for xmax = 20, 000 (Fig. 3d).

Information‑theoretic model of interstate conflict
Next, we built a hypothetical model that accounted for the observed power-law properties of ICIs. Consider a 
dyad of states A and B. Suppose that the n-th conflict Cn is provoked by either state. Following the terminology of 
the COW project30, we refer to the state that triggers conflict as the initiator and the opponent state as the target. 
Conflict Cn is characterized by the time of its occurrence and the military actions taken during the conflict. Let 
this time and the military actions be represented by stochastic variables Tn and Xn , respectively. For simplicity, 
we assume that the period bounded by the start and end of a conflict contracts to a point. Therefore, Tn takes 
the real value tn ∈ R1 . In contrast, corresponding to the various possibilities of the course of a war, Xn would 
take multidimensional values xn that would be categorical or numerical. Furthermore, each military action may 
be led by either the initiator or the target, as contingent switching between offence and defence is the case dur-
ing the course of war. Nevertheless, in the following discussion, we formally address Xn without addressing its 
mathematical details.

After the settlement of conflict Cn , a postconflict order is established, whether or not it is what the initiator 
desires. Then, either state, which is discontent with the status of this order and wants to change it to what is 
more favourable to it, intends to provoke the next conflict Cn+1 . The initiator of conflict Cn+1 may or may not 
be the same as that of conflict Cn . The time of conflict Cn+1 and military actions taken during this conflict are 
represented by the stochastic variables Tn+1 and Xn+1 , respectively.

The end (purpose) of war is to attain a political objective, and military action is a means to achieve this objec-
tive. Both the initiator and the target conceived their own purposes. For instance, the initiator’s purpose is to 
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Figure 1.   Interconflict intervals (ICIs). The ICI is the interval between the end of a conflict in a dyad and the 
start of the next conflict in the same dyad. Each conflict is indicated by the red rectangle.
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Figure 2.   Distribution of 2,369 ICI samples collected from all dyads is shown in log–log (a) and linear-log (b) 
plots. The bin width for the distribution was chosen as 365.25 days (~ one year). The dashed blue line in each 
panel indicates the linear regression results.
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compel the other to submit to its will, whereas the target’s purpose is to compel the initiator to withdraw. The 
variable Tn describes when a political disagreement between the two states becomes critical and either or both 
states decide to resolve this by force. In this respect, Tn reflects the purpose of the war. In fact, Tn encodes when 
the purpose is conceived but does not say what it is. Because the means should be aligned with the purpose, 
Xn instead of Tn reflect what the purpose is. As conceiving a purpose precedes choosing the means, Tn causally 
precedes Xn . In summary, the causal relationships between Tn , Xn , Tn+1 , and Xn+1 are expressed by the graphical 
model shown in Fig. 4a, which corresponds to the joint probability p(tn, xn, tn+1, xn+1).
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Figure 3.   Results of the mCSN test applied to 2,369 ICI samples collected from all dyads. This test reveals the 
plausibility of the power-law hypothesis expressed in the form: p(x) ∝ x−γ for xmin ≤ x ≤ xmax , where xmin 
and xmax are the lower and upper bounds of the domain in which the power law holds, respectively. The upper 
bound xmax is treated as a control parameter, and the optimal values of γ and xmin are estimated for each value of 
xmax . (a) The p-value of the mCSN test is plotted as a function of xmax . The horizontal dashed line indicates the 
criteria of 0.1, for the p-value above which the power-law hypothesis is plausible. (b) The estimated power-law 
exponent γ̂  is plotted as a function of xmax . (c) The estimated lower bound x̂min is plotted as a function of xmax . 
(d) The ratio of ICIs (out of the total, 2369) that fall in the power-law holding domain ( ̂xmin ≤ x ≤ xmax ) is 
plotted as a function of xmax.
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Figure 4.   Graphical models describing the causal relations between stochastic variables representing 
consecutive occurrences of conflicts Cn and Cn+1 . Stochastic variables Tn and Xn represent the time of 
occurrence of conflict Cn and the military operations taken during the course of this conflict, respectively. (a) 
A graphical model representing the causal relations between Tn , Xn , Tn+1 , and Xn+1 , corresponding to the 
joint probability p(tn, xn, tn+1, xn+1) . The amount of information transferred from {Tn,Xn} to {Tn+1,Xn+1} is 
equivalent to the amount of information mutually exchanged between the two states through their engagement 
in consecutive conflicts Cn and Cn+1 . (b) A graphical model representing the causal relation between Tn 
and Tn+1 , obtained by marginalizing the graphical model in (a) over Xn and Xn+1 and corresponding to the 
probability p(tn, tn+1).
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According to information theory, the amount of information carried by stochastic variables {Tn,Xn} is meas-
ured by entropy:

The amount of information successfully received by the stochastic variables {Tn+1,Xn+1} out of the total sent 
by {Tn,Xn} , which is precisely the entropy H[Tn,Xn] , is measured by mutual information:

It is reasonable to hypothesize that the amount of information transferred from {Tn,Xn} to {Tn+1,Xn+1} cor-
responds to the amount of information mutually exchanged between the two states through their engagement 
in consecutive conflicts Cn and Cn+1.

Equation (2) can be arranged as

where

Thus, the total amount of information exchanged between the two states through their engagement 
in consecutive conflicts Cn and Cn+1 is equivalent to the sum of the mutual information I[Tn,Tn+1] and 
I[Xn,Xn+1|Tn,Tn+1] . We interpret I[Tn,Tn+1] as the amount of information exchanged at the national strategy 
level and I[Xn,Xn+1|Tn,Tn+1] as that exchanged at the military operation level. The latter is particularly relevant 
to the extent to which battle lessons from military operations taken during conflict Cn influence those taken 
during conflict Cn+1 . We considered conflicts to be event units, and the success or failure of military operations 
conducted during each conflict was outside the scope of this study. That is, our main interest is the communica-
tion between the two states at the national strategy level. Therefore, we focus on I[Tn,Tn+1] . In doing so, we 
marginalize the graphical model in Fig. 4a over Xn and Xn+1 to obtain the graphical model in Fig. 4b, which 
corresponds to the probability p(tn, tn+1) =

∫
dxndxn+1p(tn, xn, tn+1, xn+1).

Thus, our consideration leads to the intriguing notion that the amount of information exchanged between 
the two states at the national strategy level depends only on the relative timing of their engagement in consecu-
tive conflicts. In the present study, we followed this notion without further verification. Future studies should 
address historical cases of interstate conflicts to verify this notion empirically.

The interval between conflicts Cn and Cn+1 , now given by Tn+1 − Tn , also served as a stochastic variable. Once 
p(tn, tn+1) , the joint probability of Tn and Tn+1 , is known, and p(tn+1 − tn) , the distribution of Tn+1 − Tn , can 
be easily calculated. Therefore, we determined the functional forms of p(tn, tn+1) . Information theory states that 
a probability distribution that exists maximizes entropy. In general, entropy maximization is performed under 
constraints that specify the objects or phenomena of interest. To define the constraints in our case, we assume 
that states A and B, struggling with their national interests and survival, will behave according to the trade-off 
between the principle of promptness and the principle of seriousness.

The need for the first principle of promptness can be easily understood. Suppose that the status quo is unfa-
vourable for state A. The longer this status continues, the more state A will incur losses in the national interest. 
To prevent further losses, state A intends to take military action in any form against state B to change the status 
quo as promptly as possible. The principle of promptness implies a behavioural tendency to avoid wasting time.

