
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22438  | https://doi.org/10.1038/s41598-023-49984-4

www.nature.com/scientificreports

Impact of climatic oscillations 
on marlin catch rates of Taiwanese 
long‑line vessels in the Indian 
Ocean
Sandipan Mondal 1,2, Aratrika Ray 1, Kennedy Edeye Osuka 3, Riah Irawati Sihombing 1, 
Ming‑An Lee 1,2* & Yu‑Kai Chen 4

This study explored the influence of climatic oscillations on the striped, blue, and silver marlin catch 
rates in the Indian Ocean by using logbook data from Taiwanese large‑scale fishing vessels and climate 
records from 1994 to 2016. Only the Madden–Julian oscillation (MJO) and the subtropical Indian 
Ocean dipole (SIOD) had immediate effects on the striped and silver marlin catch rates. The positive 
and negative phases of the IOD at the lags of 7 and 3 years corresponded to increased and decreased 
catch rates, respectively, for both the striped and blue marlin, contrasting to the reverse pattern for 
the silver marlin. Similarly, all three marlin species experienced decreased and increased catch rates 
respectively during the positive and negative phases of the Pacific decadal oscillation. The striped and 
blue marlin catch rates decreased and increased during the positive and negative phases, respectively, 
of the SIOD and MJO with various lags. Our results suggest that the impacts of climatic oscillations 
on fish species are crucial for policymakers and coastal communities for managing marine resources, 
forecasting changes in marine ecosystems, and developing strategies to adapt to and mitigate the 
effects of climate variability.

Extreme ocean events are significantly influenced by the frequency, intensity, and behavior of ocean  conditions1. 
Changes in ocean conditions can cause extreme ocean phenomena such as hurricanes, cyclones, storm surges, 
marine heatwaves, and coastal inundation. An increase in sea surface temperature (SST) can trigger the develop-
ment and intensification of these events by providing the necessary energy. This process can lead to potentially 
more frequent extreme ocean  events2. Moreover, alterations in ocean circulation patterns can affect the paths or 
behaviors of such events. For example, the intensity and location of the Gulf Stream in the North Atlantic can 
affect the course of  hurricanes3. Thus, fluctuations in ocean conditions substantially affect extreme ocean events.

Climatic oscillations, also referred to as climate cycles or variations, exert a profound effect on ocean con-
ditions and  dynamics4. These oscillations are natural patterns that recur on timescales ranging from years to 
millennia. They affect various ocean conditions, including SST, ocean currents, precipitation patterns, and sea 
 level5. For instance, during the negative phase (El Niño) of El Niño-southern oscillations (ENSO), the tropical 
Pacific can lead to substantial SST rises, causing widespread warming, whereas the positive phase (La Niña) have 
the opposite  effect6. The Pacific decadal oscillation (PDO) affects the strength and direction of key ocean cur-
rents such as the Gulf  Stream7, and the ENSO affects precipitation patterns in Australia and other regions in the 
tropical  Pacific8. The effects of these climatic oscillations on ocean conditions are complex and can vary with the 
oscillation’s phase and strength and interactions with other climate factors. Moreover, climatic oscillations can 
exert delayed impacts on ocean conditions because their anomalies persist for months and years following the 
events. Despite studies demonstrating that lagged climatic oscillations are related to current ocean  conditions9,10, 
studies on the effect of climatic oscillations on migratory pelagic species in the Indian Ocean remain sparse.

The effect of climatic oscillations on marine ecosystem is  profound11. For instance, during El Niño events, the 
warming of the eastern Pacific Ocean disrupts the food chain and affects fish  populations12. Changes in SST influ-
ence water column stability, leading to a shallower mixed layer when the SST is warmer than the water beneath 
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it. This inhibits vertical mixing and reduces the likelihood and intensity of upwelling in regions with a shallow 
mixed layer, thereby decreasing productivity and disrupting the distribution of marine  communities13. Extreme 
ocean events and changes in ocean circulation also alter the distribution of plankton and other food  sources14.

Climatic oscillations in the Indian ocean affect regional weather patterns, oceanic conditions, and ecosys-
tems. The Indian Ocean dipole (IOD) is a climatic oscillation characterized by variations in Indian Ocean  SST15. 
Other climatic oscillations of the Indian Ocean include the Madden–Julian oscillation (MJO) and Subtropical 
Indian Ocean Dipole (SIOD)16. The MJO is an eastward-moving cloud, precipitation, and wind disturbance 
that primarily affects the Indian  Ocean17. The SIOD is characterized by anomalies in subtropical Indian Ocean 
 SST18. Each of these oscillations uniquely affects fisheries in the Indian  Ocean19. For example, during positive 
IOD phases, higher SST in the western Indian Ocean and lower SST in the eastern Indian Ocean near Indonesia 
create a temperature gradient that influences ocean and atmospheric circulation patterns. These alterations in 
ocean conditions affect fish catches. Gaol et al.20 reported a decrease in small pelagic fish catch in the eastern 
Indian Ocean during a negative IOD event and a decline in the catch rate of yellowfin tuna (YFT) in the western 
Indian Ocean during the positive IOD  event21. These findings highlight the considerable influence of climatic 
oscillation on Indian Ocean fishery.

