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Stem water potential estimation 
from images using a field 
noise‑robust deep regression‑based 
approach in peach trees
Takayoshi Yamane 1,2*, Harshana Habaragamuwa 2*, Ryo Sugiura 2, Taro Takahashi 1, 
Hiroko Hayama 1 & Nobuhito Mitani 1

Field‑grown peach trees are large and have a complex branch structure; therefore, detection of water 
deficit stress from images is challenging. We obtained large datasets of images of field‑grown peach 
trees with continuous values of stem water potential (Ψstem) through partial secession treatment 
of the base of branches to change the water status of the branches. The total number of images as 
frames extracted from videos of branches was 23,181, 6743, and 10,752, in the training, validation, 
and test datasets, respectively. These datasets enabled us to precisely model water deficit stress 
using a deep‑learning‑regression model. The predicted Ψstem of frames belonging to a single branch 
showed a Gaussian distribution, and the coefficient of determination between the measured and 
predicted values of Ψstem increased to 0.927 by averaging the predicted values of the frames in 
each video. This method of averaging the predicted values of frames in each video can automatically 
eliminate noise and summarize data into the representative value of a tree and is considered to be 
robust for the diagnosis of water deficit stress in large field‑grown peach trees with a complex branch 
structure.

Advances in deep learning have enabled the adaptation of plant diagnosis methods using digital images in 
 agriculture1. For example, the detection of fruits and diseases in plants using images has been shown to be 
 feasible2–4. Creating image datasets obtained under actual cultivation conditions is particularly important for 
the development of image recognition  systems5. However, the conditions in an open field are complex, and the 
captured images are affected by noise factors. Sun et al.3 stated that changes in the environment and plant status 
during the day confound the image analysis of plant diseases. There are several factors that are thought to be 
noisy, such as weather conditions (including sunlight, wind, rainfall, clouds, and time of day), ground conditions 
(including color and type of soil, amount, and growth of weeds), and structures (including poles, trellis, nets, and 
plastic sheets), together with the background, including vehicles and workers, among other factors. Particularly 
in fruit trees, the size of trees is large compared to ordinary crops, the structure of branches is complex, and the 
growth of branches and light conditions differ greatly between the exterior and interior parts of the same tree. 
Therefore, image diagnosis of the status of a tree, such as the detection of water deficit stress in an open field, is 
challenging.

Water deficit stress reduces plant vegetative growth and leaf  photosynthesis6,7. In contrast, moderate water 
stress improves the fruit quality by increasing sugar  concentration8. The effects of irrigation on fruit quality differ 
depending on the fruit developmental  stages9. Yield and tree growth are also affected by water  management10. 
Therefore, the management of water deficit stress is important for controlling fruit tree growth, yield, and fruit 
quality in peach  trees11, and the assessment of plant water deficit stress is invaluable for precise and controlled 
irrigation.

To assess the water deficit stress, a reliable method for measuring the extent of water stress is of paramount 
importance. Presently, pressure chamber  measurement12 serves as a sensitive physiological indicator of tree 
water deficit stress. The stem water potential (Ψstem), which is measured on a non-transpiring covered leaf in a 
hermetic aluminum bag, indicates the integrated results of whole-plant transpiration, soil, and root/soil hydraulic 
 conductivity13. Ψstem has been used as a stable index of irrigation requirements in deciduous fruit  trees14, and 
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the relationship between Ψstem and parameters such as vegetative growth, yield and fruit quality, gas exchange, 
and carbon accumulation has been evaluated in peach and nectarine  trees15–20.