The second principle, seriousness, implies a deeper understanding of ‘coordinated violence’, which is referred 
to as the characteristics of war at the beginning of this paper. Remind Clausewitz’s fundamental thesis: “War is 
merely the continuation of policy by other means.” We now interpret this thesis from the perspective of modern 
information theory, rephrasing it as follows: “The use of military force is a means of interstate communication.” 
To formulate interstate communication through force in the framework of information theory, it is useful to 
note Clausewitz’s argument.

“War is no pastime; it is no mere joy in daring and winning, no place for irresponsible enthusiasts. It is a 
serious means to a serious end” (Clausewitz 1832 33).

This implies that the state responds seriously to an opponent’s move. (Serious responses do not necessarily 
mean rational responses; see Discussion). In other words, the rivalling states use force not haphazardly but in 
a coordinated manner trying to make the communication between them as efficient as possible. In our math-
ematical formulation, therefore, variables {Tn,Xn} and {Tn+1,Xn+1} (Fig. 4a) should as mutually dependent as 
possible. Even after marginalization (Fig. 4b), the same should go for the remaining variables Tn and Tn+1 . The 
principle of seriousness also implies that there is no room for behavioural redundancy in the theatre, where 
rivalling states act per their national interests and survival.

To achieve ‘a serious end’ with ‘a serious means,’ the principle of promptness alone is inadequate. Suppose 
that conflict occurs at a high frequency, following this principle; however, the timing of each conflict occurrence 
is statistically independent of that before it (this is the case if a conflict occurs following a Poisson process). This 
implies that conflict occurs only erratically, which is the opposite of seriousness.

(1)H[Tn, Xn] = −

∫
dtndxn p(tn, xn) log p(tn, xn).

(2)
I[{Tn, Xn}, {Tn+1, Xn+1}]

=

∫
dtndxndtn+1dxn+1p({tn, xn}, {tn+1, xn+1}) log

p({tn, xn}, {tn+1, xn+1})

p(tn, xn)p(tn+1, xn+1)
.

(3)I[{Tn, Xn}, {Tn+1, Xn+1}] = I[Tn, Tn+1]+ I[Xn, Xn+1|Tn, Tn+1],

I[Tn, Tn+1] = H[Tn]+H[Tn+1]−H[Tn, Tn+1] ,

I[Xn, Xn+1|Tn, Tn+1] = H[Xn|Tn]+H[Xn+1|Tn+1]−H[Xn, Xn+1|Tn, Tn+1] .
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The constraints for entropy maximization to determine the functional forms of p(tn, tn+1) are defined by the 
principles above. For mathematical simplicity, we consider the case where Tn and Tn+1 take continuous values: 
−∞ < tn < x +� ≤ tn+1 < +∞ , where �(> 0) is the minimum length of ICI. The constraint representing the 
principle of promptness is defined as the force required to reduce Tn+1 − Tn . Because Tn+1 − Tn is a stochastic 
variable, its statistical mean is reduced, not its raw value. There are several types of statistical means, such as 
arithmetic or geometric means. Therefore, the following question arises: What kind of statistical means should we 
choose? More specifically, what kinds of statistical means of Tn+1 − Tn do states behave to reduce? We leave aside 
this problem and instead consider the generalized mean, which can express a variety of statistical means by vary-
ing the parameterization. We later demonstrate that the parameterization is determined by the second principle.

The generalized mean of Tn+1 − Tn is given by

where m is the parameter characterizing the generalized mean and �(> 0) is the minimum length of the possible 
interval between conflicts Cn and Cn+1 . By varying m , Eq. (4) yields various statistical methods. For example, 
Eq. (4) is equal to the arithmetic mean for m = 1 and approaches the geometric mean for m → 0.

The joint entropy of Tn+1 and Tn is hence given by

The first term on the right-hand side represents Shannon’s entropy. The second term is introduced according 
to the first principle of promptness and expresses the force required to reduce the generalized mean of Tn+1 − Tn ; 
the coefficient γ (> 0) controls the strength of this force. The third term, where � is a Lagrange multiplier, 
ensures the normalization condition that p(tn, tn+1) are summed to unity. Maximizing entropy (5) with respect 
to p(tn, tn+1) and rescaling γ /E(gen)Tn+1,Tn

[Tn+1,Tn] → γ yields

where

is the normalization factor. As expected, Eq.  (6) becomes equal to the exponential distribu-
tion p(tn, tn+1) ∝ exp[−γ (tn+1 − tn)] for m = 1 and approaches the power-law distribution 
p(tn, tn+1) ∝ (tn+1 − tn)

−γ for m → 035. For p(tn, tn+1) to be normalized, m should be nonzero positive.
Next, we demonstrate that the value of m is determined by the second principle of seriousness. As previ-

ously discussed, this principle makes stochastic variables Tn and Tn+1 mutually dependent as much as possible. 
Information theory states that the mutual dependence between stochastic variables can be estimated by mutual 
information:

where p(tn) =
∫ +∞
−∞p(tn, tn+1)dtn+1 and p(tn+1) =

∫ +∞
−∞p(tn, tn+1)dtn are marginal probabilities. Using the 

forms of Eqs. (6) and (7) and taking � → 0 , we can analytically calculate the right-hand side of Eq. (8) to obtain

where Ŵ(·) denotes the gamma function. The principle of seriousness argues that mutual information 
I[Tn,Tn+1] should be maximized. Figure 5 shows f (m, γ ) as functions of m(> 0) and γ (> 0) . For each value 
of γ ≥ 1 , f (m, γ ) is maximized for m → +0 (Fig. 5, red curves). Thus, the principle of seriousness, which is 
embodied by the maximization of mutual information, leads to the power-law distribution of τ ≡ tn+1 − tn:

(4)E
(gen)
Tn , Tn+1

[Tn+1 − Tn] =




+∞�

−∞

dtn

+∞�

tn+�

dtn+1 p(tn, tn+1)(tn+1 − tn)
m




1/m

,

(5)

S[Tn, Tn+1] = −

+∞�

−∞

dtn

+∞�

tn+�

dtn+1 p(tn, tn+1) log p(tn, tn+1)

−γ log E
(gen)
Tn , Tn+1

[Tn+1 − Tn]− �




+∞�

−∞

dtn
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

 .
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[
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γ
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p(tn, tn+1)

p(tn)p(tn+1)
,

(9)I[Tn, Tn+1] = f (m, γ )+ constant,

(10)f (m, γ ) =
1

m
log γ −

(
1

m
− 1

)
logm− logŴ

(
1

m

)
−

1

m
,



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22686  | https://doi.org/10.1038/s41598-023-50002-w

www.nature.com/scientificreports/

with γ ≥ 1.

Dilution of the power‑law process: relation between the model and observation
Because the interval between consecutive occurrences of conflict, but not the duration of each conflict itself, 
was of interest, we prescribed the duration of each conflict to be contracted to a point in time. With this math-
ematical simplification, the conflict occurrence in each dyad can be viewed as a point process (Fig. 6a, filled 
black circles). Our information-theoretic model predicts that the point-to-point intervals of this process follow 
a power-law distribution.

However, we should be aware of the possibility of a recording bias. Some cases of militarized interstate dis-
putes may have been overlooked in the collection of data and were not recorded. Therefore, the point process 
compiled from the dataset is obtained by diluting the original point process generated by the model (Fig. 6, 
blank red circles).