Given these considerations, this study explored the relationships of climatic oscillations (and their lagged 
versions) in the Indian Ocean with the rates of marlin catches by Taiwanese longliners. Because of high demand, 
tuna and tuna-like species command high commercial prices. Fisheries of such species contribute substantially 
to the global seafood industry and provide millions of people with employment and income. Tuna catches 
are often exported to satisfy consumer demand for products such as refrigerated tuna, canned tuna, and tuna 
sashimi. Consequently, research on tuna and tuna-like species has been conducted in all the  oceans22–24. However, 
Information on how climatic oscillations and ocean conditions affect the catch rates and distribution of marlin 
species in the Indian Ocean remains limited. Marlin species, members of the Istiophoridae family, hold substan-
tial ecological importance and fulfill several roles in marine  ecosystems25. As apex predators, marlins shape the 
structure and dynamics of the food web by regulating the abundance and behavior of their prey. Beyond their 
ecological  value26, marlins are primarily targeted for their flesh and fins, reflecting their commercial importance. 
Notably, the consolidation of two distinct species into a single species in the Indo–Pacific and Atlantic Oceans 
was discovered through genetic divergence  analyses42 corroborated by the outcomes of tagging experiments, 
which have provided evidence of the migratory behavior of the blue marlin across the Pacific  Ocean43. Given 
the ecological and economic value, understanding how climatic oscillations affect marlin fishery is crucial. Thus, 
this study investigated the influence of climatic oscillations (and their lagged versions) in the Indian Ocean on 
the catch rate of different marlin species. We hypothesized that climatic oscillations influence the catch rates of 
marlin species in the Indian Ocean after various time lags.

Results
Variability in yearly catch rate
The catch rates for the striped, blue, and silver marlin fluctuated significantly between 1994 and 2016. The average 
catch rates for these species were 1.73, 2.87, and 0.21 individuals per hook, respectively (Supplementary Fig. S1). 
The striped marlin catch rate exceeded the average in 1994, 1996, 2001–2005, 2012–2013, and 2016 and peaked 
in 2004 at 4.18 individuals per hook. The blue marlin catch rate exceeded the average in 2002–2006, 2012–2013, 
and 2015–2016 and peaked in 2012 at 6.22 individuals per hook. The silver marlin catch rate hovered near the 
average during 1999–2008, except in 2002, when it fell to 0.27 individuals per hook. The silver marlin catch rate 
peaked in 2007 at 0.72 individuals per hook.

Relations between catch rate and climatic oscillations
Various marlin catch rates were correlated with climatic indices after different lag periods. For the striped marlin, 
substantial correlations were observed with the IOD after 0-, 5-, 7-, and 8-year lags (Table 1). The strongest nega-
tive correlation (r =  − 0.416) was that with the PDO after a 3-year lag, whereas the strongest positive correlation 
(r = 0.392) was that with the MJO at 0 year lag. Additionally, the SIOD exhibited significant correlations after 

Table 1.  Correlations between the catch rates of three marlin species and different climatic oscillations and 
their lags Significance level: *** 0.001, ** 0.01, * 0.05, ~ 0.1 Selected correlations are highlighted in bold.

Lag

Striped Marlin Blue Marlin Silver Marlin

IOD PDO MJO SIOD IOD PDO MJO SIOD IOD PDO MJO SIOD

0 − 0.168 − 0.013 0.392 ~ − 0.158 − 0.068 − 0.055 0.251 0.068 − 0.031 − 0.148 0.093 0.633**

− 1 0.025 0.111 − 0.074 − 0.073 − 0.014 − 0.139 − 0.147 0.067 − 0.174 0.158 0.167 0.528**

− 2 − 0.031 0.058 0.044 − 0.265 0.081 − 0.292 0.031 − 0.185 − 0.221 0.243 0.141 0.047

− 3 − 0.079 − 0.416** − 0.086 − 0.291 0.439** − 0.497* 0.034 − 0.231 − 0.192 0.143 0.211 − 0.129

− 4 0.017 0.346 − 0.218 − 0.111 0.248 − 0.581** − 0.114 − 0.021 − 0.046 0.155 0.007 − 0.343

− 5 0.181 − 0.391 ~ − 0.152 0.276 0.353 ~ − 0.467* − 0.265* 0.308 0.056 − 0.096 0.342** − 0.534**

