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Construction and validation 
of a novel lysosomal signature 
for hepatocellular carcinoma 
prognosis, diagnosis, 
and therapeutic decision‑making
Jianlin Chen 1,2,3,4,9, Gan Gao 5,8,9, Yufang He 1, Yi Zhang 1,2, Haixia Wu 1, Peng Dai 6, 
Qingzhu Zheng 7, Hengbin Huang 1,2, Jiamiao Weng 1,2, Yue Zheng 1,2 & Yi Huang 1,2,3,4*

Lysosomes is a well‑recognized oncogenic driver and chemoresistance across variable cancer types, 
and has been associated with tumor invasiveness, metastasis, and poor prognosis. However, the 
significance of lysosomes in hepatocellular carcinoma (HCC) is not well understood. Lysosomes‑
related genes (LRGs) were downloaded from Genome Enrichment Analysis (GSEA) databases. 
Lysosome‑related risk score (LRRS), including eight LRGs, was constructed via expression difference 
analysis (DEGs), univariate and LASSO‑penalized Cox regression algorithm based on the TCGA cohort, 
while the ICGC cohort was obtained for signature validation. Based on GSE149614 Single‑cell RNA 
sequencing data, model gene expression and liver tumor niche were further analyzed. Moreover, the 
functional enrichments, tumor microenvironment (TME), and genomic variation landscape between 
 LRRSlow/LRRShigh subgroup were systematically investigated. A total of 15 Lysosomes‑related 
differentially expressed genes (DELRGs) in HCC were detected, and then 10 prognosis DELRGs were 
screened out. Finally, the 8 optimal DELRGs (CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, and 
LAPTM4B) were selected to construct the LRRS prognosis signature of HCC. LRRS was considered 
as an independent prognostic factor and was associated with advanced clinicopathological features. 
LRRS also proved to be a potential marker for HCC diagnosis, especially for early‑stage HCC. Then, 
a nomogram integrating the LRRS and clinical parameters was set up displaying great prognostic 
predictive performance. Moreover, patients with high LRRS showed higher tumor stemness, higher 
heterogeneity, and higher genomic alteration status than those in the low LRRS group and enriched 
in metabolism‑related pathways, suggesting its underlying role in the progression and development 
of liver cancer. Meanwhile, the LRRS can affect the proportion of immunosuppressive cell infiltration, 
making it a vital immunosuppressive factor in the tumor microenvironment. Additionally, HCC 
patients with low LRRS were more sensitive to immunotherapy, while patients in the high LRRS group 
responded better to chemotherapy. Upon single‑cell RNA sequencing, CLN3, GBA, and LAPTM4B 
were found to be specially expressed in hepatocytes, where they promoted cell progression. Finally, 
RT‑qPCR and external datasets confirmed the mRNA expression levels of model genes. This study 
provided a direct links between LRRS signature and clinical characteristics, tumor microenvironment, 
and clinical drug‑response, highlighting the critical role of lysosome in the development and 
treatment resistance of liver cancer, providing valuable insights into the prognosis prediction and 
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treatment response of HCC, thereby providing valuable insights into prognostic prediction, early 
diagnosis, and therapeutic response of HCC.

Liver cancer is supposed to be a common tumor of the alimentary system and ranks 6th and 2nd in malignancy 
of all tumors and cancer-related mortality,  respectively1. In particular, HCC accounts for the majority of liver 
cancers  histologically2. Approximately nine hundred thousand incidences of HCC annually worldwide, while 
China occupies 50% of these  cases3. In recent years, as chemotherapy, embolization, targeted therapy (sorafenib, 
lenvatinib), and immune checkpoint blockade (ICB) have developed, the survival of patients with advanced 
(inoperable or metastatic) HCC has  improved4,5, but overall treatment efficacy remains unsatisfactory. Early 
detection and diagnosis of hepatocellular carcinoma (HCC) is crucial for treatment and  prognosis1. It has been 
reported that the 5-year survival rate for the early phase of HCC is over 70%, whereas that for the late stage is 
only 5%6. However, the lack of specific early HCC biomarkers and superior imaging techniques imposes many 
challenges on early diagnosis. Although circulating tumor markers have the potential to serve as clinically useful 
biomarkers for the management of HCC, limitations in detection methods hinder their clinical  application7,8. 
Currently, alpha-fetoprotein (AFP) remains the only clinically available biomarker for HCC. However, its clinical 
applicability is subject to controversy and  limitations9. Therefore, there is an urgent need for new early diagnostic 
biomarkers to increase the early detection rate of HCC.

Lysosomes were first discovered in 1955 by Christian de Duve, and the discovery of lysosomes revolution-
ized the understanding of cellular biology and laid the foundation for the exploration of many human diseases 
related to lysosomal  dysfunction10. For a long time, lysosomes have been considered as membrane-bound intra-
cellular organelles for the degradation of cellular components, including proteins, lipids, and nucleic  acids11,12. 
In recent years, emerging evidence suggests that lysosomes have a close relationship with tumor development 
and  progression13–15 and play major role in tumor drug  resistance16. Moreover, lysosomes are involved in tumor 
microenvironment  remodeling17,18 and cancer cell metastasis, making them an important target for cancer 
 therapy14,19. Therefore, targeting lysosomes and related processes has been proposed as a potential strategy for 
overcoming drug resistance and improving cancer treatment efficacy. Recent studies have suggested that dupli-
cation and/or overexpression of lysosome-related genes may lead to hepatocarcinogenesis, progression, and 
metastasis. For example, the lysosomal-associated protein transmembrane 4 beta (LAPTM4B) gene has been 
found to be upregulated in HCC tissues, and its expression is associated with poor prognosis and increased tumor 
 aggressiveness20. Similarly, abnormally elevated glucosylceramides (GBA) are related to the invasion and poor 
survival of HCC. The mechanism study further showed that artesunate (ART), an anti HCC drug, achieved its 
anti-tumor effect through the accumulation of GBA targeted  autophagy21. Other lysosomal-associated proteins, 
such as ceroid-lipofuscinosis 3(CLN3) and Cathepsin A (CTSA), have also involved in lysosomal trafficking and 
may play a role in HCC cell migration and  invasion22–24. Most of the previous studies, however, have focused on 
the function of a single gene rather than global changes in the transcriptome of lysosome-related genes (LRGs). 
Therefore, systemic analysis of the LRGs in HCC will provide novel insights into cancer pathogenesis and reveal 
new targets for liver cancer prevention or therapies.