Therefore, it is necessary to examine whether the diluted point process also follows the power law and, if 
so, whether the power-law exponent for the diluted point process is equal to that for the original point process. 
The power-law distribution given by Eq. (11) has a lower bound �(> 0) in the domain. For � → 0 , the diluted 
point process follows the same power law as the original process, owing to the scale-invariant property of the 
power-law distribution. However, in reality, � would be slightly greater than zero because a minimum length 
of time is required (for example, to redeploy resources) before the invocation of the next conflict. To examine 
whether the point process obtained by diluting the original power-law process with � > 0 also follows the 
power law, we conducted the following numerical experiments: A sample of the point process is generated so 
that point-to-point intervals follow a power-law distribution with � = 1 . The generated point process is then 
diluted with probability q ; that is, each point is left and abandoned with probabilities q and 1− q , respectively. 
The point-to-point intervals collected from the dilution process then undergo the mCSN test to calculate the p
-value and estimate the fitted power-law exponent γ̂ .

The experimental results are shown in Fig. 6b,c. The p-value (Fig. 6c) and fitted power-law exponent γ̂  
(Fig. 6b) are plotted as a function of the probability q . For any q , the p-value averaged over 100 calculations is 
substantially larger than the criterion of 0.1 (Fig. 6c), indicating that the power-law hypothesis for the diluted 
point process is plausible. The fitted power-law exponent decreases from the original value for γ as q decreases 
(Fig. 6b). These results demonstrate that point-to-point intervals collected from the dilution process, which 
model observed ICIs, also follow a power-law distribution, although its exponent is reduced from the original γ.

Mixture of power‑law distributions
Our information-theoretic model predicts that conflict occurrences in each dyad follow the power law. In addi-
tion, the power-law exponent may differ for each dyad because it originates from a predefined value for γ , which 
is not necessarily consistent for every dyad. We will later see that the power-law exponent inferred from the real 
data varies from dyad to dyad. Therefore, the distribution of ICIs collected from all dyads, which we have shown 
to follow a power-law distribution (Fig. 2), should be a mixture of power-law distributions originating from dif-
ferent dyads, with different exponents. Therefore, verifying whether a mixture of power-law distributions can 
be approximated accurately using a single power-law distribution is necessary. Indeed, we have accomplished 
this, the detailed descriptions of which are provided in the Methods.

Testing the power‑law hypothesis in individual dyads
Our information-theoretic model predicts that ICIs collected from individual dyads will follow separate power 
laws. To test this prediction, we applied the mCSN test to seven dyads: CHN-RUS, CHN-US, GMY-FRN, IND-
PAK, IRN-IRQ, ISR-SYR, and RUS‒US. We used the following abbreviations: CHN (China), FRN (France), 

(11)p(τ ) =
γ − 1

�−γ+1
τ−τ (� ≤ τ < +∞)
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Figure 5.   Mutual information I[Tn,Tn+1] = f (γ ,m)+ constant as functions of γ and m . The analytical form 
of f (γ ,m) is given by Eq. (10). The curves in the coordinate plane plot f (γ ,m) as a function of m for different 
values of γ (varied from 0.2 to 3.0 in 0.2 increments). Curves for γ < 1 and γ ≥ 1 are colored blue and red, 
respectively. For any value of γ ≥ 1 , f (γ ,m) is maximally extremized at m → +0.
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GMY (Germany), IND (India), IRN (Iran), IRQ (Iraq), ISR (Israel), SYR (Syria), and US (the United States). We 
chose these seven dyads because they were politically relevant and provided the number N ≥ 20 of ICI samples 
that were likely eligible for statistical examination.

The results of the mCSN tests are presented in Table 1. In this test, xmax was chosen as max
n

xn , which was the 
maximum ICI sample for each dyad. Noticeably, the power-law hypothesis of ICIs was plausible for all the dyads 
we examined ( p > 0.1 for every dyad). Our model argues that the power-law exponent is not less than 1.0. 
Although the obtained power-law exponent for GMY-FRN is 0.96, this value is very close to 1.0 and is not con-
sidered seriously contradicting the argument. The ratio ND/N , where N and ND are the total number of ICIs and 
the number of ICIs equal to or larger than the estimated lower bound x̂min , respectively, was substantially large 
(> 0.7) for every dyad, indicating that the power law holds for a wide range of ICIs (Table 1).

We also compared the power-law hypothesis with the alternative hypothesis that the ICIs follow an exponen-
tial distribution. From a set of ICI samples such that x̂min ≤ ICI ≤ xmax , 100 pseudo datasets were synthesized 
using the bootstrap process. We calculated the maximum log-likelihood of the exponential and power-law 
distributions for each synthesized dataset. A paired t-test was conducted to examine whether the maximum 
log-likelihood of the power-law distribution ( logL(p.l.) ) was significantly larger than that of the exponential 
distribution ( logL(exp) ). The results summarized in Table 2 show that the power-law distribution is significantly 
more plausible than the exponential distribution for every dyad. Thus, we concluded that the ICIs in each dyad 
followed a power-law distribution, which is consistent with the predictions of our model.

The estimated power-law exponent γ̂  varies from dyad to dyad, ranging from ~ 1.0 to ~ 2.0 (Table 1). These 
estimated values were robust, as confirmed by bootstrap analysis (Fig. 7). Variable γ̂  across dyads, albeit robustly 
estimated in each dyad, supports the notion that the distribution of total ICIs, which has been shown to obey the 
power law with an exponent of ~ 1.3 (Fig. 2), is a mixture of power-law distributions with variable exponents.

TimeDyad

Point of the original point process
Point of the diluted point process

a

Figure 6.   (a) Illustration of a point process whose point-to-point intervals are supposed to follow a power-law 
distribution. The chain of filled black circles represents an original point process supposed to follow a power-
law distribution. This process is diluted by probabilistically maintaining or discarding each point. The chain 
of maintained points, indicated by the blank red circles surrounding them, constitutes a diluted point process. 
The original point process models true occurrences of conflict in the history, regardless of whether they are 
recorded in the dataset. The diluted point process models conflict occurrences that are actually recorded in 
the dataset. (b) An original point process following a power-law distribution ( p(x) ∝ x−γ for x = 1, 2, 3, · · · ) 
is diluted with the maintaining probability q (hence with the discarding probability 1− q ). We conducted the 
mCSN test applied to the point-to-point intervals of 100 processes obtained by the probabilistic dilution. The 
power-law exponent γ̂  estimated by this test is plotted as a function of q (upper and lower panels for γ = 1.5 
and γ = 2.0 , respectively). The horizontal dotted lines in both panels indicate the power-law exponent γ of 
the original process. (c) The p-value of the mCSN test is plotted as a function of q (upper and lower panels for 
γ = 1.5 and γ = 2.0 , respectively). The horizontal dotted lines in both panels indicate the criteria of 0.1, for the 
p-value above which the power-law hypothesis is plausible. In (b) and (c), the error bars indicate the standard 
deviations.
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The mCSN test ensures that the power-law hypothesis is more plausible than the exponential-distribution 
hypothesis in the estimated domain x̂min ≤ x ≤ xmax . However, this does not necessarily exclude the possibility 
that the exponential-distribution hypothesis is more plausible than the power-law hypothesis in another domain. 
This may have occurred, especially when the number of ICIs was small, as in the present case. To examine this 
possibility, we conduct an mCSN test to examine the exponential-distribution hypothesis. The results are sum-
marized in Table S1. In contrast to the mCSN test of the power-law hypothesis, which gives a p-value larger 
than the criteria of 0.1 for any of the seven dyads, the p-value of the mCSN test of the exponential-distribution 
hypothesis is below the criteria for three dyads (CHN-US, IRN-IRQ, and RUS‒US). Therefore, the exponen-
tial distribution hypothesis for the estimated domains was excluded from these dyads. The mean difference 
�logL(p.l.)�B − �logL̂(exp)�B calculated using the bootstrap process was positive for two dyads (CHN-US and 
FRN-GMY) (Table S2), implying that the power-law hypothesis is more likely than the exponential distribution 
hypothesis in the estimated domains for these dyads. Furthermore, the variability in the estimated �̂ appeared to 
be more sprawling across the dyads (Fig. S1) than the estimated γ̂  (Fig. 7), which implies a less robust estimation 

Table 1.   Results of the mCSN test of the power-law hypothesis expressed in the form: p(x) = x−γ /Z(γ ) 
for xmin ≤ x ≤ xmax . Here, the value of xmax is chosen as the maximum length of ICI samples, and the 
normalization factor is given by Z(γ ) =

∑xmax
x=xmin

x−γ . N : the number of ICI samples for each dyad. x̂min : the 
estimated value of xmin . ND : the number of ICI samples within domain x̂min ≤ x ≤ xmax . ND/N : the ratio of 
ICI samples within the domain. γ̂  : the estimated value of the power-law exponent γ . The bottom row lists the 
p-value of the mCSN test. For the p-value larger than the criteria of 0.1, as indicated by the asterisk (*), the 
power-law hypothesis is plausible.

