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Previously introduced braconid 
parasitoids target recent olive fruit 
fly (Bactrocera oleae) invaders 
in Hawai’i
Dara G. Stockton 1*, Charlotte Aldebron 1, Rosemary Gutierrez‑Coarite 2 & 
Nicholas C. Manoukis 1

The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) was detected on Maui and Hawai’i Islands 
in 2019, affecting yields and quality of the state’s emerging olive oil industry. Given previous 
parasitoid releases to control other invasive frugivorous tephritids in Hawai’i, we were interested 
in determining whether these parasitoids were naturally targeting recent olive fly invaders in field, 
if local olive cultivar differences affected parasitization rates, and if there was a seasonal pattern 
of parasitization that could inform future management decisions. To address these questions, we 
collected data from olive growing in Hawai’i during 2021 and 2022. During the fruiting season we 
collected monthly samples and reared out B. oleae in the lab. We detected two previously introduced 
braconid wasps: first Diachasmimorpha tryoni during 2021 and 2022 and later Fopius arisanus during 
the 2022 collection. Cultivar effects were limited to a single site in our study, where more D. tryoni 
were reared from ‘Arbequina’ olives. Seasonality of olive fruit fly and parasitoid activity was earlier 
in lower elevation sites, as expected based on tree phenology and temperature‑dependent insect 
development. This represents the first report of D. tryoni parasitism activity against B. oleae and 
may reflect elevational effects combined with the ecological complexity in interactions between 
multiple invasive arthropod pests, their invasive and cultivated plant hosts, and introduced braconid 
parasitoids.

The olive fruit fly, Bactrocera oleae Rossi (Diptera: Tephritidae), is an invasive member of the tribe Dacini, which 
although native to Africa has long been naturalized in Southern  Europe1,2 It was introduced to the Americas 
through California during the late  1990s3–5. In Hawai’i, B. oleae was first detected in August 2019 at the Lālāmilo 
Research Station in Waimea on the big island of Hawaiʻi and then in October of the same year on the island of 
 Maui6. Since then, B. oleae have become widespread in olive groves on both islands where they appear to have 
become  established7. Prior to the introduction of B. oleae, there were few pests or diseases of olives in Hawai’i, 
making it a good prospective crop for diversified agriculture on the  islands8, especially because of the nature of 
agricultural economics in the islands, where sustainable, low-cost management options are ideal.

Bactrocera oleae is considered a monophagous, specialist species, as it relies solely on the fruit of trees in the 
genus Olea for larval  development9. Sexually mature females use their specialized ovipositor to “sting” ripening 
olives and lay eggs directly under the surface of the  skin10. The larvae then consume the fruit as they develop, lead-
ing to substantial yield and quality losses, both from direct feeding damage and indirectly due to the introduction 
of bacteria and fungal pathogens that further degrade the  fruit11–14. On average, B. oleae complete their develop-
ment in within 2–3 weeks and has four or more generations per  year15. While present year-round in temperate 
climates, adults are most abundant during September–November, coinciding with maximum fruit  availability16. 
In California, and presumably now Hawai’i, olive fruit fly is considered the most significant pest of  olives17.

Due to its cosmopolitan nature and long-standing presence and impact as a pest in Africa, Europe and  Asia18, 
B. oleae is a well-studied species and multiple management strategies have been  developed9,16 including various 
chemical  insecticides19–21, baits/lures for mass trapping by  growers22,23, and the implementation of sterile insect 