In this study, a novel LRRS model was established, which demonstrated stability and accuracy in both the 
discovery and validation cohorts and could serve as an independent prognostic factor and early diagnosis bio-
marker for HCC. Besides, the difference between two LRRS subgroup in functional enrichment, TME, genetic 
mutation landscape, tumor mutation burden (TMB), chemotherapy and immunotherapy response were com-
pared. In combination with the LRRS and other clinical indexes, we also construct a nomogram to predict the 
probability of survival rate for HCC. Notably, we observed specific expression of CLN3, GBA, and LAPTM4B in 
Hepatocytes based on single-cell RNA sequencing data, where they promoted cell cycle progression and hypoxia 
responses. Finally, expression profiles of the LRRS model genes were validated in multiple datasets and cell lines. 
In summary, our study has expanded the exploration of HCC and provided new clinical insights for accurate 
diagnosis, prognosis, and treatment of HCC patients.

Methods
Data acquisition and pre‑processing
LIHC RNA-seq data combined with complete clinical data was downloaded from TCGA (https:// portal. gdc. 
cancer. gov/) (50 normal samples; 365 HCC samples) and ICGC (https:// daco. icgc. org/) (202 normal samples; 
231 HCC samples). The TCGA-LIHC was functioned as the discovery cohort and ICGC cohort (LIRI-JP) was 
served as the independent validation cohort in this study. Additionally, the GSE144269 (70 normal samples; 
70 HCC samples) and GSE76427(52 adjacent tissues; 115 HCC tissues) datasets were collected from the Gene 
Expression Omnibus (GEO)25 database to validate of the expression patterns of model-related genes. All data were 
converted and standardized as previously  reported26. An online tool, HPA (http:// www. prote inatl as. org) Online 
database was applied to evaluate protein level of model-related genes via immunohistochemistry (IHC) staining.

Development of lysosome‑related risk score (LRRS)
The set of human lymphoma-related genes (LRGs) was searched with the keyword “lysosome” in website Gene Set 
Enrichment Analysis (GSEA) (http:// www. gsea- msigdb. org/ gsea/ downl oads. jsp), then 550 LRGs were obtained 
after removing duplicates (Supplementary Table S1). The differentially expressed genes (DEGs) were defined by 
Limma algorithm (|log2(FC)|> 1.5 & p.adj < 0.05) in discovery cohort. Then, the differentially expressed LRGs 
(DELRGs) were identified by intersecting DEGs with LRGs. Next, DELRGs with survival prediction (p < 0.05) 
were obtained by univariate Cox regression. Afterward, the LASSO regression analysis was conducted and the 
LRRS was calculated as the following formula:

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://daco.icgc.org/
http://www.proteinatlas.org
http://www.gsea-msigdb.org/gsea/downloads.jsp
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The coefficient ( i ) and expression of gene ( i ) represented the coefficient obtained from LASSO analysis and 
the normalized expression value of gene ( i ), respectively. HCC samples were then split into two subgroups: high-
LRRS group and low-LRRS group, according to the median value of the LRRS. Then, using R’s survival package, 
survival probabilities were calculated. In addition, R package “stats” (version 3.6.0), “umap” (version 0.2.7.0), 
and “Rtsne” (version 0.15) were then performed respectively for principal component analysis (PCA), uniform 
manifold approximation and projection (UMAP) and t-statistic neighborhood embedding (tSNE) to illustrate 
the distribution of the two risk groups. The “timeROC” package was utilized to evaluate the prediction efficiency.

The association of LRRS with clinical features and diagnostic evaluation of the LRRS
In TCGA cohort, LRRS values were compared, and survival prognosis were analyzed under different stratifica-
tion of clinical variables. These were further analyzed in the validation cohort. Then, univariate and multivariate 
Cox regression analyses were performed. For diagnosis, the LRRS levels in TCGA groups were firstly compared, 
and the receiver operating characteristic (ROC) curves were graphed to evaluate the diagnostic value of LRRS, 
especially for early diagnosis of HCC. Moreover, the AUCs of ROC were calculated to compare the diagnostic 
efficacy of the LRRS vs AFP in diagnosing HCC. Finally, further validation was carried out in the ICGC dataset.

Establish and evaluate a nomogram
Using the R package "rms", a probabilistic model was constructed to predict 1-, 3-, and 4-year survival in combi-
nation with age, gender, tumor grade, tumor stage, and LRRS. Simultaneously, calibration curves were plotted to 
evaluate the prediction accuracy of the nomogram. According to the C-index, the accuracy between nomogram 
and other prognostic factors was also  assessed27. Additionally, the decision curve analysis (DCA) was conducted 
by the “DCA” package to measure the net clinical benefits of various forecasting  models28.

Functional enrichment analyses
As described above, DEGs between the LRRS subgroups were isolated using the same protocol. Then, GO and 
KEGG analysis was performed by the “clusterProfiler” R package. After that, the GESA analysis was carried out 
using the Hallmark and C2 KEGG gene sets v7.4, which were used in conjunction with the GSEA software (ver-
sion 4.1.0), with p < 0.05 and a FDR of < 0.25 were considered statistically  significant29.

Stemness and Immune landscapes analyses
Stemness analysis was performed according to the previous  report30. For tumor microenvironment analysis, 
the “estimate” R package was used to calculate the ImmuneScore and StromalScore in TCGA  cohort1. The TME 
score was calculated as described  previously31. The infiltration abundance of 24 immune cells of each HCC can-
cer sample was estimated by IMMUNCELL AI  algorithm32. The numbers of 22 tumor-infiltrating immune cell 
(TIIC) from each sample were determined by using the package "CIBERSORT" (R)33.

Somatic mutations landscapes analyses
Somatic mutation data in “maf ” format were downloaded from TCGA GDC data  portal34, and waterfall plots 
were then visualized using the “maftools” package in R. Scores for tumor mutational burden (TMB)35 and mutant 
allele tumor heterogeneity (MATH)36 were calculated by the “maftools” package in R.