CHN-RUS CHN-US FRN-GMY IND-PAK IRN-IRQ ISR-SYR RUS‒US

N 38 29 20 33 29 33 39

x̂min 155 196 46 219 104 153 278

ND 34 26 20 24 27 25 28

ND/N 0.895 0.897 1.000 0.727 0.931 0.758 0.718

γ̂ 1.11 1.51 0.96 2.17 1.65 1.56 2.01

p-value 0.8852* 0.2151* 0.9656* 0.2114* 0.7105* 0.9438* 0.293*

Table 2.   The upper row lists the mean difference �logL̂(p.l.)�B − �logL̂(exp)�B for each dyad. The mean 
〈logL̂(p.l.)〉B was calculated by averaging the loglikelihood for the power-law hypothesis over B = 100 
pseudoseries of ICIs generated using the bootstrap process. The mean 〈logL̂(exp)〉B of the loglikelihood 
for the exponential-distribution hypothesis was calculated similarly. Positive values of the quantity 
�logL̂(p.l.)�B − �logL̂(exp)�B indicate that the power-law hypothesis is more likely than the exponential-
distribution hypothesis. The bottom row lists the p-value of the paired t-test for each dyad to demonstrate the 
significance of the positivity or negativity of this quantity.

CHN-RUS CHN-US FRN-GMY IND-PAK IRN-IRQ ISR-SYR RUS‒US

�logL̂(p.l.)�B − �logL̂(exp)�B 1.425 12.5185 5.507 1.944 7.284 3.148 9.358

p-value 4.90E-07 3.65E-56 3.88E-28 8.26E-08 1.50E-14 2.04E-27 5.24E-26

0

0.5

1

1.5

2

2.5

CHN-RUS CHN-US FRN-GMY IND-PAK IRN-IRQ ISR-SYR RUS-US

Figure 7.   The power-law exponent varies from dyad to dyad. The estimated power-law exponent γ̂  for each 
dyad is indicated by the filled black bar. To confirm the stability of this estimation, 100 pseudoseries of ICIs were 
synthesized using the bootstrap process, for each of which the power-law exponent was re-estimated. The filled 
blue circle and error bar indicate the mean and standard deviation of γ̂  calculated using the bootstrap process.
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of �̂ . Although it is difficult to judge which hypothesis is more plausible, comparing the results shown in Tables 1, 
2, and Fig. 7 with those shown in Tables S1, S2, and Fig. S1 strongly suggests that fitting a power-law distribution 
to the ICI samples for each dyad is more suitable.

A log-normal distribution can mimic a power-law distribution for a relatively large interval. A log-normal 
distribution may fit the data better than a pure power-law distribution. To reject this possibility, we compared the 
power-law hypothesis with the hypothesis that ICIs follow a log-normal distribution. For this, we used Akaike’s 
information criterion (AIC) to consider the difference in the number of parameters; a power-law distribution is 
characterized by a single parameter, whereas a log-normal distribution is characterized by two parameters. The 
AIC was significantly lower for power-law distributions than for log-normal distributions (Table S8). Thus, the 
power-law distribution is more likely than the log-normal distribution.

ICIs are independent and identically distributed
Our information-theoretic model predicts that the ICIs in each dyad are generated independently from an 
identical power-law distribution. In contrast, the interval τn between the timing of the (n− 1)-th and n-th fatal 
attacks in insurgency and terrorism approximately follows a power-law progress curve τn = τ1n

−b , most typically 
with escalation ( b > 0 ) and sometimes with de-escalation ( b < 0)16,18. We conducted the following statistical 
experiment to confirm that the actual generation of ICIs in each dyad was independent and identically distrib-
uted and that the observed power-law distribution of ICIs was due to neither escalation nor de-escalation. Let 
τn be the n-th ICI generated in a certain dyad and a(1)(τ) be the first-order autocorrelation calculated for the ICI 
series τ = {τ1, · · · , τN } (see Methods for details). If series τ followed escalation or de-escalation, a(1)(τ) would 
be significantly high. From this series, B = 10, 000 pseudo series were synthesized by bootstrapping. These 
pseudo series follow independent and identically distributed processes. We then calculated the distribution of 
the first-order autocorrelations over these pseudoseries. For this distribution, which normally has a single peak 
around zero, a rejection area is defined rightward with a significance level ps , for which we chose a conservative 
value ( ps = 0.1 ). This rejection area (the rightward area shaded gray in each panel of Fig. 8) corresponds to the 
possibility that the positive correlation between τn and τn+1 is significantly high, as is the case for escalation and 
de-escalation. Another rejection area was defined to the left at the same significance level ( ps = 0.1 ). This area 
(the leftward area shaded gray in each panel of Fig. 8), for which the negative correlation between τn and τn+1 is 
significantly high, indicates the tendency that a longer ICI is followed by a shorter ICI, and vice versa, thereby 
producing oscillatory progress.

We can test the null hypothesis that series τ fails to have nontrivial (i.e., significantly positive or negative) 
first-order autocorrelation by examining the location of the value for a(1)(τ) in the distribution; if it enters either 
of the rejection areas, the null hypothesis is ruled out. For any of the seven dyads (CHN-RUS, CHN-US, GMY-
FRN, IND-PAK, IRN-IRQ, ISR-SYR, and RUS‒US), the value for a(1)(τ) , indicated by the vertical lines in Fig. 8, 
is outside the rejection areas. Therefore, the null hypothesis is not rejected for these dyads. It is unlikely that a 
series without a first-order autocorrelation will have a higher-order autocorrelation. Thus, we concluded that 
the actual generation of ICIs in each dyad follows an independent and identically distributed process, which is 
consistent with the predictions of our model.

Discussion
War is an extreme form of collective human behaviour characterized by coordinated violence. According to an 
inductive approach, we have shown that this nature of war is substantiated by the temporal patterns of conflict 
occurrence that obey power law. The critical quantity for exploring temporal patterns is the interconflict interval 
(ICI) (Fig. 1). Using rigorous statistical tests, we found that ICI samples compiled from the history of interstate 
conflicts from 1816 to 2014 followed a power-law distribution (Figs. 2 and 3). To account for this empirical 
observation, we propose a hypothetical model built on the fundamental thesis on war, which was raised by 
Clausewitz two hundred years ago and is here reinterpreted from the perspective of modern information theory: 
“The use of force is a means of interstate communication”, which is in accordance with coordinated violence, the 
particular nature of war. The model predicts that a series of ICIs in each dyad are independently generated from 
an identical power-law distribution. We statistically analyzed individual dyads separately and obtained results 
consistent with the predictions of the model (Tables 1 and 2; Fig. 8).