OPEN

1Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research 
Center, USDA-ARS, 64 Nowelo St., Hilo, HI 96720, USA. 2Department of Tropical Agriculture and Soil Science, 
University of Hawai’i at Manoa, Kahalui Extension Office, 310 Kaahumanu Ave. Bldg. 214, Kahului, HI 96732, 
USA. *email: dara.stockton@usda.gov

http://orcid.org/0000-0002-2522-9026
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49999-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22559  | https://doi.org/10.1038/s41598-023-49999-x

www.nature.com/scientificreports/

technique (SIT) where economically  feasible24–26. Current management strategies in Hawai’i include sanitation by 
removing old, dried or fallen fruit from orchards, chemical control by applying GF-120 Naturalyte Fruit Fly Bait 
(Spinosad) using a bait station approach, and mass trapping using yellow McPhail traps baited with torula yeast 
solution to attract female and male  flies7. However, more recently biological control has become an important 
component of olive fly control in the United  States9,18. A recent classical biological control effort in California 
involved the release of the braconid wasps Psyttalia humilis (Silverstri) and Psyttalia loundsburryi (Silvestri) from 
2006 to 2013 following detection of the pest in that State in 1998. Over time, P. lounsburryi established in coastal 
regions, and given its success additional species have been proposed for release in  California27.

Hawai’i has a long history of using braconid parasitoids wasps as biological control agents against tephritid 
fruit flies, reaching back to the early decades of the twentieth  century28. The biology of these braconid agents has 
facilitated classical biological control programs in the  archipelago29,30. In Hawai’i the earliest braconid introduc-
tions were to control the melon fly, Zeugodacus cucurbitae (Coquillett), which was detected in Hawai’i in  189531. 
These efforts reached their peak in the years between 1947 and 1952, when 32 natural enemies were introduced 
against tephritid fruit flies, of which 26 were classified as braconid wasps at the  time29. This remarkable rate of 
introductions together with advances in mass rearing and transportation of these species led to Hawai’i serving 
as a source for tephritid biological control programs around the  world31. It also resulted in an unusually diverse 
assemblage of braconid wasps established in the Hawai’ian  islands32, which provides the possibility of oppor-
tunistic biological control of B. oleae following its establishment.

The present study aimed to investigate the extent of opportunistic parasitoid activity against B. oleae in 
Hawai’i. We collected olive samples from 5 farm sites over two years on Hawai’i and Maui islands and reared out 
B. oleae to determine whether (a) parasitization was occurring naturally in the environment, (b) which species 
of parasitoid were most prevalent, (c) whether there were significant cultivar effects on B. oleae and parasitoid 
 abundance33, and (d) if there was a seasonal pattern of parasitization that could inform future management deci-
sions. We discuss the results in context of prospective augmentative biological control programs and the future 
of B. oleae management in Hawai’i and abroad.

Results
Bactrocera oleae abundance in olive samples
Olive fly was successfully recovered from all field collection sites included in the study. However, the greatest 
number came from Big Island samples. In total 311 olive flies emerged from McKanna samples, compared to 477 
from Lalamilo, and 163 at Pohakuloa (Table 1, Fig. 1A). Only 8 total were obtained from Jaime’s farm samples, 
and 6 from Pueokea on Maui. Separated by year, in 2021 we reared a total of 458 B. oleae from 4089.1 g of olives 
(3649 olives), and 2022 we reared 507 B. oleae from 1773.3 g of olives (1894 olives) (Fig. 2A). Fewer olives were 
collected in 2022 due to a later season start date, based on fruit availability—2022 was a worse year for olives 
in Hawai’i in general with reduced yield on both Maui and Hawai’i. At McKanna, during 2021 we were able to 
collect for four months, while in 2022 it was reduced to only two months. Combining the data for the two years, 
poisson regression of B. oleae emergence by cultivar showed differences at Lalamilo  (X2 = 24.63, df = 6,154, 
P < 0.001) and McKanna  (X2 = 7.07, df = 1, 75, P = 0.008), but not Jaime’s farm (P = 0.81) or Pueokea (P = 0.91), but 
this may reflect larger sample sizes at the first two sites (Table S1). At Lalamilo, the mean B. oleae per gram from 

Table 1.  Differences in mean olive weight, parasitoid emergence, and olive fly emergence by site and olive 
variety during the 2021–2022 olive production period in Hawai’i. a Mean per gram of olives ± standard error. 
b Total number collected for the whole trial in parentheses.