Prediction of treatment sensitivity
The tumor immune dysfunction and exclusion (TIDE) was calculated to assess the immunotherapy responses 
in TCGA and validated in the ICGC cohort, as described  previously37. The cancer-related chemotherapeutic 
drug sensitivity was predicted via the Genomics of Drug Sensitivity Database following the previous  study38.

Single‑cell RNA sequencing analysis
Single-cell sequencing analysis methods were referenced from previously published  study39. In short, sequencing 
data was downloaded from GEO(GSE149614) and processed by the “Seurat V4.0” R package.

Cell culture and RT‑qPCR
Human normal liver cell line (LO2) and human liver cancer cell line (HuH-7, HuH-1, HepG2, PLC, and SK-
Hep-1) were purchased from Hongshun Biotechnology Co. LTD (Shanghai, China). LO2 cells were cultured in 
RPMI-1640 (Procell, Wuhan, China) containing 20% FBS (Procell, Wuhan, China). Liver cancer cell lines were 
cultured in DMEM (Gibco, CA, USA) with 10%FBS. All cells were cultured in a 5%  CO2 incubator humidified at 
37 ℃. Total RNA was isolated using Steady Pure Quick RNA Extraction Kit (Accurate Biology, AG21023, China) 
according to the manufacturer’s manual. cDNA was synthesized by MCE RT Master Mix for qPCR II (MCEs, NJ, 
USA). A  GoTaq® qPCR Master Mix (A6001, Promega) was used for qPCR. Primers were synthesized by Shangya 
Biotechnology (Fuzhou, China). CLN3: forward: 5ʹ-CAC TTC CCT GAG TCA CGC TC-3ʹ, reverse: 5ʹ-ACG AGG 
TAG ATG CTT GGC AG-3ʹ; GBA: forward: 5ʹ-CGG CCC TGG TTA GTG AAG TA-3ʹ, reverse: 5ʹ-CAG CAT GAG 
TAG GCG GAC AT-3ʹ; CTSA: forward: 5ʹ-AAA TGC TAG TGA GTC GGA GGA-3ʹ, reverse: 5ʹ-TGT TCA GGA AGC 
GGG AGA AC-3ʹ; BSG: forward: 5ʹ-GTC TGC AAG TCA GAG TCC GT-3ʹ, reverse: 5ʹ-CAC GAA GAA CCT GCT 
CTC GG-3ʹ; APLN: forward: 5ʹ-CAT GCC TTT CTG AAG CAG GACT-3ʹ, reverse: 5ʹ-GTG AGA GCT GAA TGG 

LRRS =

n
∑

i

(

Coefficientof (i)× Expressionofgene(i)
)
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ACG TGA-3ʹ; SORT1: forward: 5ʹ-TCC GTG TGT CAG AAT GGT CG-3ʹ, reverse: 5ʹ-GGC TGT TCC ACA CAC TTG 
GA-3ʹ; ANXA2: forward: 5ʹ-TCT ACT GTT CAC GAA ATC CTGTG-3ʹ, reverse: 5ʹ-AGT ATA GGC TTT GAC AGA 
CCCAT-3ʹ; LAPTM4B: forward: 5ʹ-TAT TGA GTG CCC TGG CTG AT-3ʹ, reverse: 5ʹ-TGC TTG TAC GCT CCG TAA 
GT-3ʹ. For the relative quantification of genes, GAPDH was used as the internal reference (forward: 5ʹ-GGT GTG 
AAC CAT GAG AAG TATGA-3ʹ, reverse: 5ʹ-GAG TCC TTC CAC GAT ACC AAAG-3ʹ) following the  2−ΔΔCT method.

Result
Identification of DEGs and DELRGs in HCC
There were 758 DEGs (473 upregulated, 285 downregulated) were identified between HCC and normal sam-
ples in TCGA (Fig. 1A). The Venn diagram analysis revealed the 15 differentially expressed DELRGs (Fig. 1B). 
Heatmap showed that 15 DELRGs differed significantly in gene expression between HCC and normal samples 
(Fig. 1C). As shown in Fig. 1D, DELRGs had a strong correlation. Functional enrichment analyses demonstrated 
that DELRGs may involve in lysosome and regulation of autophagy (Figs. 1E–G).

Figure 1.  Identification of the lysosomes-related differentially expressed genes (DELRGs). (A) Visualization of 
the differentially expressed genes (DEGs) in TCGA using a volcano plot. (B) Overlapping representation of the 
DEGs and lysosomes-related genes (LRGs) in a Venn diagram. The Venn diagram of the DEGs and LRGs. (C) 
The heat map of 15 DELRGs between HCC and normal tissues in TCGA. (D) The Pearson correlation analysis 
of the DELRGs in TCGA. (E–G) The function of the DELRGs in the Metascape database.
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Constructing and validating of the LRRS model
Cox regression analysis was shown in Fig. 2A, total of 10 DELRGs (CTSA, LAPTM4B, BSG, ANXA2, EHMT2, 
GBA, SORT1, CLN3, SCRIB, and APLN) were significantly associated with (Overall Survival, OS), and were 
selected to construct the LRRS model by LASSO analysis. Then, the optimal eight LRGs model was constructed, 
with the λ = 0.02(Fig. 2B,C). Following the coefficients, LRRS was calculated by the formula: LRRS = 0.2165 × 
CTSA + 0.1350 × LAPTM4B + 0.1824 × BSG + 0.0333 × ANXA2 + 0.0353 × GBA + 0.0069 × SORT1 + 0.0279 × 
CLN3 + 0.1156 × APLN. The distribution of LRRS, survival status, and expression of the model genes in TCGA 