This study reveals for the first time that the interevent time distributions obey the power law in conflicts 
between regular states, while Picoli et al. (2014)36 suggested the power-law properties of interevent time distri-
butions in insurgency.

To test the power law hypothesis of ICIs collected from all dyads or collected separately from individual dyads, 
we used a modified version of the rigorous statistical method proposed by34. This method, which we call the 
mCSN test, calculates the p-value and then judges whether a specific hypothesis (e.g., the power-law hypothesis 
or the exponential-distribution hypothesis) of ICIs is plausible if the obtained p-value is larger than the criteria 
of 0.1 ; otherwise, it is ruled out. Noticeably, the p-value for ICIs collected from all dyads, plotted as a function 
of xmax (Fig. 3a), shows a conspicuous trough at approximately 9000 days (~ 25 years), even though the p-value 
around this trough is slightly larger than 0.1, indicating that the power-law hypothesis is barely plausible. We 
suppose that this trough was attributable to the interwar period bounded by the end of WWI (1918) and the 
beginning of WWII (1939). The power-law hypothesis of ICIs premises that the conflict process in each dyad is 
independent of those in other dyads. However, this premise was violated during WWI and WWII when many 
countries became involved in war almost simultaneously and automatically, according to either side of the oppos-
ing camps they had taken. The resulting excess number of ICIs, whose lengths were comparable to those of the 
interwar period, eventually caused a substantial deviation in the tail shape of the distribution from the power 
law. To confirm this supposition, we removed ICIs related to either of the world wars by leaving ICIs whose end 
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and start dates were before the start of 1914 and after the end of 1945, respectively, and then applied the mCSN 
to the remaining samples. With this prescription, trough levels disappeared (Supplementary Materials, Fig. S2). 
This implies that WWI and WWII, in which countries all over the world entered a state of war simultaneously 
due to alliance relationships, were historically unique events.

Except during WWI and WWII, the results obtained in the present study support the idea that conflict pro-
cesses in individual dyads are independent of each other. Nevertheless, examining in more detail the influence of 
conflict processes in some dyads on others, if any, is of substantial interest, as recent studies suggest that higher-
order interactions, as well as pairwise (i.e., first-order) interactions between states, affect conflict occurrence37–39.

The ICI samples collected from all dyads were well suited to a power-law distribution with an exponent of ~ 1.3 
(Fig. 3b). In general, the value of the power-law exponent is related to the frequency of event occurrence; the 
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Figure 8.   ICIs in each dyad are independently generated from an identical distribution. From the actual series 
of ICIs in each dyad, 10,000 pseudoseries were synthesized by bootstrapping. The ICIs in each pseudoseries 
conform to independent generation from an identical distribution. The curve in each panel shows the 
distribution of first-order autocorrelations calculated for the 10,000 pseudoseries. The leftward and rightward 
10% areas (shaded grey) reject the null hypothesis that the actual series of ICIs fails to exhibit nonvanishing 
first-order autocorrelation. The vertical solid line in each panel indicates the first-order autocorrelation a(1)(τ) of 
the actual series.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22686  | https://doi.org/10.1038/s41598-023-50002-w

www.nature.com/scientificreports/

larger the power-law exponent is, the more frequent the events. As the dataset includes interstate conflicts over 
the past 200 years (1816–2014), a question arises: Is the power-law exponent consistent or changing over the past 
200 years? A recent study conducting out-of-sample cross-validation demonstrated that causal models of war 
vary periodically40. To address this, we also examined the power-law hypothesis by dividing the entire period 
(1816–2014) into the following eras: (i) the first half of the nineteenth century (1816–1858); (ii) the second half 
of the nineteenth century (1859–1899); (iii) the first half of the twentieth century lasting from 1900 to just after 
WWII (1946); (iv) the Cold War era (1947–1989), and (v) the post-Cold War era (1990 ~ the present (2014)). 
The results obtained demonstrate that as time passes, the value of the power-law exponent gradually increases 
( ̂γ = 1.18, 1.0, 1.22, 1.7, and 1.71 for eras (i), (ii), (iii), (iv), and (v), respectively; see Supplementary Materials, 
Table S3, and Fig. S3). A gradual increase in the frequency of conflict over the last 200 years is the most naïve 
interpretation of these observations. However, the observed increase in the power-law exponent can be attributed 
to a recording bias. Some interstate conflicts, especially those in older eras, may have been overlooked when 
compiling the data.

The p-value for the second era (iii), lasting from 1900 to 1946, was 0.0286(< 0.1) (Table S3). Therefore, the 
power-law hypothesis is not plausible. As demonstrated in Fig. S2, the ruling out of the power law hypothesis was 
most likely caused by the inclusion of the interwar period in this era. Therefore, we trimmed the last six years 
of this era. ICIs compiled from this trimmed-off era, lasting from 1900 to 1938, no longer involved an excess 
number of ICIs compared to the interwar period. Indeed, we obtained p = 0.449(> 0.1) for this trimmed-off 
era, say (iii’), confirming the plausibility of the power-law hypothesis (Table S3).

This study demonstrates that the ICI, the interval bounded by consecutive conflicts occurring in the same 
dyad, follows the power law. In contrast, Richardson’s earlier works28,29 suggested that the timing of onset of 
full-scale wars (interstate wars, in our terminology), occurring anywhere in the world, obeys a Poisson process; 
that is, the interval between the timing of onset of consecutive wars occurring anywhere in the world follows an 
exponential distribution. Therefore, we sought to examine whether the timing of onset of interstate conflicts, 
counted without specifying the dyad, also follows an exponential distribution. To this end, we defined the dyad-
unconditioned interconflict interval (DUC-ICI, Fig. S4). Considering the possibility that the rate of conflict 
occurrence may change over the years11, we used the above division of the entire period into five eras. DUC-ICI 
samples were compiled separately for each era and then underwent the mCSN tests. The results of the mCSN tests 
for the power-law hypothesis (Fig. S5, Tables S4, and S5) and the exponential-distribution hypothesis (Fig. S6, 
Tables S6, and S7) indicate that the DUC-ICIs for each era are more likely to follow an exponential distribution 
than a power-law distribution, consistent with Richardson’s suggestion.

We do not ask whether the action taken by either state is a rational means of achieving its political objective, 
whether the political objective itself is reasonable, or whether it is achieved as intended by settling the conflict. 
This contrasts with the game-theoretical approach to interstate wars, which assumes that actors behave rationally. 
This approach has been favoured in mainstream international relations theory. For instance, in his game-theoretic 
model with the assumption that states are ‘rational’ actors, James Fearon (1995)2 demonstrated that ‘inefficient’ 
(in the sense that they cannot reach a deal that is mutually less costly than an armed confrontation) war can take 
place between them due to a lack of communication, intentional or unintentional. Our information-theoretic 
model, which regards armed violence as a means of communication in and of itself, may appear contradictory 
to Fearon’s model, as we argue that serious acts do not necessarily conform to rational ones. Nevertheless, we 
also argue that states only consider the timing of the previous conflict in deciding when to initiate an armed 
conflict, thereby disregarding its means and costs. Therefore, our insights resonate with the motivation behind 
the Fearon model.

Our information-theoretic model argues that ICIs are independently generated from an identical power-law 
distribution in each dyad. The absence of a first-order autocorrelation for a series of actual ICIs in the individual 
dyads supports this notion. However, the present study did not examine whether autocorrelation resides in the 
size of interstate conflicts; for instance, every time a conflict occurs, its size grows or shrinks. This issue will be 
addressed in future studies.