− 6 0.089 0.006 0.158 0.318** 0.325 − 0.242 0.046 0.319** 0.061 − 0.096 − 0.066 − 0.254

− 7 0.205 0.373 ~ 0.052 0.016 0.173 − 0.139 − 0.107 0.006 0.256 − 0.041 − 0.205 − 0.231

− 8 − 0.188 0.236 0.132 − 0.133 0.151 − 0.123 0.128 0.081 0.078 − 0.177 − 0.001 − 0.115
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lags of 0, 2, 3, 4, 5, 6, and 8 years, with the strongest negative (r =  − 0.291) and positive (r = 0.318) correlations 
with catch rate oscillation after 3- and 6-year lags, respectively.

The blue marlin was significantly correlated with the IOD after 3-, 4-, 5-, 6-, 7-, and 8-year lags, with the 
strongest positive correlation (r = 0.439) being that with the 3-year lag. The PDO was significantly correlated with 
blue marlin catch after 1-, 2-, 3-, 4-, 5-, 6-, 7-, and 8-year lags, with the strongest negative correlation (r =  − 0.581) 
after a 4-year lag. Significant correlations with the MJO were observed after 0-, 1-, 4-, 5-, 7-, and 8-year lags, 
with the strongest positive correlation (r = 0.251) after a 0-year lag. The SIOD showed significant correlations at 
lags of 2, 3, 5, and 6 years. The strongest negative correlation (r =  − 0.231) was found after a 4-year lag, while the 
strongest positive correlation (r = 0.319) was found after a 6-year lag.

The silver marlin catch rate displayed significant correlations with the IOD after 1-, 2-, 3-, and 7-year lags, 
with the strongest negative correlation (r =  − 0.221) being that after the 2-year lag. The PDO exhibited signifi-
cant correlations after 0-, 1-, 2-, 3-, 4-, and 8-year lags, with the strongest positive correlation (r = 0.243) being 
that with the 2-year lag. The MJO exhibited significant correlations with silver marlin catch rate after 1-, 2-, 3-, 
5-, and 8-year lags, with the strongest positive correlation (r = 0.342) being that with the 5-year lag. The SIOD 
displayed significant correlations after 0-, 1-, 3-, 4-, 5-, 6-, 7-, and 8-year lags, with the strongest positive cor-
relation (r = 0.633) being at 0-year lag.

Influence of selected climatic oscillations on catch rate
Table 2 presents the climatic oscillations that explained the highest deviance in the catch rates of the three marlin 
species, as determined by generalized additive model (GAM) analysis (Supplementary Table S1). For the striped 
marlin, the most influential factors were the IOD after a 7-year lag, the PDO after a 3-year lag, the SIOD after a 
6-year lag, and the MJO after a 0-year lag. These factors respectively explained 18.6%, 60.7%, 38.7%, and 40.5% 
of the deviance in striped marlin catch rates. The blue marlin catch rates were primarily explained by the IOD at 
a 3-year lag, the PDO at a 4-year lag, the SIOD at a 6-year lag, and the MJO at a 5-year lag, accounting for 37.7%, 
44.6%, 30%, and 34.7% of the deviance, respectively. For the silver marlin, the most substantial contributors were 
the IOD at a 7-year lag, the PDO at a 2-year lag, the SIOD at a 0-year lag, and the MJO at a 5-year lag, explaining 
37.1%, 54.9%, 77.3%, and 60.1% of the deviance, respectively.

Relationships between catch rates and selected climatic oscillation variability
Two phases of strong interrelations were observed between the striped marlin catch rate and the PDO at a 3-year 
lag: one from 1998 to 2005 (negative interrelation) and another from 2010 to 2012 (positive interrelation). A 
phase of strong interrelation was observed with the MJO after a 0-year lag, from 1999 to 2005 (negative inter-
relation). Additionally, one phase of strong interrelation was observed with the SIOD at a 6-year lag, from 2001 
to 2007 (positive interrelation; Fig. 1).

A strong interrelation between blue marlin catch rate and the IOD at a 3-year lag occurred between 2010 and 
2012 (positive interrelation). Two phases of strong interrelations with the PDO at a 4-year lag were observed, 
occurring between 1998 and 2002 (positive interrelation) and between 2002 and 2010 (negative interrelation). 
The MJO at a 5-year lag exhibited a single phase of strong interrelation with blue marlin catch rates, from 2001 
to 2008 (positive interrelation). Finally, the SIOD at a 6-year lag exhibited two phases of strong interrelation: the 
first between 2001 and 2004 (3–4 years, positive interrelation) and the second between 2005 and 2010 (5–7 years, 
positive interrelation; Fig. 2).