Figure 2.  Construction and evaluation of the Lysosome-related risk score (LRRS). (A) Univariate Cox 
regression analysis was performed to assess the predictive value of the 15 DELRGs in the TCGA cohort. (B) 
Construction of the LASSO model. (C) The optimal λ value, determining the regularization strength of the 
LASSO model, was identified for the selected eight LRRS-related genes. (D) The risk factor diagram of LRRS 
model in TCGA cohort was generated, illustrating the significance of the selected genes in predicting risk. (E) 
The overall survival (OS) curve was plotted to compare the outcomes between high- and low-LRRS groups in 
the TCGA cohort, demonstrating the prognostic value of the LRRS model. Principal component analysis (PCA) 
(F), t-distributed Stochastic Neighbor Embedding (t-SNE) (G), and Uniform Manifold Approximation and 
Projection (UMAP) (H) were utilized to visualize the LRRS subgroup plot of the LRRS subgroup, portraying 
its distinct characteristics. (I) The 1-, 3-, and 4-year receiver operating characteristic (ROC) curves were 
constructed to evaluate the performance of the LRRS model in predicting survival outcomes in the TCGA 
cohort.
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was presented in Fig. 2D. As can be seen from the PCA, t-SNE, and UMAP analysis, patients were distinctly 
divided into two groups (Fig. 2F–H). Survival analysis revealed that patients with high LRRS showed shorter 
survival time (p < 0.001, Fig. 2E). The AUCs in time-dependent ROC curves (tROC) displayed decent prognos-
tic accuracy of LRRS for 1-, 2-, and 4-year OS, with the values of 0.762, 0.676, and 0.666, respectively (Fig. 2I).

Later, the prognostic power of the LRRS model was assessed in validation cohort. The LRRS distributions 
and the expression of model genes within the ICGC cohort can be seen in Fig. 3A. Similar to Fig. 2E, survival 
analysis in validation cohort (Fig. 3B, p = 0.01) completely agrees with the training results. Similarly, Fig. 3C–E 
illustrated the apparent distribution of subgroups based on LRRS. Moreover, LRRS demonstrated satisfactory 
prognostic power in validation cohort, with the AUCs for 1-, 3-, and 4-year OS were 0.749, 0.725, 0.677, respec-
tively (Fig. 3F).

Stratified analysis, independent prognostic analysis, and diagnostic analysis
To clarify the correlation between LRRS and clinical features, we further analyzed the differences in LRRS strati-
fied by clinical characteristics in the various subgroups. As shown in Fig. 4A,B, there was no difference in the 
value of LRRS between the two groups in terms of age (p > 0.05) and gender (p > 0.05) groups in both training 
cohort and validation cohort. However, LRRS in advanced stage (III–IV) was apparently higher than that in the 
early stage (I–II) in both data sets (p = 0.003; p < 0.001). Likewise, values with LRRS in high grade (3 & 4) was 
remarkable higher than that for low grade (1 & 2) in TCGA cohort (p = 0.021). This demonstrated that the LRRS 
model had potential correlations with clinical stage and grade of HCC patients. In addition, HCC patients, all 
in the high LRRS subgroups, presented a poor OS in TCGA cohort (Figs. 4C). In ICGC cohort, patients with 
high-LRRS also indicated shorter survival time in age (> 60) subgroup, Female subgroup, and stage 3–4 subgroup 
(Figs. 4D). These findings indicated that our LRRS model maybe a universal applicability tool for prognostic 
screening.

To verify the ability of the LRRS accurately and independently predict the prognosis of HCC patients, univari-
ate and multivariate Cox regression analyses was performed. In TCGA cohort, univariate Cox regression analysis 
indicated that the tumor stage (HR = 1.695, 95% CI = 1.379–2.083) and LRRS (HR = 3.367, 95% CI = 2.293–4.944) 
were relevant risk factors for HCC (both p < 0.05). According to multivariate cox regression analysis, stage 
(HR = 1.558, 95% CI = 1.258–1.929) and LRRS (HR = 2.876, 95% CI = 1.923–4.301) was independent factors for 
OS (Fig. 5A). In ICGC cohort, stage (HR = 2.203, 95% CI = 1.519–3.195, p < 0.001) and LRRS (HR = 4.081, 95% 
CI = 2.015–8.265, p < 0.001) were likewise confirmed to be independent prognostic factors for OS (Fig. 5B).

we further evaluated whether LRRS signature may assist in more accurate diagnosis of HCC. The level of 
LRRS was found to increase with tumor stage, alluding to a possible novel biomarker for HCC (Fig. 5C, D). Then, 

Figure 3.  Validation of the LRRS model in the ICGC cohort. (A) Risk plot distribution and survival status. 
(B) Kaplan–Meier curves for the OS. (C) PCA, (D) UMAP, and (E) t-SNE plot of the risk model. (F) 1-, 3-, and 
4-year ROC curves of LRRS model for survival prediction in ICGC cohort.
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Figure 4.  LRRS model-based stratified survival analysis of clinical features in TCGA cohort and validated in 
ICGC LIRI-JP cohort. Comparison of differences in LRRS between groups based on the clinical parameters 
of age, gender, stage, and grade using the Wilcoxon signed-rank test in (A) TCGA cohort and validated in (B) 
ICGC cohort. Survival analysis of OS stratified by LRRS and HCC clinical parameters in(C) TCGA cohort and 
validated in (D) ICGC cohort.
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the diagnostic performance of the LRRS was evaluated using a ROC analysis. As shown in Fig. 5C, the LRRS 
vastly outperformed AFP in differentiating HCC from normal samples (AUC: 0.991 vs. 0.731). Likewise, the 

Figure 5.  Cox regression analysis and diagnostic analysis of the LRRS signature in HCC. The univariate and 
multivariate Cox regression analyses in (A) TCGA cohort and in (B) ICGC cohort. (C). The value of the LRRS 
in different groups, including normal (n = 50), and HCC tissues at different stages (stages I, n = 177; stages II, 
n = 88; stages III, n = 86; stages IV, n = 5); ROC curves and AUC values for the LRRS and AFP to distinguish 
HCC from normal, and to differentiate between normal and patients with early stage (stages I & II) of HCC. (D) 
Diagnostic performance was further validated in ICGC (normal, n = 202; stages I, n = 36; stages II, n = 105; stages 
III, n = 71; stages IV, n = 19). LRRS levels (mean ± SEM) among multiple groups were statistically analyzed by 
Ordinary one-way ANOVA.
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risk score was superior to AFP in discriminating early-stage HCC patients from normal samples (AUC: 0.988 
vs. 0.742). In ICGC validation cohort, the risk score also showed a powerful ability to distinguish HCC from 
normal (AUC = 0.952) and early-stage HCC from normal (AUC = 0.936) (Fig. 5D). These data suggested that 
LRRS signature was a potential diagnostic biomarker for HCC, especially for early-stage HCC.