Our model is based on an information-theoretic formulation of the hypothesis that military force is a form 
of interstate communication. The lines of evidence obtained by the statistical analysis of the MID 4.02 dataset 
support the plausibility of this hypothesis. This hypothesis might contradict the widespread view that interstate 
war arises from a lack of communication between states. However, from an information-theoretic perspective, 
the observed power-law properties of ICI are the hallmark of maximally efficient communication through vio-
lent means.

Power laws are ubiquitously observed in the time course of human behaviour, such as e-mail/surface-mail 
correspondence and web browsing41,42. What makes our findings unique lies in the argument that the power-law 
properties of ICI arise from the interaction between rival states, which we model as a form of communication in 
the information-theoretic framework. Here, we draw on Clausewitz’s statement, which supports this argument.

“War, however, is not the action of a living force upon a lifeless mass … but always the collision of two 
living forces.” (Clausewitz 1823 33).

Indeed, two classes of models, priority queuing models and modulated Markov processes, have been dis-
cussed to account for the power-law properties of interevent intervals empirically observed in human behaviour. 
In contrast to our information-theoretic model, these models assume that individuals behave independently. 
Priority queuing models41–44 assume that a person has a prioritized list of tasks and executes any task at a time 
that is probabilistically selected from this list according to this priority. The waiting time of a task from its entry 
into the list to its execution follows the power law (of exponent 1.0 or 1.5). Each individual creates a prioritized 
list of tasks that are independent of others. For the modulated Markov process45–48, the power law is accounted 
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for as a consequence of the combination of Poisson processes, which model the behaviour of every individual as 
the sporadic execution of tasks with circadian or weekly cycles. Thus, modulated Markov process models lack 
the perspective of the interaction between living agents. The above overview of priority queuing and modulated 
Markov process models suggests that these models cannot explain the observed power-law properties of ICIs, 
which are thought to be an essential consequence of the interaction between rivalling states. The interactions 
between rival agents are at the heart of our information theory model. This implies that our information-theoretic 
model is more favourable than priority-queuing models or modulatory Markov processes for accounting for the 
power-law properties of ICIs.

A relevant example can be found in a completely different field of neuroscience, where interspike intervals 
(ISIs) in neuronal spike trains have been observed to follow a power law49,50. Computational neuroscientists 
examined the power-law properties of ISIs using the principles of information theory50. Neurons, like states, are 
communicators, and information processing in the brain is the totality of the communication between neurons. 
Power laws may be a hallmark of communication between real-world actors, such as states or neurons.

This study focuses on armed conflicts between normal states. This contrasts with the recent trend in the 
discipline, which is devoted to asymmetric warfare, such as insurgency or terrorism, rather than armed conflicts 
between normal states6,14–16,18,36. The September 11th attacks might have triggered this trend. However, the full-
scale war in Ukraine, started by the Russian invasion on February 24, 2022, disenchanted us from the illusion 
that armed conflict between regular states may be outdated51.

Methods
Dataset
This study used Dyadic MID Data 4.02 (MID 4.02), the dataset that can be downloaded from a public reposi-
tory run by the COW Project (https://​corre​lates​ofwar.​org). The dataset records militarized interstate disputes 
(MIDs) from 1816 to 2014. Each MID in the dataset is specified with a dyad (a pair of states) engaged in this 
MID, the start and end days of this MID, and values for other covariates. For instance, the covariate WAR takes 
1 for interstate war and 0 for short-of-war MID.

The dataset MID 4.02 (dyadic_mid_4.02.csv, downloadable from https://​corre​lates​ofwar.​org/​data-​sets/​mids/) 
includes 3,544 MIDs (see dyadic_mid_ICI.csv stored at https://​github.​com/​HO299​792458/​Power​LawICI). There 
appear 931 dyads in the dataset (see dyad_name_list.csv, dyad_id_list.csv and double_counted_dyads.csv at the 
same place). These dyads experienced at least one MID in the history. Out of them, 449 (~ 48%) dyads experi-
enced MID only once, and the remaining 482 (~ 52%) dyads experienced MIDs twice or more (see dyad_ mid.
csv and mid_ dyad_freq.csv at the same place).

Interconflict interval (ICI)
The interconflict interval (ICI) is defined as the interval between a conflict (MID) in a dyad and the start of the 
next conflict in the same dyad (Fig. 1). Let t(start)c  and t(end)c  be the start and end times (dates) of the c-th conflict 
that occurred in a certain dyad, respectively. ICIs were collected from this dyad by calculating t(start)c − t

(end)
c−1  

for c ≥ 1 . If t(start)c − t
(end)
c−1 ≤ 0 , the c − 1-th and c-th conflicts are regarded as being continued, and therefore, 

nonpositive ICIs are excluded from sampling. Because t(start)0  and t(end)0  are not applicable (NA), t(start)1 − t
(end)
0  

is also not applicable (NA).
To sample ICIs from the dataset, we first created a data file that lists 

(
t
(start)
c−1 , t

(end)
c−1 , t

(start)
c , t

(end)
c

)
 for every 

dyad (see dyadic_mid_ICI.csv stored in https://​github.​com/​HO299​792458/​Power​LawICI). Deleting NAs and 
nonpositive values, we finally obtained 2,369 well-defined ICIs (see the same data file). Note that 449 (~ 48%) 
dyads having experienced only one MID provided no ICI samples.

Sampling ICIs separately from seven politically relevant dyads, CHN-RUS, CHN-US, GMY-FRN, IND-PAK, 
IRN-IRQ, ISR-SYR, and RUS‒US, were performed in the same manner. For each of these dyads, we created a 
data file that lists 

(
t
(start)
c−1 , t

(end)
c−1 , t

(start)
c , t

(end)
c

)
 in order of t(end)c−1   (see < DYAD_NAME > _ici.csv at https://​github.​

com/​HO299​792458/​Power​LawICI)). Deleting NA and nonpositive values, we created a file that lists well-defined 
ICIs in order of their generation in the history (namely, a series of ICIs). In doing so, we obtained 38, 29, 20, 33, 
29, 33, and 39 ICIs for CHN-RUS, CHN-US, GMY-FRN, IND-PAK, IRN-IRQ, ISR-SYR, and RUS‒US, 
respectively.

Goodness‑of‑fit test for the power‑law hypothesis
Clauset et al. (2009)34 proposed a goodness-of-fit test to examine whether a given set of samples {x1, · · · , xN } 
follows a power-law distribution. This test, which we call the Clause-Shalizi-Newman (CSN) test, was designed 
to examine the power-law properties of spatial features, such as war size, earthquake magnitude, and urban 
population. Samples of spatial features, if they follow power-law distributions, include a number of large-sized 
events because the long tails characterizing power-law distributions imply the likely occurrence of large-sized 
events. Therefore, the power-law hypothesis to be examined by the original CSN test is mathematically expressed 
as p(x) = x−γ /ζ (γ , xmin) (xmin ≤ x) , where 

∑+∞
xmin

x−γ = ζ (γ , xmin) is the generalized zeta function. Note that 
the domain xmin ≤ x has no upper bound.