Although Ψstem is an excellent indicator of water stress of tree, measurement using a pressure chamber has 
its own drawbacks, such as being destructive and labor-intensive21. To counter these drawbacks, nondestruc-
tive measurements of Ψstem using other sensors have been  developed22,23. These measurements can be divided 
into two categories; intrusive and non-intrusive. Intrusive sensors require intrusive installation into the xylem 
of the tree, calibration, and maintenance of equipment. Therefore, a fast, low-cost, and non-destructive method 
is required. Among non-intrusive methods, spectral reflectance indices such as normalized difference vegeta-
tion index (NDVI) and the ratio between transformed chlorophyll absorption in reflectance and optimized 
soil-adjusted vegetation index (TCARI/OSAVI) are known to show correlation with Ψstem; however, these 
correlations are not enough high (r2 = 0.68)24. These spectral reflectance indices are more closely related to plant 
vigor than to plant physiological  states25. Thermal sensing is another non-intrusive method for detecting water 
deficit stress. However, thermal sensing requires calibration (e.g., wet and dry surfaces) because leaf tempera-
ture is affected by both of environmental conditions and stomatal  aperture21. Our study focused on filling the 
gap between two spatial scales: the most precise but equally laborious methodologies (pressure chambers) and 
remote sensing (e.g., unmanned aerial vehicles), which still require improvement with regard to the precision 
and accuracy of physiological data.

Deep learning has recently been used for digital image-based plant stress  phenotyping1. Plant images were 
also used to detect water deficit stress, which was derived from the growth of stem diameter by deep learning in 
tomato  plants26,27. The classification of Ψstem from images using deep learning in peach trees has been previously 
 reported28. However, these results were obtained for tomato plants or peach trees planted in pots in a greenhouse, 
and could be applied only to relatively small plants. However, actual peach trees grown in the field are large (e.g., 
8 × 6 m in area and 3 m in height) and have a complex structure of main branches, and solar radiation varies 
between the surface and the interior sections of the tree. Moreover, in natural conditions other unknown factors 
may contribute to this complexity. Therefore, a different approach of image acquisition and analysis can address 
the complexities at the field level for the diagnosis of water stress in field-grown trees.

Additionally, in field conditions, it is difficult to generate a dataset of images in which the water deficit stress 
covers a wide and continuous range of stress levels because the deep and wide distribution of roots and unex-
pected rainfall in Japan prevent the continuous drying of trees. Therefore, we artificially induced water deficit 
stress by partial secession treatment of a branch to create a large dataset for learning.

In this study, water deficit stress estimation from images of a peach tree using a field-noise-robust deep 
regression-based approach is proposed. Our objectives were: 1. Generate a large water deficit stress dataset that 
could be used to determine the relationship between water deficit stress and image data, 2. Train a deep learning 
model to assess its effectiveness in water deficit stress modeling using the abovementioned dataset, and 3. Develop 
a new approach to diagnose water deficit stress in a large tree from extracted frames of a close-shot video of a tree.

Materials and methods
Plant materials and water stress treatment
Five 12- and 13-year-old peach trees (Prunus persica (L.) Batsch cv. ‘Akatsuki’) at the National Institute of Fruit 
Tree and Tea Science, National Agriculture and Food Research Organization (NARO) in Tsukuba, Ibaraki, Japan, 
were used for the study. The trees were trained to an open vase (8 × 6 m) and conventional commercial produc-
tion practices were implemented. The orchard was covered with nets to protect from birds, insects and so on. 
The experiment was conducted from June 8 to 22, 2022. Full bloom occurred on April 5, and the growth stage of 
these trees ranged from 64 to 78 days after full bloom (stage II of the fruit development stage). Nine secondary 
scaffolds and lateral branches with lengths ranging from approximately 1–3 m from five trees were used for the 
partial secession treatment of the base part of the branch using a saw to change Ψstem of the branches to obtain 
a large dataset for machine learning (Fig. 1a). Partial secession was conducted from the two sides of the branches 
until the depth of each secession reached just before half the branch diameter. When Ψstem did not change by 
the treatment, an additional and deeper secession was applied gradually. The timing of the commencement of 
treatment varied among the nine branches; this step was implemented to obtain a combination of images from 
various days (for a robust training dataset).

Ψstem was measured on two mature leaves per branch at each measurement time, and two leaves were 
enclosed in a hermetic aluminum bag for at least 30 min before the measurement. These leaves reached an equi-
librium with the main stem of the treated branch; therefore, their water potential represented that of the entire 
branch. This procedure is known to be a stable method to estimate the water  condition14,29. Continuous Ψstem 
values of each branch, which ranged from no stress (− 0.5 MPa) to very high stress (− 2.8 MPa), were obtained 
on different days and at different times. A pressure chamber (Model 600, PMS Instrument Company, USA) was 
used to measure water potential.