Development and evaluation of a Nomogram in the TCGA cohort
According to the prognostic analysis, a nomogram including LRRS, age, gender, grade, and stage was structured 
to calculate the OS for HCC (Fig. 6A). The C-index for age, gender, grade, stage, LRRS, and nomogram was 
0.528, 0.506, 0.539, 0.609, 0.68, and 0.705, respectively (Fig. 6B). The C-index of nomogram model was more 
than that of other parameters shown a favorable discrimination ability. From the calibration curves, the 1 -, 3 
-, and 4-year observations were in good agreement with the nomogram OS predictions (Fig. 6C–E). The DCA 
curve also suggested that the nomogram had good clinical assessment than other characteristics (Fig. 6F–H).

Enrichment analyses
By applying the criteria of |log2(FC)|> 1.5 and p.adj < 0.05, we have identified a total of 390 up-regulated and 2587 
down-regulated DEGs between the high and low LRRS groups, with the low-LRRS group being utilized as the 
reference. (Fig. 7A). The GO enrichment illustrated that DEGs significant enriched in the vital function of cells, 
including transport, cell cycle, regulation of cell death, proliferation, apoptotic, migration, cell adhesion (Fig. 7B). 
Meanwhile, the result of KEGG analysis showed that DEGs were significantly enriched for many metabolic 
pathways, lysosome, hepatocellular carcinoma, and cancer-related pathways (PPAR signaling pathway and p53 
signaling pathway) (Fig. 7C). Similarly, GSEA further confirmed that the high-LRRS group were significantly 
enriched for various metabolic pathways (retinol metabolism, primary bile acid biosynthesis metabolism of fatty 
acids, tryptophan metabolism, degradation of valine, leucine, and isoleucine) (Fig. 7D). What is consistent with 
KEGG analysis is that lysosome, mTOR signaling, Notch signaling pathway, ERBB signaling pathway, VEGF 
signaling pathway, P53 signaling pathway, MAPK signaling pathway, pathways in cancer, regulation of autophagy 
and cell cycle were significantly enriched in the low-LRRS group (Fig. 7E).

Tumor stemness analyses
Studies have reported that tumor cell stemness-related indexes were supposed to be significantly corelated with 
drug resistance, cancer recurrence and proliferation, and a high index seems to be directly related to the pro-
gress of various types of  cancer30,40. In addition, these index can also help to identify new targets of anti-cancer 
drugs. Results showed that the value of RNAss and LRRS were positively correlated (Fig. 7F), and the correlation 
between EREG.EXPss and LRRS was not statistically significant (Fig. 7H). At the same time, parients with high 
LRRS showed higher values of RNAss (Fig. 7G, p = 0.013) and EREG.EXPss (Fig. 7I, p  = 0.026) than that of the 
low-LRRS group.

Somatic mutations landscapes analyses
We further analyzed the genomic characteristics of LRRS-based HCC subgroups (Fig. 8A,B). Results presented 
that the top five mutated genes in the high-LRRS group were TP53 (41.1%), TTN (30.1%), CTNNB1 (26.4%), 
MUC16 (20.2%), and ALB (13.5%). However, the top five mutated genes in the low-LRRS group were TP53 
(23.1%), TTN (25.9%), CTNNB1 (29.3%), MUC16 (17%), and ALB (10.2%). According to Fig. 8C, 43 patients 
with low-LRRS and 76 patients with high-LRRS were observed to have TP53 mutations (OR = 2.296, p < 0.001). 
Moreover, there was a greater likelihood of finding mutations in PCLO, FLG, AXIN1, CACNA1E, KMT2D, 
PRKDC, BAP1 and BIRC6 in low-LRRS group (all p < 0.0001, Fig. 8C). Surprisingly, although the two groups 
showed different mutation status, both groups were not statistically different in TMB (Fig. 8D, p = 0.124). Inter-
estingly, the MATH score, an indicator of tumor heterogeneity, was found to be significantly higher in patients 
with high LRRS (Fig. 8E, p = 0.04).

Immune landscapes analyses
According to the GSEA analysis, we found immune-related pathways(leukocyte transendothelial migration, 
B-cell and T-cell receptor signaling pathways) were significantly enriched in the low LRRS group (Fig. 9A). 
Interestingly, samples in low-LRRS exhibited significantly higher StromalScore, compared with that of high-LRRS 
group (Fig. 9B, p < 0.05), as were the TME score (Fig. 9F, p < 0.001).However, both groups were not statistically 
different in ImmuneScore (Fig. 9D, p > 0.05). Furthermore, the correlation of the three scores and LRRS was also 
explored. The results showed that except for ImmuneScore, both StromalScore and TME score were significantly 
negatively correlated with LRRS(Fig. 9C, E, G). Then, based on the TCGA cohort,the infiltration level of 24 
immune cells were evaluated using ssGSEA by the ImmuneCellAI online tool. Surprisingly, both groups were 
not statistically different in the infiltration of most immune cells, including, NK cells, CD4+ T cells, neutrophils, 
B cells,Th2, and cytotoxic cells, while patients in the low-LRRS group showed a higher fraction of anti-tumor 
immune cells, such as CD8-naive (p < 0.05), Th17 cells (p < 0.01), and Monocyte (p < 0.001) (Fig. 9H). Moreo-
ver, a higher level of exhausted T (p < 0.05) (a group of T cells that have reduced effector function and continue 
to express inhibitory receptors), Th1 (p < 0.05), NKT (p < 0.001), DC (p < 0.001), CD8+ T (p < 0.01) and nTreg 
(p < 0.01) were observed in the high-LRRS group (Fig. 9H). Furthermore, we used the CIBERSORT algorithm 
to verify the infiltration level of immune cells in TCGA cohort and found that the low-LRRS group shown a 
higher infiltration of a variety of anti-tumor immune cells, including B naive cells (p < 0.05), CD4+ T memory 
resting cells (p < 0.05), Monocytes (p < 0.05), and Mast resting cells (p < 0.05), while high-LRRS group showed a 
higher estimated proportion of tumor-promoting cell, Tregs (p < 0.01) (Fig. 9I). At the same time, we found that 
the high LRRS group showed a high proportion of M0 infiltration (p < 0.001) (Fig. 9I). It is well known that the 
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elevation of M0 macrophages may represent some adverse immune response, such as autoimmune diseases or 
cancer. This is highly consistent with the results of ssGESA. All these data indicated that the LRRS is involved 
in the regulation of immune microenvironment and may affect the anti-tumor immune response in tumors.