In contrast, caution is required when applying the CSN test to temporal features such as ICIs. Sampling ICIs 
from the dataset MID 4.02 is restricted by the recording period used to construct this dataset, which is approxi-
mately 200 years, from 1816 to 2014. Therefore, even if ICIs were generable from power-law distributions without 
upper bounds, the lengths of the ICI samples collected from MID 4.02 would never exceed the recording period. 
This means that the empirical distribution of ICIs has an upper bound, above which no sample exists. Further-
more, individual dyads had their own ages, some of which were much shorter than the recording period. For 

https://correlatesofwar.org
https://correlatesofwar.org/data-sets/mids/
https://github.com/HO299792458/PowerLawICI
https://github.com/HO299792458/PowerLawICI
https://github.com/HO299792458/PowerLawICI
https://github.com/HO299792458/PowerLawICI
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instance, the Russia-Ukraine dyad was approximately 23 years old in 2014 (the final year of the recording period). 
The length of the ICI samples collected from the dyads never exceeded their age. Consequently, the empirical 
distribution of the ICIs collected from all dyads would have an effective upper bound that might be much smaller 
than the recording period, above which the power-law distribution would no longer fit the data well.

Therefore, to fit a power-law distribution to temporal features, such as ICIs, we must consider the upper bound 
xmax in addition to the lower bound xmin . The power law implies the likely occurrence of long-term events for 
temporal features. However, such long-term events could not be recorded because the recording period was 
limited. In contrast, when recording spatial features, large-sized events, such as enormous wars (WWI or WWII), 
enormous earthquakes, or megacities, would never be overlooked.

To examine the power-law hypothesis of the ICIs, the original CSN test should be modified by considering 
the possible presence of upper bounds. The procedure for the modified CSN (mCSN) test, used to examine the 
power-law hypothesis for ICIs in the present study, was as follows: Let p(x) be the probability distribution of 
variable X . We consider the case where x takes discrete values measured in days. The power-law hypothesis to 
be examined by the mCSN is mathematically expressed in the following form: p(x) = x−γ /Z(γ ) , where γ is the 
power-law exponent and Z(γ ) =

∑max
x=xmin

x−γ is the normalization factor equivalent to the partition function. Let 
D = {x1, · · · , xN } be the data. Samples that are smaller than xmin or larger than xmax , if they exist, are excluded 
from D because we want to test the hypothesis in the domain xmin ≤ x ≤ xmax . The log-likelihood is then given as

The value of the power exponent γ is determined using the maximum likelihood estimate (MLE). The estima-
tion can be performed by direct numerical maximization of log L(γ ) . The model fitted by MLE is denoted as M.

The distance between data D and the hypothesis is measured by the Kolmogorov‒Smirnov (KS) statistic 
DKS defined by

where S(x) = (thenumberofxn ≥ x)/N  is the cumulative distribution function (CDF) for the empirical data. 
P(x) =

∑
x≥x′p

(
x′
)
 is the CDF for the fitted model M.

A large number S of power-law distributed data, D1, · · · ,DS , are synthesized from M . Each data point has the 
same number N of elements as the empirical data D . We fit each synthetic data Ds to its own power-law model 
Ms. Then, we calculate the KS statistics Ds for Ds relative to Ms. Then, we count the fraction of time that Ds is 
larger than D , which serves as the p-value of this test. Clauset, Shalizi, and Newman (2009) set the conserva-
tive decision criteria for the test: If p ≤ 0.1 , the power-law hypothesis for the data D is ruled out; otherwise, it 
is plausible. We conducted a goodness-of-fit test for the ICI samples with S = 10, 000 times the generation of 
synthetic data.

Mixture of power‑law distributions well approximated by a single power‑law distribution
We prove that the likelihood of a mixture of power-law distributions is as close as possible to that of a single 
power-law distribution. Although the proof is not mathematically rigorous, it provides an intuitive understand-
ing of why a mixture of power-law distributions can be approximated using a single power-law distribution in 
several cases.

Consider a mixture of power-law distributions:

where p(x|k) is the power-law distribution with exponent γk(> 1),

We assume that the domain of each component distribution has a lower bound xmin but infinitely extends 
rightward without an upper bound. The loglikelihood of the data D = {x1, · · · , xN } is

Using Jensen’s inequality, one can arrange this as

where γ ≡
∑K

k=1π(k)γk . The right-hand side is hence denoted by

(12)log L(γ ) =

N∑

n=1

log p(xn) = −γ

N∑

n=1

log xn − N logZ(γ ).

(13)DKS = max
xmin≤x≤xmax

|S(x)− P(x)|,

(14)p(x) =

K∑

k=1

π(k)p(x|k),

(15)p(x|k) =
γk − 1

xmin
x−γk (x ≥ xmin).

(16)log Lmix =

N∑

n=1

log

(
K∑

k=1

π(k)
γk − 1

x
−γk+1
min

x−γk
n

)
.

(17)log Lmix ≥

N∑

n=1

K∑

k=1

π(k) log

(
γk − 1

x
−γk+1
min

x−γk
n

)
=

N∑

n=1

[
log

1

x
−γ+1
min

x−γ
n +

K∑

k=1

π(k) log (γk − 1)

]
,
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The log-likelihood for a single power-law distribution of the exponent γ is given as follows:

Jensen’s inequality was used to derive the inequality in the third row of Eq. (19). According to probabilistic 
machine-learning theories52, we can solve π(k) and γk by maximizing Qmix . For logLsingle ≥ Qmix , an increase 
in Qmix leads to an increase in logLsingle . Therefore, maximizing Qmix causes the single power-law distribution 
with γ =

∑K
k=1π(k)γk to fit the data more closely. If logLsingle ≥ logLmix , then the single power-law distribu-

tion inherently fits the data better than the mixture. Now, consider the case where logLsingle < logLmix . Since 
logLmix > logLsingle > Qmix , the mixture fits the data better than a single power-law distribution. Nevertheless, as 
Qmix becomes as close to logLmix as possible by its maximization, logLsingle , which lies between them, approaches 
logLmix . This implies that the mixture can be approximated using a single power-law distribution.

Testing the power‑law hypothesis of ICIs in a single dyad
The set of 2369 ICIs collected from all dyads, for which the power-law hypothesis was examined using the mCSN 
test, was a collection of subsets of ICIs collected from individual dyads. Our information-theoretic model predicts 
that the power-law hypothesis holds for individual dyads. To test this prediction, we examined whether the ICIs 
collected from a single dyad followed a power-law distribution. For this purpose, xmax is set to the maximum ICI.

We examined seven politically relevant dyads (CHN-RUS, CHN-US, GMY-FRN, IND-PAK, IRN-IRQ, ISR-
SYR, and RUS‒US dyads), each of which provided the number of ICIs eligible for statistical analysis. Neverthe-
less, the number was relatively low (from 20 to 39 ICIs), which may have caused an overestimation of the p-value 
of the CSN test. Therefore, an obtained p-value larger than 0.1, which implies the plausibility of the power-law 
hypothesis, does not necessarily mean that competing hypotheses, typically the exponential distribution hypoth-
esis, are ruled out. To confirm that the power law hypothesis is more likely than the exponential distribution 
hypothesis, we compared the log-likelihood between the power law and exponential distribution hypotheses.

Let τ = {τ1, · · · , τN } be the set of ICIs collected from a certain dyad, where τn ( n = 1, · · · ,N ) denotes the n
-th ICI. We conducted the mCSN test to estimate the lower bound xmin and the power-law exponent γ , while 
choosing the upper bound as xmax = max

n
τn . We consider the exponential-distribution hypothesis as a competing 

hypothesis, which is mathematically expressed as follows: p(x) = e−�x/Z(�) (xmin ≤ x ≤ xmax) with 
Z(�) =

∑xmax
x=xmin

e−�x . Here,xmin and xmax are the same as those chosen for the power-law fitting. Therefore, let 
τ̂  be a subset of the ICIs whose lengths are equal to or greater than xmin . Parameter � is estimated by maximizing 
the log-likelihood:

We compared the maximum log-likelihoods of the exponential distribution given by Eq. (20) with that for 
the power-law distribution given by

To show that logL(p.l.)
(
τ̂; γ̂

)
 is significantly larger than logL(exp)

(
τ̂; �̂

)
 , we use the bootstrap method to 

synthesize B = 100 pseudo datasets τ̂ b (b = 1, · · · ,B) from τ̂  . Then, logL(p.l.)
(
τ̂ b; γ̂

)
 and logL(exp)

(
τ̂ b; �̂

)
 aver-

aged over the pseudodatasets were compared by calculating their difference �(l.l.) = �logL̂(p.l.)�B − �logL̂(exp)�B , 
where �logL̂(p.l.)�B =

∑B
b=1logL

(p.l.)
(
τ̂ b; γ̂

)
/B and �logL̂(exp)�B =

∑B
b=1logL

(exp)
(
τ̂ b; �̂

)
/B . The statistical sig-

nificance of �(l.l.) > 0 was examined using a paired t-test.