Two phases of strong relations were observed between silver marlin catch rates and the PDO at a 2-year lag 
from 1998 to 2007 (positive interrelation). The MJO at a 5-year lag displayed three phases of strong interrela-
tions with silver marlin catch rates from 1998 to 2000 (positive interrelation) and 2003–2010 (negative inter-
relation). The SIOD at a 0-year lag demonstrated three phases of positive interrelation with silver marlin catch 
rates, namely, 1997–1999, 2000–2006, and 2004–2008 (Fig. 3). These strong relations (wavelet coherence value) 
ranged from 0.7 to 1.

Combined effects of climatic oscillation on catch rates
Examination of the combined effects of selected climatic oscillations with various time lags revealed no collinear 
effects in GAM analysis (Supplementary Fig. S2). The combination of the PDO with a 3-year lag and MJO with 
a 0-year lag explained the largest proportion of the deviance (72.1%), with an adjusted  R2 of 0.61 among all the 
other climatic oscillations (Table 3, Supplementary Table S2). For the blue marlin, the combination of the IOD 
with a 3-year lag and MJO with a 5-year lag explained the largest proportion of the deviance (60.3%), with an 
adjusted  R2 of 0.5. For the silver marlin, the combination of the PDO with a 2-year lag and IOD with a 7-year lag 
explained the largest proportion of the deviance (83.2%), with an adjusted  R2 of 0.71. QQ-plots for the selected 
models for each species are displayed in Supplementary Fig. S3.

Table 2.  Lags of climatic oscillations with the greatest contribution to the deviance in catch rate, as 
determined from GAM analysis.

Species IOD PDO SIOD MJO

Striped marlin − 7 − 3 − 6 0

Blue marlin − 3 − 4 − 6 − 5

Silver marlin − 7 − 2 0 − 5
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Variability in catch rates across phases of climatic oscillations
Table 4 presents the phase-wise changes in the catch rates of the three marlin species with selected climatic 
oscillations. During the positive and negative phases of the IOD with a 7-year lag, the catch rate for the striped 
marlin increased by 21.8% and decreased by 11.6%, respectively. The blue marlin catch rate exhibited similar 
trends during the positive and negative phases of the IOD with a 3-year lag, increasing by 2.9% and decreasing 
by 1.8%, respectively. However, the silver marlin catch rate exhibited an opposite trend; during the positive and 
negative phases of the IOD with a 7-year lag, the catch rate decreased by 5.9% and increased by 3.1%, respectively. 
Striped marlin catch rates during the positive and negative phases of the PDO with a 3-year lag decreased by 
21.5% and increased by 7.6%, respectively. Blue marlin catch rates displayed similar trends during the positive 
and negative phases of the PDO with a 4-year lag, where the catch rate decreased by 28.2% and increased by 
9.9%, respectively. However, silver marlin catch rates during the positive and negative phases of a 2-year lagged 
PDO decreased by 0.6% and increased by 0.2%, respectively. Striped marlin catch rates during the positive and 
negative phases of a 6-year lagged SIOD decreased by 1.1% and increased by 1.5%, respectively. A similar pat-
tern was observed for the blue marlin during the positive and negative phases of a 6-year lagged SIOD where 
the catch rate decreased by 1.2% and increased by 1.8%, respectively. Conversely, the silver marlin catch rates 
during the positive and negative phases of a 0-year lagged SIOD increased by 38.1% and decreased by 29.3%, 
respectively. Striped marlin catch rates during the positive and negative phases of the MJO (0 lag) decreased by 
3.1% and increased by 10.3%, respectively. The blue marlin demonstrated similar trends during the positive and 
negative phases of a 5-year lagged MJO where catch rates decreased by 16.1% and increased by 5.5%, respectively. 
However, a different pattern was observed for the silver marlin during the positive and negative phases of a 5-year 
lagged MJO where the catch rates increased by 5.01% and decreased by 0.4%, respectively.

Discussion
Climatic oscillations and their associated anomalies exert a profound influence on marine ecosystems, particu-
larly affecting the migration and population dynamics of apex predators such as tuna and marlins. The observed 
phenomena caused by the IOD in the Indian Ocean are influenced by recurrent interannual variability in SST. 
This variation in SST induces anomalies in wind patterns and precipitation levels. Connections with the El Niño 
phenomenon contribute to an overall increase in the Indian Ocean’s temperature. This warming is driven by 

Figure 1.  Inter-relation between striped marlin catch rate & selected climatic oscillation (from GAM) 
variability. Time is indicated as 1994–2016 in the y-axis. 0 (Lowest—Blue) to 1 (Highest—Red) in the legend 
indicates the degree of inter-relation.
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shifts in cloud cover and wind patterns, which result from changes in the ascending and descending sections 
of the Walker  circulation27. Such climatic phenomena affect multiple facets of the ecology of the Indian Ocean, 
including ecosystem function, fishery resources, and carbon  sequestration28. For example, IOD events have 
been linked to changes in the catch rates of YFT in the Indian  Ocean21. The findings of this study align with 
observations of climatic oscillations being associated with fluctuations in the catches of these three marlin spe-
cies in the Indian Ocean. The catch rates of all three marlin species were associated with the lags of oscillations, 
displaying a periodic pattern.