Role of LRRS in clinical decision‑making
Given the difference in the TME between the high and low LRRS groups, TIDE algorithm was subsequently 
applied to predict patients’ response to immunotherapy. Previous studies have reported that higher TIDE scores 
were associated with poorer response to immune checkpoint blocking therapy (ICB) and shorter survival 

Figure 6.  Nomogram to evaluate the OS probability based on TCGA cohort. (A) Sophisticated nomogram 
depicting the estimation of 1-, 3-, and 4-year overall survival probabilities. (B) Comparison of C-index among 
age, gender, grade, stage, LRRS, and nomogram. Calibration curves of the nomogram to predict (C) 1-, (D) 
3- and (E) 4-year OS probabilities. Decision curve analysis (DCA) performed to assess the utility of age, gender, 
grade, stage, LRRS, and the advanced nomogram for (F) 1-, (G) 2-, and (H) 4-year overall survival.
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after ICB  treatment37. Our results showed that the high-LRRS group had a higher TIDE score in the TCGA 
dataset(Fig. 10A, p < 0.001), which was confirmed in the ICGC dataset(Fig. 10B, p = 0.005). Furthermore, subclass 

Figure 7.  Functional enrichment and stemness analyses between the high and low LRRS groups. (A) Displays 
volcanic map of DEGs observed in the high and low LRRS groups. The GO analysis (B) and KEGG analysis 
(C) diagram present the enriched pathways of the DEGs. The GSEA results of for KEGG pathways in the 
high-LRRS (D) and low-LRRS (E) groups are illustrated. (F) Correlation scatter plot of LRRS and RNAss. (G) 
The violin plot of the difference in RNAss between the high and low LRRS groups. (H) Correlation scatter plot 
of LRRS and EREG.EXPss. (I) The violin plot of the difference in EREG.EXPss between the high and low LRRS 
groups.
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mapping results indicated that low-LRRS goup showed a more sensitive immunotherapy response in bothTCGA 
and ICGC cohorts (Fig. 10C, D, all p < 0.001). Moreover, based on IC50 values, the sensitivity of four common 
chemotherapy drugs was further analyzed. we discovered that the high-LRRS group was sensitive to all four drugs 
(Sorafenib, Paclitaxel, Gemcitabine, and 5-Fluorouracil) (Fig. 10E–H, all p < 0.001). In conclusion, these findings 
indicated that LRRS was is a feasible tool to instruct clinical treatment decisions of HCC patients.

CLN3, GBA, and LAPTM4B may be novel biomarkers in Hepatocytes
To further elucidate the special role of LRRS gene signature in HCC progression, single-cell RNA sequencing 
analysis was performed to investigate the expression profiles of LRRSs in the liver tumor microenvironment. 
Firstly, 192,675 cells from 10 primary liver tumors and 23,277 cells from 8 non-tumor liver tissues were obtained 
after quality control filtering. Afterward, these cells were merged, clustered, and annotated. Finally, these cells 
were mapped to B cells, Endothelial cells, Hepatocytes, Macrophage, Monocyte, NK cells, Smooth muscle cells, 
Dendritic cells,Tissue stem cells and T cells based on cell-type-specific marker genes (Fig. 11A, B). Remarkedly, 
the cell types differ greatly amongst tumor and non-tumor tissues (Fig. 11A, B). Subsequently, we mapped the 
expression landscape of 8 lysosomes-related genes, including CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, 
and LAPTM4B. As shown in Fig. 11C, D, BSG and ANXA2 were widely expressed in almost all clusters, implying 
their essential role in cell viability. Meanwhile, CTSA were highly expressed in Macrophage and Hepatocytes. Of 
note, CLN3, GBA, and LAPTM4B were specially expressed in Hepatocytes, which may be novel biomarkers for 
liver cancer Hepatocytes(Fig. 11C). Given the high specificity of CLN3, GBA, and LAPTM4B in Hepatocytes, 
we next elucidated their role in Hepatocytes function. The Hepatocytes were classified into nine subpopulations 
via dimensionality reduction (Fig. 11E). Notably, CLN3 and GBA were highly expressed in Hepatocytes (6), 
and LAPTM4B was highly expressed in Hepatocytes (3) (Fig. 11F, G). Furthermore, functional enrichment 
analysis of Hepatocytes (6)-specific genes revealed strong enrichment of protein secretion, G2M checkpoint, E2F 
pathways, Wnt/β-catenin signaling and mitotic spindle. Moreover, LCSC (3) strong enrichment of cancer hall 
markers related to Notch signaling, Glycolysis, PI3K/AKT/mTOR signaling, TGF-βsignaling, Angiogenesis, P53 
pathway and Hypoxia (Fig. 11H). Therefore, CLN3, GBA, and LAPTM4B may be involved in cancer progression 
of liver cancer hepatocytes.

Figure 8.  Comparison of somatic mutations between LRRS-based groups. Waterfall maps of mutated genes in 
HCC patients with high LRRS (A) and low LRRS (B) groups. (C) Forest maps of differentially mutated genes 
in patients with high LRRS and low LRRS HCC. Comparison of TMB (D) and MATH score (E) between HCC 
patients with high and low LRRS. Data were analyzed by Wilcoxon test.
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Figure 9.  Immune landscapes between the high and low LRRS groups. (A) GSEA analysis shows the significant 
enrichment in immune-associated biological processes in the low-LRRS group. StromaScore (B), ImmuneScore 
(D), and TME score (F) in different LRRS groups, respectively. Spearman correlation analysis of the LRRS and 
StromaScore (C), ImmuneScore (E), and TME score (G), respectively. The landscape of immune cell infiltration 
between two LRRS subtypes estimated by the CIBERSORT algorithm (H) and ssGESA (I). ns ≥ 0.05, * < 0.05, 
** < 0.01, and *** < 0.001.
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Figure 11.  Single cell sequencing analysis in the GSE149614 dataset. (A,B) tSNE plot showing predicted 
cell types in 10 liver tissues (A) and 8 paired non-tumor tissues (B). (C,D) The expression distribution of the 
LRRGs signature (CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, and LAPTM4B) in tumor tissues (C) and 
non-tumor tissues (D). (E) Sub-clustering of Hepatocytes. (F) Dot plot of the LRRGs signature genes in sub-
clustering of hepatocytes. (G) Feature plot of CLN3, GBA, and LAPTM4B in hepatocytes. (H) Heatmap of the 
KEGG pathways and the HALLMARK gene sets in subsets of hepatocytes.