(18)Qmix ≡

N∑

n=1

[
log

1

x
−γ+1
min

x−γ
n +

K∑

k=1

π(k) log (γk − 1)

]
.
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log
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x
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n

)
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N∑
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[
log

1

x
−γ+1
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n + log

(
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)]

≥
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n=1

[
log

1

x
−γ+1
min

x−γ
n +

K∑

k=1

π(k) log (γk − 1)

]
= Qmix .

(20a)log L(exp)
(
τ̂; �

)
= log

∏

τn∈τ̂

p(τn) = −
∑

τn∈τ̂

�τn − N logZ(�),

(20b)�̂ = argmax
�

log L(exp)
(
τ̂; �

)
.

(21a)log L(p.l.)
(
τ̂; γ

)
= −γ

∑

τn∈τ̂

log τn − N logZ(γ ),

(21b)γ̂ = argmax
γ

log L(p.l.)
(
τ̂; γ

)
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Testing independent generation of the ICI series from an identical distribution
Our information-theoretic model also predicts that the ICI series for each dyad is generated independently 
from an identical power-law distribution. To validate this, we conducted a statistical test to examine whether the 
autocorrelation was significantly different from zero. The first-order autocorrelation of τ is given by

where µ ≡
∑N

n=1τn/N and σ 2 ≡
∑N

n=1(τn − µ)2/N are the mean and the variance, respectively53. If the ICIs are 
independently and identically distributed, the autocorrelation theoretically vanishes. However, as the number of 
ICIs in each dyad is limited (from 20 to 39 ICIs) in the dyads examined, a(1)(τ) takes either a positive or negative 
value. Therefore, we tested the null hypothesis that a(1)(τ) is approximately zero.

To this end, we generated B = 10, 000 pseudo series τb(b = 1, · · · ,B) from τ by bootstrapping. Each pseu-
doseries satisfied the independent and identically distributed conditions. We then calculated the first-order 
autocorrelations a(1)(τb) for these pseudoseries and examined their distributions. The 10% left and 10% right 
areas of this distribution were selected as rejection areas. The null hypothesis is rejected if a(1)(τ) enters either 
the left or the right rejection area. If a(1)(τ) entered the rightward rejection area, it was considered significantly 
positive. A positive a(1)(τ) indicates the tendency of ICIs to become progressively longer or shorter. If a(1)(τ) 
entered the left rejection area, it was considered significantly negative. A negative a(1)(τ) implies oscillating ICI 
series. If a(1)(τ) enters neither the rightward nor the leftward rejection areas, the null hypothesis cannot be ruled 
out. It is unlikely that higher-order autocorrelations are significantly positive or negative. whereas first-order 
autocorrelation vanishes. Therefore, if the above statistical test does not reject the null hypothesis, we conclude 
that the ICI series is free from autocorrelation; that is, the ICIs are independently generated from an identical 
distribution.

Imbalance in the number of ICIs across dyads and a time‑opportunity problem
The last part of this section discusses the statistical adequacy of treating the 2,369 ICI samples collected from 
all dyads. As pointed out earlier, ~ 48% of the 931 dyads appearing in the dataset MID 4.02 experienced MID 
only once and therefore provided no ICI samples. Additionally, the number of ICI samples provided by each 
of the remaining dyads is highly variable (see dyad_ mid.csv and dyad_mid_freq.csv stored at https://​github.​
com/​HO299​792458/​Power​LawICI). Such an imbalance in the number of ICIs across dyads may raise concerns 
that the 2,369 ICI samples are contaminated by some kind of bias, and the observed power-law property is 
consequently an artefact.

The number of ICIs provided by dyad d depends on the following three factors: the rate of ICI generation γd , 
the lower cutoff xmin,d below which ICIs are absent, and the lifetime of this dyad (equivalent to the upper cutoff 
xmax,d above which ICIs are absent). If ICIs are generable from a power-law distribution, the power-law exponent 
determines the rate. Higher the power-law exponent, the more frequent the ICI generation. As a power-law dis-
tribution p(x) ∝ 1/xγ  (γ > 0) becomes infinity as x → +∞ , the lower cutoff xmin,d also substantially influences 
the frequency of ICI generation. The rate, as well as the lower cutoff, would vary from dyad to dyad as suggested 
by the results shown in Table 1 and Fig. 7. These explain why the number of ICI samples provided by each dyad 
is highly variable. As the power law implies likely occurrence of extremely long ICIs, an ICI of the first-round 
generation may incidentally exceed xmax,d and consequently no ICI samples would be provided from this dyad. 
With the fact that a mixture of power-law distributions with different exponents can be well approximated by a 
single power-law distribution, which we have proved earlier in this section, we argue that sampling ICIs from 
all dyads is tampered with no explicit bias.

The upper cutoff xmax,d , the lifetime of dyad d , is also highly variable. For instance, the lifetime of GMY-FRN 
is 198 years (namely, the full recording period of MID 4.02) whereas that of RUS-UKR (Ukraine) is 24 years. 
We refer to the imbalance in the lifetime across dyads as a ‘time-opportunity problem’. Even if ICIs in each dyad 
are generable from a power-law distribution with an infinitely extending tail, a power-low distribution fitting 
ICIs collected from all dyads should have an upper bound xmax above which power law fails. This upper bound 
should appear around a medium of upper cutoffs of individual dyads. Indeed, we have confirmed the existence 
of such an upper bound (Fig. 3). Thus, the time-opportunity problem does not matter in our analysis. Rather, 
the appearance of an upper bound supports the plausibility of our power-law hypothesis.

The data of MIDs in politically irrelevant dyads may be dubious, as some conflicts in these dyads may have 
been overlooked in compiling the data. We have verified in the main text that the dilution of a power-law pro-
cess also gives a power-law process albeit with a slightly reduced exponent (Fig. 6). Thus, inclusion of politically 
irrelevant dyads does not introduce any sampling bias.

Finally, we chose seven politically relevant dyads and tested the power-law hypothesis for these dyads sepa-
rately. These tests are free from the imbalance in the number of ICIs and the time-opportunity problem. Nev-
ertheless, we confirmed the plausibility of the power-law hypothesis for these dyads (Tables 1, 2, Fig. 7, and 
Fig. 8). These clearly show that the observed power-law property fitting the 2369 ICIs is not an artefact due to 
the imbalance and time-opportunity problems.

Data availability
All data used in this study were created from the file in the following repository according to the methods pre-
sented in the paper and/or Supplementary Information: https://​github.​com/​HO299​792458/​Power​LawICI. All 
methods needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary 
Information. Additional data and methods related to this paper may be requested from the authors.

(22)a(1)(τ) =

∑N−1
n=1 (τn+1 − µ)(τn − µ)

(N − 1)σ 2
,
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