This study demonstrated the crucial influence of the lagged effects of climatic oscillations on the catch rates 
of these three marlin species, revealing a delay between these oscillations and their effects on fish populations. 
The majority of the time-lagged effects of four climatic oscillations exhibited a positive or negative correlation 
with the catch rates of marlin species. The time-lagged effects of ocean conditions or climatic oscillations can 
be attributed to several factors.

For instance, to incremental changes in ocean conditions, fish populations can either acclimate or adapt. 
Acclimation refers to short-term adjustments made by individuals, whereas adaptation refers to long-term genetic 
changes within populations. Both processes can be time-consuming and result in lagged distribution  shifts29. Fur-
thermore, alterations in ocean conditions—such as vegetation or water column depth or structure—can directly 
affect the availability of suitable habitats for fish. Fish may require time to discover and become acclimated to 
new habitats, resulting in a lag in their distributional  response30. Our findings on the time-lagged effect on catch 
rates are corroborated by a study on Pacific  billfish31. Another study demonstrated that lagging the effect of the 
North Atlantic oscillation (NAO) by 1 year increased the ability of the NAO to explain the distribution of North 
Atlantic billfish from 13 to 33%32. The effects of climatic oscillations for long-lived species such as marlins are 
expected to have long lags. For small pelagic fishes with limited lifespans, such as sardines and anchovies, the lag 
can be minimal. Teixeira et al.33 found a lag of less than a year in the effect of the NAO in the preceding winter 
on the recruitment of the European sardine. Conversely, Faillettaz et al.34 observed the effect of a lag of 16 years 
of the Atlantic Multidecadal Oscillation (AMO) on the recruitment for the long-lived bluefin tuna. Baez et al.35 
found that the distribution of YFT in the Indian Ocean is substantially affected by the lagged effects of climatic 
oscillations. They found that the IOD, PDO, and MJO were most strongly correlated with the YFT catch rate in 

Figure 2.  Inter-relation between blue marlin catch rate & selected climatic oscillation (from GAM) variability. 
Time is indicated as 1994–2016 in the y-axis. 0 (Lowest—Blue) to 1 (Highest—Red) in the legend indicates the 
degree of inter-relation.
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Figure 3.  Inter-relation between silver marlin catch rate & selected climatic oscillation (from GAM) variability. 
Time is indicated as 1994–2016 in the y-axis. 0 (Lowest—Blue) to 1 (Highest—Red) in the legend indicates the 
degree of inter-relation.

Table 3.  Performance of models based on the largest contributing oscillation variables to the catch rate of each 
marlin species.

Species Model Adjusted  R2 Deviance (%) P(f)

Striped marlin PDO(− 3), MJO(0) 0.61 72.1

 < 0.001Blue marlin IOD(− 3), MJO(− 5) 0.52 60.3

Silver marlin IOD(− 7), PDO(− 2) 0.71 83.2

Table 4.  Phase-wise catch rate changes of three marlin species for climatic oscillations with various lags.

Striped marlin Blue marlin Silver marlin

Oscillations phases Changes (%) Oscillations phases Changes (%) Oscillations phases Changes (%)

 + IOD (− 7)  + 21.8  + IOD (− 3)  + 2.9  + IOD (− 7) − 5.9

− IOD (− 7) − 11.6 − IOD (− 3) − 1.8 − IOD (− 7)  + 3.1

 + PDO (− 3) − 21.5  + PDO (− 4) − 28.2  + PDO (− 2) − 0.6

− PDO (− 3)  + 7.6 − PDO (− 4)  + 9.9 − PDO (− 2)  + 0.2

 + SIOD (− 6) − 1.1  + SIOD (− 6) − 1.2  + SIOD (0)  + 38.1

− SIOD (− 6)  + 1.5 − SIOD (− 6)  + 1.8 − SIOD (0) − 29.3

 + MJO (0) − 3.1  + MJO (5) − 16.1  + MJO (5)  + 5.01

− MJO (0)  + 10.3 − MJO (5)  + 5.5 − MJO (5) − 0.4
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the Indian Ocean after 6, 5, and 5 years, respectively. These slight variations in the lag in the effect on YFT high-
light the sensitivity of different fish species to changes in ocean conditions. Some species may respond quickly 
to environmental  changes36,37. The aforementioned studies support our findings, which suggest the importance 
of lagged effects on marlin catch rates in the Indian Ocean. Our results demonstrate that marlin catch rates or 
distributions may not change immediately after the onset of a climatic oscillation but do change after a delay as 
fish adjust their distribution in response to altered ocean  conditions38.