Site location Olive variety N trees = Mean olive weight B. oleae F. arisanus D. tryoni

Pohakuloa (950 m) Unknown 15 0.99 ± 0.09 0.61a ± 0.11 (163)b 0 0.14 ± 0.04 (34)

Lalamilo (800 m)

Arbequina 56 1.15 ± 0.05 0.15 ± 0.02 (153) 0.01 ± 0.00 (5) 0.08 ± 0.02 (89)

Arbosana 27 0.90 ± 0.05 0.23 ± 0.05 (109) 0 0.02 ± 0.01 (9)

Frantoio 16 1.16 ± 0.08 0.13 ± 0.03 (50) 0 0.03 ± 0.01 (11)

Koroneiki 34 0.60 ± 0.04 0.31 ± 0.07 (109) 0.00 ± 0.00 (1) 0.04 ± 0.02 (13)

Manzanilla de Sevilla 27 3.22 ± 0.13 0.03 ± 0.01 (81) 0.00 ± 0.00 (3) 0.02 ± 0.01 (32)

Taggiasca 2 0.66 ± 0.07 0.07 ± 0.07 (2) 0 0.14 ± 0.14 (4)

Unknown 5 1.35 ± 0.15 0.15 ± 0.03 (19) 0 0.09 ± 0.04 (10) a

McKanna (1450 m)
Arbequina 36 1.03 ± 0.03 0.34 ± 0.05 (242) 0 0.01 ± 0.01 (7) a

Koroneiki 41 0.71 ± 0.03 0.08 ± 0.02 (69) 0 0.01 ± 0.00 (5)

Jaime (1060 m)

Arbequina 7 0.87 ± 0.08 0 0 0

Koroneiki 15 0.44 ± 0.02 0.02 ± 0.02 (3) 0 0

Leccino 8 1.57 ± 0.06 0 0 0

Pueokea (750 m)

Arbosana 14 0.77 ± 0.06 0.01 ± 0.01 (2) 0 0.01 ± 0.01 (2)

Koroneiki 11 0.48 ± 0.03 0.05 ± 0.05 (6) 0 0.01 ± 0.01 (1)

Moraiolo 15 2.19 ± 0.08 0 0 0

Pendolino 2 1.33 ± 0.03 0.00 ± 0.00 (2) 0 0.02 ± 0.02 (1)
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‘Koroneiki’ (0.31 ± 0.07) was greater than reared from ‘Arbequina’ (0.15 ± 0.02) (Table 2). Meanwhile at McKanna 
the mean B. oleae per gram from ‘Koroneiki’ (0.08 ± 0.02) was less than from ‘Arbequina’ (0.34 ± 0.05) (Table 2).

Parasitoid recovery
Parasitoids did emerge from olive samples and two species were identified (Table 1; Fig. 1B,C). The first parasitoid, 
Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae), was recovered from every site except Jaime’s 
farm on Maui (Fig. 1B; Table 1). In total, 218 D. tryoni were collected, with the greatest number (89) coming from 
‘Arbequina’ cultivar samples at Lalamilo, χ2 = 601.86, DF = 6, 154; P < 0.001 (Table 3). During 2021 we recovered 
75 total D. tryoni (Table S2), while in 2022 we recovered 143 (Fig. 2A; Table S3). The second parasitoid we recov-
ered was Fopius arisanus (Sonan) (Hymenoptera: Braconidae) with a total of 9 recovered from olives collected 
at the Lalamilo site during 2022 (Fig. 1C; Table S3), and limited to ‘Arbequina’, ‘Koroneiki’, and ‘Manzanilla de 
Sevilla’ varieties. Two additional F. arisanus were reared out of ‘Moraiolo’ samples from Pueokea on Maui during 
June 2022 (Table S3). We did not find this parasitoid in our samples during 2021 (Table S2).