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22624  | https://doi.org/10.1038/s41598-023-49985-3

www.nature.com/scientificreports/

The expression confirmation of model genes
Compared with normals, all eight genes were highly expressed in HCC in GSE144269 (Fig. 12A, all p < 0.001), 
and which was validated using data from the GSE76427 dataset(Fig. 12B, all p < 0.001) Subsequently, the protein 
expression of these genes were analyzed in the HPA database. According to the results, the protein expression of 
model genes in tumor tissue were elvated (Fig. 12C). Furthermore, the relative expression of model genes were 
also confirmed in HCC cell lines. Compared with normal cell line(LO2), the model genes were highly expressed 
in multiple tumor cells (Fig. 12D–G). Overall, these results further validated the stability and reliability of the 
LRRS model.

Discussion
Previous studies have indicated that lysosomal-related genes may serve as potential targets for cancer 
 therapy14,16,41. However, the clinical relevance of lysosomal-related genes in the diagnosis and treatment of pri-
mary liver cancer has not been fully elucidated. In this study, we demonstrated the key role of lysosomal-related 
genes (LRGs) in HCC through functional enrichment analysis of differentially expressed genes. Subsequently, 
we identified ten LRRGs that were overexpressed in HCC and associated with poor prognosis. Furthermore, we 
constructed a panel of eight LRRGs that exhibited good performance in the diagnosis and prognosis of HCC 
patients. In summary, the comprehensive transcriptomic analysis of lysosomal-related genes in this study pro-
vides insights into the role of lysosomes in HCC (Fig. 13).

Due to the vital role played by lysosomes in cancer, a LRRS signature was constructed, including 8 genes, 
namely, CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, and LAPTM4B. Combined with literature reports 
and our analysis, all eight model genes were abnormally high expressed in HCC. Ceroid-lipofuscinosis 3(CLN3), 
encodes a lysosomal transmembrane protein, which functions as a necessary clearance enzyme for lysosome to 
clear glycerophosphate diesters (GPDs)42. By activating the EGFR/PI3K/AKT pathway, its upregulation leads 
to tumor growth and metastasis in  HCC22. Glucosylceramidase (GBA) is considered as a necessary enzyme 
for autophagic  degradation43 and has been linked to a variety of cancers in  humans44–46. A recent study found 
that abnormally elevated GBA is correlates with HCC invasion and poor survival,which further showed that 
artesunate(ART), an anti HCC drug, achieved its anti-tumor effect through the accumulation of GBA targeted 
 autophages21. According to a previous research, LAPTM4B promotes tumor growth and autophagy in HCC cells 
by activating ATG3  transcription20. More importantly, our study revealed for the first time that CLN3, GBA, 
and LAPTM4B are specifically expressed in hepatocytes in the liver and promote the progression of liver cancer 
through multiple tumor-related pathways. This further suggests a potential link between lysosomal-related genes 
and the occurrence and development of liver cancer. Understanding the molecular mechanisms of CLN3, GBA, 
and LAPTM4B in liver cancer cells may help to develop new therapeutic targets for liver cancer. In addition, 
Cathepsin A (CTSA), a lysosome-encapsulated cellular proteases, its abnormal expression promotes tumor 
growth and  metastasis23,24. Zhao et al.47 also reported that CTSA was overexpressed and associated with the 
carcinogenesis of liver cancer. BSG also known as Basigin or CD147, EMMPRIN, an immunoglobulin member, 
which can interact with extracellular, intracellular and membrane proteins and is the first reported protein to 
promote cancer  development48. A recent study using CD147-CAR immunotherapy to treat HCC based on the 
abnormal high expression of CD47 and its negative correlation with  prognosis49. Apelin (APLN) encodes an 
adipokine prepropeptide. Muto et al.50 disclosed that APLN overexpression was associated with arteriogenesis 
in HCC. In addition, through activation of the PI3K/Akt pathway, APLN regulates the progression of  HCC51. 
As a lipid metabolism regulatory gene, Sort1 participated in the LDL metabolism and largely involved in the 
directional transport of various proteins in  lysosomes52,53. Recent study reported that Sort1 exerted its function 
as pro-oncogenic molecules in  HCC54. Studies have found that Annexin A2 (anx2) is related to tumor migra-
tion, epithelial mesenchymal transformation (EMT) and promotes tumor  progression55. As the previous report, 
lysosome is significantly associated with cancer cell proliferation, invasion, metastasis, and gene expression 
 regulation56.Consistent with the aforementioned reports, our results indicate that these 8 gene signatures are 
closely associated with malignant clinical features and immune therapy resistance in liver cancer. Furthermore, 
our results also suggest that these 8 gene signatures can independently predict overall survival outcome apart 
from known clinical and pathological risk factors. Additionally, we observed that all 8 model genes play a cru-
cial role in the progression and development of tumors through the regulation of lysosomal-related pathways. 
Recently, a prognostic model of related lysosome-related genes has also been  reported41. The authors used 8 
genes (RAMP3, GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5, CSF3R) to construct a risk model, and the 
study showed that the risk model could better predict the clinical outcome, and the higher the risk, the worse 
the clinical outcome. In addition, the authors found significant differences in biological function, immune 
microenvironment, immunotherapy responsiveness and drug sensitivity between high-risk group and low-risk 
group. In terms of research content and conclusion, our study and the above study focus on lysosome-related 
genes and their relationship with hepatocellular carcinoma (HCC), with the purpose of identifying prognostic 
markers and evaluating their potential impact on the diagnosis, prognosis and treatment of HCC. At the same 
time, both studies found significant differences in clinical outcomes between high-risk and low-risk groups, that 
is, the high-risk group had worse clinical outcomes than the low-risk group, indicating the potential utility of 
the identified genetic signatures as prognostic markers. However, there are several differences between the two 
studies. First, there are differences in the specific lysosomal-associated genes that were identified as significant 
and used in risk modeling between the two studies, which may be related to the different gene sets that were 
included in the analyses. Second, the former study evaluated the differences in biological function, immune 
microenvironment, and drug sensitivity between high and low risk groups. However, our study evaluated tumor 
stemness, heterogeneity, genomic alteration status, immune-cell infiltration, and response to immunotherapy 
and chemotherapy. In addition, our study more comprehensively evaluated the early diagnostic value of risk 
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models. Therefore, although the conclusions of the two studies are similar, there are still many differences in the 
overall research content and methods.It may be of great significance to further optimize and merge the research 
methods and research contents of the two studies.