In the tropical Indian Ocean, a negative IOD event can lead to a reduction in the depth of the thermocline, 
concentrating productivity at the sea surface. The thermocline-SST feedback has a negative impact on the occur-
rence and intensity of positive Indian Ocean Dipole (IOD) events, but it is favorable for negative IOD  events39. 
Strong IOD events primarily stem from the coupling between the thermocline and SST, fostering a highly 
interactive relationship with the atmosphere. Conversely, weak IOD events are merely a response to surface 
winds, lacking the dynamic coupling observed of their strong  counterparts40. The striped marlin catch rate 
was associated with the IOD across the Indian Ocean, whereas no significant associations were observed with 
the catch rates of the blue or silver marlin. These three species exhibit distinct depth distributions and vertical 
movement patterns. Specifically, blue marlins inhabit deeper waters (approximately 1000 m) than do striped 
(approximately 200 m) and silver (approximately 900 m) marlins. Given these differences, during an IOD event, 
striped marlin populations residing in shallower depths might be more susceptible to environmental fluctuations. 
This susceptibility could lead to higher catch variability during positive IOD phases, as observed in this study. 
Thus, species-specific differences were also observed in this study.

Climate variability may similarly affect multiple species. Lynam et al.41 examined the associations between 
the population levels of three jellyfish species—Aurelia aurita, Cyanea lamarckii, and Cyanea capillata—and the 
NAO in the North Sea. They found a significant negative relationship between the abundance of A. aurita and 
C. lamarckii and the NAO near northwestern Denmark and eastern Scotland. This association might be due 
to hydroclimatic fluctuations arising from atmospheric influences on wind stress, temperature, and currents. 
However, the effect on C. capillata was nonsignificant. Rubio et al.42 examined the effect of the NAO on albacore 
and YFT fishing yields in the northeastern Atlantic Ocean, finding significant positive associations between the 
NAO and catch rates for both species. However, IOD-induced changes in the marine environment predominantly 
appear in the equatorial area and may have less of an effect on the blue and silver marlin populations, which are 
situated farther from the equator. The relation between the PDO and the Indian Ocean seems to have influenced 
the striped marlin catch, underscoring the interconnectedness of global climate patterns and marine ecosystems. 
In addition, tuna fishery in the Indian Ocean may experience a noticeable decrease if it is not synchronized with 
the  PDO35. Large pelagic fish like billfish, tuna, and shark species experience substantial environmental fluctua-
tions throughout their life cycle due to their large-scale migration patterns. In order to effectively understand 
and forecast the long-term abundance variations of these species, it is plausible to consider employing large-scale 
climate indices that integrate multiple physical variables as a suitable proxy. Given the enhanced comprehension 
of the teleconnection pattern between the oceans and atmosphere within the context of global climate change, it 
is imperative to emphasize the trans-basin impact of climate patterns on the forecasting of large-scale migratory 
species, akin to the basin climatic oscillations, in forthcoming times.

The blue marlin, known for its migratory behavior, dwells in various tropical, subtropical, and temperate 
waters from 45° N to 45°  S43. Therefore, the PDO could substantially affect this species, leading to variations 
in catch rates in the Indian Ocean. Baez et al.35 indicated a lagged effect on YFT catches in the Indian Ocean of 
the interaction between the PDO and SIOD. This lagged effect may be associated with favorable recruitment, 
enhanced larval survival, or improved YFT spawning. Observations suggest that a negative phase of the PDO or 
a positive phase of the SIOD may increase fish stock abundance after 3 to 6 years. Conversely, a positive phase 
of the PDO or a negative phase of the SIOD may diminish stock abundance after 3 or 6 years. Time series data 
from another  study44 on YFT in the Indian Ocean revealed a correlation between the standardized catch per 
unit effort, distribution, and the influence of the PDO in the Indo–Pacific Ocean, indicating the significance of 
trans-oceanic teleconnections. The effect on blue marlins could be similar because both YFT and blue marlins are 
large pelagic predatory fishes with extensive migration routes. Studies have documented the influence of the PDO 
on global SST and on the recruitment and abundance of  fishes45. Therefore, the PDO also substantially affects 
MLD and net primary productivity from the Pacific Ocean to the Indian Ocean. This influence further affects 
the intensity of the monsoon  system46. During positive PDO events, the temperatures in the subsurface layer of 
the Indian Ocean, specifically at depths ranging from 100 to 320 m, tend to be lower. Similarly, the thermocline 
depths in the same region tend to be greater during these events. These changes may explain the increased blue 
marlin catch in the Indian Ocean during such events.