Seasonality effects and fruit weight
The seasonality of olive fly and parasitoid emergence was different during 2021 and 2022, although collections 
were greatest October, coinciding with fruit availability (Fig. 2B,C). During 2021 at Lalamilo, peak olive fly 
numbers were recorded in August while D. tryoni numbers were greatest in October (Table S2). At McKanna, 
which is about 2000 ft higher in elevation, olive fly peaks occurred in October. During the following year in 
2022, Lalamilo saw a peak in olive fly during June and then again during October (Table S3). Recovery of D. 
tryoni again peaked in October 2022 at this site. At McKanna, B. oleae was only collected during August but no 
parasitoids emerged from the samples. Instead, during 2022 samples from Pohakuloa showed peaks of B. oleae in 
June and D. tryoni in August. These patterns appear to correspond roughly to our subsampled data on total fruit 
weight at each site (Table S4), with more B. oleae present as fruit availability increased. However, infestation did 
not show patterns associated with mean fruit weight, indicating that this was not a good predictor of infestation 
risk or parasitoid abundance. The largest olives we sampled were the ‘Manzanilla de Sevilla’ at Lalamilo and the 
‘Moraiolo’ at Peuokea farm, both of which were 2–3 × larger than ‘Arbequina’ olives but were associated with less 
than half the olive fly and parasitoid numbers on a per gram basis.

Discussion
Our results show for the first time that previously introduced braconid parasitoids target the recent invader, 
B. oleae, in Hawai’i. Specifically, our data show that D. tryoni and in smaller numbers, F. arisanus, parasitize B. 
oleae in commercial olive orchards on the Big Island of Hawai’i and the island of Maui. This was not the result of 
intended augmentative releases, but rather a demonstration of opportunistic  biocontrol34,35 wherein established 
populations of parasitoids, originally imported decades ago to combat other invasive pests in the state, appear 
to be targeting other newer invasive  pests31.

The first parasitoid we detected was D. tryoni, a small opiine wasp that attacks late instar larvae of several 
species of Tephritidae; it was originally imported to Hawai’i from Australia in 1910 to combat the then-recently 
discovered Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), which at the time was causing dam-
age in Kona coffee fields, although this effect is now considered negligible as the fruit flies do not harm to the 
coffee beans themselves and merely feed and develop on the pulp surrounding the  bean36. An interesting early 
report from 1914 described the limited ability of D. tryoni to access larvae deep within large fruit, thus it’s util-
ity in small fruit orchards, such as  coffee36. In addition to C. capitata, D. tryoni is also known to parasitize the 
Queensland fruit fly, Bactrocera tryoni (Froggart) in  Australia37,38, the lantana gall fly (Eutreta xanthochaeta 

Figure 1.  Images of Bactrocera oleae (A), Diachasmimorpha tryoni (B), and Fopius arisanus (C) reared from 
olive samples collected in Hawai’i during 2023. The total number of each species is shown as in the upper right 
corner of each image. Photographs courtesy of M. Weaver, ORISE fellow at USDA-ARS, Hilo, HI, 2023.
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Aldrich)39,40, and very occasionally to two non-frugivorous tephritid flies, Trupanea dubautiae and Ensina sonchi, 
parasitism of which does not typically result in successful larval  development41. In oriental fruit fly (Bactrocera 
dorsalis Hendel), D. tryoni only rarely parasitizes larvae, typically less than 1%42 and there are no reports of its 
attack on melon fly (Z. cucurbitae) or the Malaysian fruit fly (Bactrocera latrifrons Hendel), to our knowledge. 
Our study is the first to report natural parasitism of B. oleae by D. tryoni in Hawai’i or  abroad43.