Videos were recorded around the branches at a distance of 50–100 cm using a smartphone equipped with a 
camera (iPhone 12 Pro, Apple, Cupertino, CA, USA) when the measurement of Ψstem was conducted (Fig. 1b, 
c). The image size, video frame rate, and focal length were 3840 × 2160 pixels, 30 frames Per Second (FPS), and 
26 mm, respectively. The length of the video depended on the size of the branches and was approximately 30 to 
120 s for each time measurement. A total of 107 videos were obtained from nine branches.

The relationship between Ψstem and leaf wilting was confirmed using a laser rangefinder (DISTO X4, Leica 
Geosystems, Switzerland). A laser rangefinder was set on a tripod, and the distance from the tip of the leaf was 
measured during the water deficit stress treatment (Fig. 1d).
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Deep learning analysis
A plethora of machine-learning methods can be used for the regression analysis. In recent literature, artificial 
neural network (ANN)-based deep learning models have shown promising  results30 compared with other meth-
ods. We decided to adopt the commonly available deep-learning models for our purposes. Four pre-trained 
models, VGG  1931, Resnet  5032 and 101, and Inception  V333 were used for learning. The final linear layer was 
converted to output a single value, which was used to predict the Ψstem of the branch. The mean square error 
(MSE) was used as the loss function to fit a regression line when training the models. The datasets of the branches 
were separated into training, validation, and testing datasets, as listed in Table 1. Independent branches were used 
for each dataset to avoid overfitting caused by branch type and location. The  PyTorch34 deep learning framework 
and Python language were used for training, testing, and validation of the models.

Results and discussion
Obtained dataset of water deficit stress
The effect of the partial secession treatment on the base of the branch to induce water deficit stress varied among 
the branches. The actual data for all branches are listed in Table 1. Six branches showed gradual decrease of Ψstem 
during several days. Three branches (Nos. 2, 5, and 6) showed severe wilting immediately after treatment, and 
continuous data of Ψstem could not be obtained for these branches. Therefore, six branches were used in this 
analysis. The six branches were divided into training (Nos. 1, 3, and 8), validation (No. 7), and test (Nos. 4 and 
9) datasets to ensure uniform distribution of Ψstem (Table 2, Fig. 2). A total of 82 videos were captured from 
these six branches (Nos.1, 3, 4, 7, 8, and 9). The average length of the videos was approximately 1 min, and the 
length of each video varied according to the branch size. Six frames per second were extracted from the video 
as images, and the total numbers of frames were 23,181, 6743, and 10,752, for the training, validation, and test 
datasets, respectively.

Learning and analysis of test dataset
The MSEs of the training dataset decreased to below 0.003 by 120 epochs in all models (Fig. 3). The lowest MSE 
(the number of epochs with the lowest MSE) values of validation were 0.1019 (40), 0.0921 (75), 0.0989 (195), 
and 0.0895 (35), for VGG 19, Resnet 50 and 101, and Inception V3, respectively. Among the four models, Resnet 
50 and Inception V3 exhibited a low MSE in the validation dataset. The MSEs in the test dataset, which was 
evaluated using the trained models of Resnet 50 and Inception V3, were 0.1120 and 0.1167, respectively. As the 
trained model of Resnet 50 showed a slightly lower MSE than that of Inception V3 in the test dataset, Resnet 50 
was used for further analysis. The test dataset was evaluated using the trained model of Resnet 50. The coefficient 
of determination between measured and predicted values of Ψstem was 0.767 (Fig. 4a). Because the number of 
frames extracted from each video ranged from approximately 200 to 500, approximately 200–500 predicted values 
existed for each measured value. Histogram of predicted values of Ψstem for each frame in each video showed a 
Gaussian distribution (Fig. 5). When the average of the predicted values of the frames in each video was used as 
the representative value for each prediction, the coefficient of determination between the measured values and 

Figure 1.  Tree during water deficit stress treatment. (a) a partial secession treatment at the bottom of a branch 
(treatment was conducted from two sides of the branch by using a saw); (b) the branch where a video was taken; 
(c) an analyzed frame which was extracted from video; (d) the measurement of leaf tip movement by a laser 
rangefinder.
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Table 1.  Changes in Ψstem (MPa) of nine branches (No. 1–9) at each time of measurement during water 
deficit stress treatment.