Studies have underscored the role of the SIOD, another mode of SST variability in the subtropical Indian 
Ocean region, in initiating the tropical  IOD47. Our understanding of the specific effects of the SIOD on fish 
catches remains less comprehensive as that of the effects of other climatic patterns such as the IOD or ENSO. Our 
results reveal that the variability in silver marlin catch is strongly affected by both the positive and negative phases 
of the SIOD. One study highlighted a cyclical feedback mechanism between the IOD and SIOD, particularly 
in tropical and subtropical regions and when ENSO influences are weak or absent. In this feedback cycle, the 
presence of positive (negative) SIOD tends to promote a positive (negative) IOD, whereas a positive (negative) 
IOD tends to promote a negative (positive)  SIOD48. This cycle strongly supports our results for the silver marlin, 
whose peak catch variability (38.1%) was caused by a positive SIOD and occurred during a positive IOD event 
(typically associated with reduced catches). This study demonstrated that highly mobile fishes, such as marlin 
species, are susceptible to the effects of climatic oscillations.

The findings of this study on the relationship between marlin catch and climatic oscillations provide crucial 
insights for the management of marlin species, particularly through the use of early warning systems (EWSs)9. 
Extreme climatic events can have substantial effects on marine ecosystems and fishery stock abundance, 
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highlighting the necessity of an EWS. By identifying relationships between climatic oscillations and marlin 
catch rates, this study provides potential indicators of shifts in fishery stock and ecosystems. This valuable 
information can aid governments in planning and implementing strategies to mitigate adverse effects on fish-
ing industries and coastal communities, thereby promoting the resilience of marine ecosystems and enhancing 
socioeconomic welfare.

Conclusion and remarks
This study examined the effects of climatic oscillations on the catch rates of the striped, blue, and silver marlin 
in the Indian Ocean. The catch rate variability of the silver marlin differed notably from that of the striped and 
blue marlin. Our results indicate the role of climatic oscillations and their lagged effects on marlin catch rates, 
supporting our hypothesis. Our findings suggest that marine scientists, policymakers, and coastal communi-
ties should acknowledge the effects of climatic oscillations on ocean conditions. Such an understanding could 
improve the management of marine resources, forecasting of changes in ocean ecosystems, and development of 
strategies to adapt to and mitigate the effects of climate variability on the oceans. Such effects can be far-reaching 
on marine biodiversity, coastal economies, and the overall health of the climate system.

Methods
Data collection
Marlin fishery data
Monthly fishery data for the striped, blue, and silver marlin were collected from the logbooks of Taiwanese 
large-scale long-line fishing vessels (deep-water fishing vessels with volumes > 100 gross registered tonnage 
and lengths > 24 m); these logbooks were obtained from the Overseas Fisheries Development Council for the 
period 1994–2016. The spatial coverage of the data was 25° N–44° S and 20° E to 120° E at a resolution of 1° × 1° 
(Fig. 4). The logbooks data included the year, month, latitude, longitude, and number of catches and the number 
of hooks used. However, data related to hook depth and operation time were not available. Small-scale vessels 
(those fishing primarily in offshore waters, with volumes < 100 gross registered tonnage and lengths < 24 m) were 
not included in this study due to the unavailability of data for the specified period.

Climatic oscillation data
Data on four climatic oscillations—the IOD, SIOD, MJO, and PDO—were collected for the period 1994–2016. 
For each climatic oscillation, lags of up to 8 years were also considered. The sources of the climatic oscillation 
data are provided in Supplementary Table S3.

Data analysis
Yearly catch rate variability
The catch rate of each marlin species in this study was calculated using the following  formula49:

The study used autoregressive integrated moving average time series analysis (ARIMA)50 to assess yearly 
catch rate variability. ARIMA combines autoregressive (AR) and moving average (MA) components, along 

(1)Catchrate =
Catchinnumber(Catch)

Numberofhooksdeployed(Effort)

Figure 4.  Study area.
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with differencing, to capture the inherent patterns within the time series under  investigation50. This analysis was 
performed in the R environment (version 3.6.0) using the “ts” function of the “tseries”  package51 and the “cpt.
meanvar” function of the “changepoint”  package52. Henceforth, this catch rate value was used for the forthcom-
ing analysis.

Relations between catch rate and climatic oscillations
The Pearson correlations between the catch rates of each species and the climatic oscillations (including their 
lags) were  analyzed53. This analysis was performed in the R environment (version 3.6.0) using the “cor.test” func-
tion of the “corrr” package. Only climatic oscillations with an absolute correlation value of 0.1 or more with the 
catch rate of any marlin species were selected for further  analysis35. The Pearson correlation coefficients were 
calculated as follows:

In this equation, n is the sample size,  Xi and  Yi are individual sample points indexed by i, and X and Y are 
sample mean values.