The second parasitoid we recovered from our samples was F. arisanus, a solitary, koinobiont opiine braconid 
targeting the egg-larval stages of tephritids. Fopius arisanus parasitoids have a larger host range than Diachas-
mimorpha sp. and often outcompete other braconid  parasitoids44. One of the most successful braconid biologi-
cal control agents against Bactrocera fruit flies in the Pacific and beyond; F. arisanus was brought to Hawai’i in 
1948 to originally control B. dorsalis31. Fopius arisanus is also known to parasitize olive fruit  fly45 and has been 
examined as a possible biological control agent for B. oleae management in  California46 and internationally in 
Asia and Africa where it is a major crop  pest47. Interestingly, F. arisanus has been cited in Israel as parasitizing 

Figure 2.  Comparative total emergence of the olive fruit fly B. oleae and two parasitoids D. tryoni and F. 
arisanus during 2021 and 2022 collections of olive fruit in Hawai’i (A). Total emergence for each month is 
shown for B. oleae (B), and D. tryoni (C) with solid bars indicating 2021 and patterned bars indicating 2022 
data, respectively.
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olive fly despite its original introduction being to control Ceratitis capitata48; this is a very similar situation of 
opportunistic biological control as the one we report in the current study.

Our results provide helpful information in the effort to develop a successful management program for B. 
oleae in Hawai’i, but also suggests some questions. First, why were D. tryoni more abundant in our samples 
than F. arisanus? Second, is it likely that F. arisanus will supplant D. tryoni over time in olive fields of Hawai’i? 
It appears F. arisanus numbers are increasing year over year, and we can report that during late summer 2023 a 
single collection of olives from our Lalamilo site yielded the greatest numbers thus far—70 F. arisanus, 115 D. 
tryoni, and 190 B. oleae from approximately 2 kg of olives. This is in comparison to zero F. arisanus recovered 
from our 2021 samples, and only 11 total during 2022 for both Maui and Hawai’I islands, as we reported above. 
Although larval parasitoids such as D. tryoni and D. longicaudata have been used in successful biocontrol pro-
grams, they have generally been outcompeted and displaced by the egg parasitoid, F. arisanus44,46,49,50. This is in 
part due to overall lower parasitism rates for the Diachasmimorpha genus, which are generally below 10%42. In 
contrast, Fopius parasitoids are frequently associated with parasitism rates as high as 50% in the  wild51. Further, 
the presence of F. arisanus is associated with high mortality rates (exceeding 80%) of D. tryoni eggs when laid 
in the same host due to inhibitory changes in the host hemolymph following initial  parasitization44,52. Indeed, 
F. arisanus has been used to great success in the management of another economically significant Bactrocera 
species, B. dorsalis in Hawai’i and throughout the Pacific Basin since its original release in the  1940s31,49,53,54. 
However, B.oleae may not be as suitable a host for F. arisanus in Hawai’i given that olives are typically grown 
in Hawai’i at higher elevations. Fopius arisanus fecundity is maximized around 22 °C, which is slightly warmer 
than our olive sites’ mean daily  temperature55.

Given the abundance of D. tryoni at the Hawai’i olive sites and association with similar climatic profiles, it 
could be a good option for  release56, but more research is needed to compare the viability of both parasitoids for 
biocontrol under controlled conditions to confirm its suitability. Elevational effects on D. tryoni parasitism rates 
have been studied on Kauai in relation to the lantana gall fly E. xanthochaeta and were found in greatest numbers 
at upper elevations around 1000  m57. On Maui, a similar effect was noted where D. tryoni being used for man-
agement of C. capitata was greatest at an upper elevation Kula site on the western flanks of Haleakala at around 
1200  m58. However, in our study, the site with the greatest D. tryoni parasitism was Lalamilo research station, 
which is situated at about 800 m (the other sites in our study ranged from 750 to 1450 m), suggesting elevation 
was not the only factor affecting parasitoid abundance we observed. Other abiotic climate factors may be at play, 
along with biotic effects such as general fruit abundance, factors affecting successful diapause, or interspecific 

Table 2.  Differences in B. oleae emergence from different olive cultivar samples at Lalamilo and McKanna 
sites where significant effects due to cultivar were indicated. Significant values are in bold. 1 Estimated means 
derived from poisson regression. 2 α = 0.05.