Figure 12.  Validation of the expression patterns of 8 signature genes. (A,B) The expression levels of eight LRRS 
model genes in GSE144269 (A) and GSE76427 (B). (C) HPA database showing the expression of signature gene 
proteins in HCC tissues compared with normal tissues. (D–G) Relative expression of model genes in HuH-1 
(D), HuH-7 (E), HepG2 (F), and SK-Hep-1 (G) cell lines.



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22624  | https://doi.org/10.1038/s41598-023-49985-3

www.nature.com/scientificreports/

Currently, AFP is still the most commonly used non-invasive diagnostic marker for HCC, but its diagnostic 
sensitivity and specificity are still relatively  low57. It is noteworthy that the performance of our 8-gene signature 
in distinguishing HCC patients from normal samples and early-stage liver cancer is superior to AFP.. In this 
study, HCC patients with high LRRGs scores appear to be more sensitive to common clinical chemotherapy 
drugs, such as Sorafenib, Paclitaxel, Gemcitabine, and 5-Fluorouracil for liver cancer, illustrating that LRRS 
maybe a potentially tool for drug sensitivity prediction.In addition, considering the impact of LRRS on the clini-
cal outcomes, a nomogram including LRRS, clinical features was constructed,which had a excellent predictive 

Figure 13.  Workflow of this study.
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value for HCC. Therefore, the LRRGs signature constructed in this study may be a promising biomarker for the 
diagnosis and prognosis of HCC.

It has been reported that the number of lysosomes in the lysosomal network affects cell growth by activating 
mTOR  protein58. When the number of lysosomes increases, the mTOR molecule on the surface of the lysosomal 
body becomes hyperactive. The GO, KEGG, and GSEA analysis may explain the causes of prognostic differences 
between the LRRS-classified HCC groups. Multiple immune-related pathways were also found to be enriched 
in low-LRRS group, such as T/B cell receptor signaling pathways and leukocyte transendothelial migration. 
It indicated that low-LRRS patients with higher immune activity might have a better prognosis. Immune cell 
infiltration is an indirect manifestation of immune activity. It has been reported that CD8 + T cells can induce 
anti-tumor response by producing interferon-(IFN)59. Th17 cells are considered to have high and long-term 
efficacy antitumor  activity60,61. Interestingly, Treg cells can suppress immune activation by secreting immunosup-
pressive factors or expressing co inhibitory  molecules62. As mentioned earlier, lysosomes are critically involved 
in tumor immunity. In our study, exhausted T and nTreg infiltrated high-LRRS group more than low-LRRS 
group. On the contrary, CD8-naive, Th17 cells, and Monocyte infiltrated low-LRRS group more than high-LRRS 
group. All these result suggestted that high-LRRS may relate to immunosuppression, and associate with a poor 
prognosis,while low-LRRS maybe relate to immune activity and achieve a well prognosis. Nowadays, a series of 
targeting drugs have been developed for HCC such as, anti-PD-1, anti-PD-L1 and anti-CTLA-463. However, some 
success has been reported with immunotherapy in the treatment of HCC, the number of people who benefited 
from immunotherapy is still very low. Therefore, pre-treatment evaluation is particularly necessary. Our study 
showed a positive correlation between LRRS and TME scores, which provides a possibility for the prediction of 
immunotherapy. Predictably, TIDE scores did differ between the two LRRS groups and patients with low LRRS 
were more sensitive to immunotherapy, which is highly consistent with our analysis. It is further confirmed that 
LRRS still has potential value in predicting the efficacy of in tumor ICI therapy.

Tumor heterogeneity and stemness are strongly associated with the choice of cancer treatment and the length 
of overall survival  time64. Our study revealed that LRRS was positively related to the tumor stemness and tumor 
heterogeneity, which mean that HCC cells with higher LRRS are more primitive and less differentiated. TMB is 
an important marker for predicting cancer efficacy, especially for  immunotherapy65.Previous study reported that 
thymic epithelial tumors patients with high TMB had a significantly poor prognosis. We found no difference in 
TMB between the two groups, but regarding somatic mutation, significantly higher population mutation rate 
were observed in patients with high-LRRS, which may also indicate the poor prognosis in the high-LRRS group.

In summary, our study systematically analyzed and obtained the potential clinical value of lysosomal-related 
genes in HCC. Firstly, we revealed the aberrant expression profiles of lysosomal-related genes in HCC, con-
firming their pro-cancer role in HCC. Secondly, we constructed a lysosomal-related gene signature consisting 
of CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, and LAPTM4B, which demonstrated high performance 
in the diagnosis and prognosis of HCC patients. Additionally, this LRRGs signature was strongly associated 
with clinical features of malignant tumors, immune-suppressive tumor microenvironments, and chemotherapy 
response. Finally, the specific expression of CLN3, GBA, and LAPTM4B in Hepatocytes suggested their potential 
as biological markers for liver cells. In conclusion, the systematic evaluation of lysosomal-related genes in HCC 
can provide theoretical basis for their clinical application, help us understand the occurrence of liver cancer, and 
accelerate the development of new intervention strategies. However, our study also has some limitations. Firstly, 
although the results have been validated through multiple approaches, further clinical multicenter validation is 
still needed. Secondly, the specific mechanisms and roles of CLN3, GBA, and LAPTM4B in liver cells require 
further investigation. Thirdly, the potential mechanisms of lysosomes in chemotherapy response and immune-
suppressive tumor microenvironment need further exploration.

Data availability
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prote inatl as. org), and from NCBI GEO: GSE144269 and GSE76427, as well as supplementary materials provided 
in the article.
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