A higher correlation coefficient indicates the presence of collinearity between pairwise variables. A Pearson 
correlation coefficient close to 0.8 suggests the presence of  collinearity54. Climatic oscillations exhibiting an 
absolute correlation value greater than 0.1 were selected as potential explanatory variables with non-linear 
impacts on marlins. Furthermore, only the time delays of the selected climatic oscillations that had an absolute 
correlation value greater than 0.1 were chosen for the subsequent analysis. The correlation coefficient ranges 
from − 1 to + 1. The magnitude of a correlation indicates the direction of changes in one variable resulting from 
changes in  another55. This test has the potential to reveal the significant association between climatic variables 
and fish catch at different lag periods, suggesting that the distribution and abundance of fish, including catch, are 
reliant on ecosystem  characteristics56. Examining the correlation structure of a time series can unveil inherent 
patterns such as seasonality or  trends57.

Effect of selected climatic oscillations on catch rate
The effects of selected climatic oscillations on the striped, blue, and silver marlin catch rates were analyzed 
using the  GAM58. GAM allows one to analyse non-linear relationships and capture complex patterns in the 
data, utilising smooth functions to account for potential non-linearities in predictor variables. GAM results are 
associated with “deviance explained,” a metric quantifying the proportion of variability in the dependent variable 
accounted for by the model, signifying the reduction in deviance compared to a null model; higher explained 
deviance values denote a stronger ability of the GAM to explain observed variability in the dependent  variable58. 
For each species, one GAM was constructed for each climatic oscillation, with the climatic oscillation serving 
as the predictor variable and catch rate serving as the response  variable59. This analysis was performed in the R 
environment (version 3.6.0) using the “smoothing” function of the “mgcv”  package59. The weightage of climatic 
oscillation variables was ranked on the basis of deviance explained and the Akaike information criterion (AIC). 
AIC is a metric used to compare model results by quantifying the trade-off between model fit and complexity, 
with lower AIC values indicating a better fit and parsimonious model  complexity58,59. Only the models with the 
greatest deviance explained and lowest AIC were selected for further analysis. Each GAM was constructed using 
the following formula:

where c is a constant value of 0.1 and s is the smoothing function. The climatic oscillation with the greatest effect 
on the catch of each species was considered the chosen predictor for the final analysis.

Interrelation between catch rate and selected climatic oscillation variability
The interrelation between the yearly catch rate variability of each marlin species and the yearly variability of their 
respective selected climatic oscillations was analyzed using cross-wavelet time series  analysis60. This analysis was 
performed in the R environment (version 3.6.0) using the “wtc” function of the “biwavelet”  package61. Following 
Grinsted et al. (2004)62, the cross-wavelet coherence of two time series (i.e., yearly catch rate and climatic oscil-
lation variability) was defined as follows:

where W is the wavelet transform of the time series and S is a smoothing operator used to calculate average 
values. X and Y are two time series i.e. catch rate and climatic oscillation.

Combined effect of climatic oscillations on catch rate
This study used the GAM methodology to assess the combined effects of climatic oscillations with various lags 
on the catch rate of each species. Models were constructed separately for each species with all possible pairs of 
the selected climatic oscillation variables from the previous GAM analysis. Before modelling, pairs were con-
structed, the collinearity of the effects of any selected climatic oscillations on catch rate was assessed through 
the calculation of the variance inflation factor (VIF) in the R environment (version 3.6.0) by using the “vif ” 

(2)r =

∑n
i=1 (Xi − X)(Yi − Y)

√

∑n
i=1 (Xi − X)2

√

∑n
i=1 (Yi − Y)2

(3)GAM : (Catchrate+ c) ∼ s(Predictorvariable)

(4)R
2
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∣
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s
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function of the “car” package. Only climatic oscillations that did not exceed a threshold VIF value of  563 were 
selected for model construction.

GAMs were separately constructed from pairs of the selected climatic oscillation variables after the VIF analy-
sis for each species; these analyses were performed in the R environment (version 3.6.0) using the “smoothing” 
function from the “mgcv” package. Each paired GAM was constructed using the following formula:

Phase-wise catch rate variability. This study assessed the relation of the phase-wise catch rate variability of the 
three marlin species with the climatic oscillations. Each selected climatic oscillation was divided into positive 
and negative phases. The average catch rate throughout the study period was calculated to serve as the base catch 
rate for identifying the positive and negative phases. The average catch rates during the positive and negative 
phases were then calculated. The increase or decrease in catch rate of each species (%) during the positive and 
negative phases were calculated using the following formulas:

Data availability
For access to the data used in this study, please contact the following author: Ming-An Lee (malee@mail.ntou.
edu.tw).
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