Site Coefficient Estimate SE Z-value Pr > |z| Tukey LSD

Lalamilo

(Intercept) 0.9881 0.083 11.894  < 0.001

Arbosana 0.408 0.127 3.217 0.001 b2

Frantoio 0.111 0.171 0.650 0.516 ab

Koroneiki 0.177 0.127 1.398 0.162 ab

Manzanilla − 0.029 0.167 − 1.769 0.077 a

Taggiasca − 0.988 0.712 − 1.387 0.165 ab

Unknown 0.347 0.244 1.423 0.155 ab

Arbequina (ref) a

McKanna

(Intercept) − 1.080 0.286 − 3.776  < 0.001

Koroneiki − 1.503 0.636 − 2.362 0.018 a

Arbequina (ref) b

Table 3.  Differences in D. tryoni emergence from different olive cultivar samples at Lalamilo during 2021–
2022. Significant values are in bold.

Coefficient Estimate SE Z-value Pr > |z| Tukey LSD

(Intercept) 0.4997 0.1060 4.714  < 0.001

Arbosana − 1.5983 0.3498 − 4.569  < 0.001 a

Frantoio − 1.8098 0.3196 − 2.534 0.0113 abc

Koroneiki − 1.4611 0.2969 − 4.921  < 0.001 ab

Manzanilla − 0.2120 0.2061 − 1.028 0.3038 c

Taggiasca 0.1935 0.5111 0.379 0.7050 bc

Unknown 0.1935 0.3335 0.580 0.5618 c

Arbequina (ref) c
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 competition44. We suggest that the presence of D. tryoni at these upper elevations may reflect existing overlap 
with its previously intended biological control target, Mediterranean fruit fly (C. capitata), which is most closely 
associated with coffee in Hawai’i. We noted an additional C. capitata host plant, Solanum aculeatissimum (Apple 
of Sodom) at the Pohakuloa site; and the Lalamilo site had an overgrowth of invasive lantana which is host to E. 
xanthochaeta. These resources may be recruiting and maintaining D. tryoni populations in these areas and help 
explain their relative abundance at these sites.

Our data suggest that augmentative release options may be warranted if an increase in parasitism were 
achieved following introduction in the field. However, assessments are required to confirm (a) that the local 
F. arisanus strain is a suitable parasitoid for B. oleae control and (b) that it performs well under local climatic 
conditions. We also acknowledge that logistics of rearing many influence the decision to rear one species of 
parasitoid over another for an augmentative release program. Further, there may be variation in competitive 
ability even within the islands and different parasitoids may perform better or worse at each location. For these 
reasons, while F. arisanus releases may be suitable at some Hawaiian olive sites, D. tryoni may be preferrable at 
others, particularly at higher elevations where D. tryoni is more competitive and F. arisanus less abundant in 
the environment. Future surveys to track naturally occurring interspecific competition in Hawai’i, along with 
an evaluation of rearing efficiency for both species in colony, will likely indicate the most suitable biological 
control option going forward.

Methods
Field sites
We studied three olive growing sites on the big island island of Hawai’i. The University of Hawai’i Lālāmilo 
Research Station in Waimea (hereafter referred to as “Lalamilo”) on Hawai’i Island (20°01′07″ N, 155°40′35″ 
W, elevation 2630 ft./800 m) is a site of ongoing olive cultivation research. Lalamilo has ten cultivars as well as 
ornamentals arranged in a randomized block formation within a 1.6 hectare (4 acre) plot on the research farm. 
McKanna farm at Waikii ranch (hereafter referred to as “McKanna”, Waimea, Hawai’i (19°51′11″ N, 155°38′55″ 
W, elevation 4750 ft/1450 m) is a commercial, high-density orchard on 0.2 hectares (0.5 acres) with approximately 
200 productive trees planted in 2014, comprising two cultivars, Koroneiki (40) and Arbequina (159) and arranged 
in three parallel rows. The U.S. Army Garrison—Pōhakuloa Training Area (19°50′15.5″ N, 155°42′44.7″ W, eleva-
tion 3150 ft./950 m) (hereafter referred to as “Pohakuloa”) contains a now wild population of thousands of olive 
trees (cultivars unknown) with their epicenter covering an area of around 140 hectares (350 acres). All of the 
trees reportedly stem from an original planting of seven trees presumably from the late 19th to early twentieth 
century, and an additional 40 trees planted in the 1940s.

The two additional olive growing sites were located on the neighboring island of Maui at oil producing 
farms in the Kula region of the island. The upper site, Jamie’s Farm (hereafter referred to as “Jaime” (20°44′09″ 
N, 156°19′28″ W, elev. 3500 ft/1060 m), covers 8 hectares (20 acres) with approximately 400 trees in production 
and 12 cultivars. This orchard has been in production for 7 years. The lower site, Lei’s Farm at Pueokea (hereafter 
referred to as “Pueokea” (20°46′23″ N, 156°19′43″ W, elevation 2434 ft/750 m) is approximately 7.3 hectares (3.3 
acres) with roughly 1200 trees and 10 cultivars. This orchard has been in production for 6 years.

Sample collection
To investigate parasitoids of olive fruit fly in Hawai’i, potentially infested olives were harvested and kept in a 
controlled environment to allow emergence of target species. Every 1–2 weeks, 20 olives were collected from 
designated trees at 1–2 m height as available in the canopy. Collection occurred from the first visible instance of 
infestation until either harvest or the last olives naturally dropped. While samples were collected from Lalamilo 
and McKanna during 2021 and 2022, samples from Pohakuloa were only collected during the 2022 season. Data 
were collected from Jaime’s farm during August and October of 2021, and June–August of 2022. Pueokea was 
added during the 2022 season only.

Trees at Lalamilo were selected based on those that had enough fruit to support collection throughout the 
season. For the first season, the twelve trees selected represented five cultivars: Arbequina (4), Arbosana (2), 
Frantoio (2), Leccino (1), and Manzanillo de Sevilla (2). Some fruit collection trees coincided with those that bore 
olive fly multilure traps. The second season was impacted by an irregular fruiting season as well as the biennial 
fruiting nature of some cultivars, hence the difference in producing varieties. At the McKanna farm site, picking 
was randomized within the two main cultivars (Koroneiki and Arbequina). Trees that had fruit picked one week 
were flagged to be avoided for the remainder of the season so that no tree was picked from twice. The second 
season was impacted by heavy pruning so only large batch sampling of a handful of trees was possible. Only five 
producing trees were used at Pohakuloa given irregular and dangerous terrain.

Insect rearing
Once collected, olives were brought back to the lab in Hilo (USDA-ARS), weighed (Sartorius, Entris BCE), and 
placed in 16 oz. deli cups (473 mL) with mesh fitted lids. Cups were held in growth chambers (temp: 25.5 °C, 
RH: 65%, 12:12 light cycle) for two months with flies and parasitoids removed periodically as they emerged. 
Parasitoids were placed in plastic scintillation vials with 95% ethyl alcohol and kept in at – 40 °C. Morphological 
identification of parasitoids was possible through both a dichotomous key (Wharton, RA and Yoder, MJ. Para-
sitoids of Fruit-Infesting Tephritidae, http:// paroffi t. org) as well as comparison to an existing pinned collection.

Statistical analysis
All analysis was conducted using R statistical software V 4.2.0 (R Foundation for Statistical Computing, Vienna, 
Austria.) We compared insect emergence from olive samples among cultivars using a generalized linear model 

http://paroffit.org
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with Poisson distribution due to negative data  skew59. Since some varieties possessed large olives than others, 
we analyzed our data on a per gram of olive basis. Goodness of model fit was estimated using analysis of devi-
ance using the package “car”60. Posthoc tukey’s LSD comparisons of mean emergence was compared using the 
package “emmeans”61.

Ethics
According to journal policies involving experimental research and field studies on plants (either cultivated or 
wild), we declare that our research complies with relevant institutional, national, and international guidelines 
and legislation. All plant material was collected with the permission of the farms on which we worked, and no 
indigenous plants or animals were harmed in the process.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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