Date Time No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9

8-Jun

9:00  − 0.585  − 0.620  − 0.595  − 0.550

11:00  − 2.250  − 2.285  − 0.955  − 1.720

11:50  − 2.330  − 2.275  − 1.030  − 1.810

14:00  − 1.105  − 1.715

16:00  − 0.980  − 1.645

9-Jun
11:00  − 0.840  − 0.655  − 2.425  − 1.035  − 1.470

13:00  − 0.725  − 0.580  − 2.265  − 0.810  − 1.260

10-Jun 16:00  − 2.835  − 0.625  − 1.260

13-Jun

10:00  − 1.065  − 0.730  − 1.295

13:00  − 1.060  − 0.815  − 0.725  − 1.175  − 0.665

16:00  − 0.815  − 0.695  − 0.775  − 1.755  − 0.690

16-Jun

10:00  − 0.785  − 2.065  − 0.555  − 1.380  − 0.640

13:00  − 1.600  − 2.185  − 0.900  − 1.585  − 0.930

15:00  − 1.385  − 2.230  − 0.880  − 1.380  − 1.305

17-Jun

9:40  − 1.420  − 2.430  − 0.785  − 1.125  − 1.455  − 1.345

12:00  − 1.750  − 0.795  − 1.695  − 1.555  − 1.850

14:00  − 1.535  − 0.850  − 1.390  − 1.485  − 1.670

16:00  − 1.510  − 0.850  − 2.175  − 1.275  − 1.265

20-Jun

10:00  − 2.250  − 1.105  − 2.765  − 1.675  − 1.925

11:30  − 2.275  − 1.300  − 2.480  − 2.880  − 1.625

14:00  − 1.960  − 1.275  − 2.050  − 1.590

21-Jun

9:00  − 2.345  − 1.215  − 2.230  − 1.655

11:30  − 2.290  − 1.155  − 2.225

14:00  − 2.095  − 2.535

15:30  − 2.720  − 2.140

22-Jun
10:00  − 2.705  − 2.110

11:00  − 2.560  − 2.175

Table 2.  Summary of the dataset obtained from nine branches (No. 1–9).

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9

Ψstem (min)  − 2.345  − 2.430  − 2.720  − 2.765  − 2.835  − 2.285  − 2.880  − 1.810  − 2.535

Ψstem (max)  − 0.725  − 0.580  − 0.785  − 0.555  − 0.585  − 0.620  − 0.595  − 0.550  − 0.640

Number of videos 17 9 13 11 6 3 22 8 18

Usage Training Not used Training Test Not used Not used Validation Training Test

Figure 2.  The number of datasets generated and the number of analyzed frames from videos (in parentheses) 
are 23,181 (31), 6743 (22), and 10,752 (29) in the training, validation, and test datasets, respectively.
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the average of the predicted values increased to 0.927 (Fig. 4b). Samples of frames with predicted values close to 
the average value for each video in the test dataset are shown in Fig. 6.

When the training and test datasets were exchanged (the test dataset was used as the training dataset and vice-
versa), the coefficient of determination between the measured and predicted values was 0.7493. The coefficient of 
determination increased to 0.9005 after averaging the predicted values. Exchanging the dataset did not affect the 
prediction of Ψstem. When independent branches were used in each of the training, validation, and test datasets, 
the results suggested that noise factors other than Ψstem such as background, the age and shape of branch, and 
so on were not learned in the trained model and showed robustness for predicting Ψstem of the trained model.

Leaf wilting was confirmed by measuring the distance moved by the leaf tip, using a laser rangefinder. Leaf tip 
movement was highly correlated with Ψstem (r2 = 0.9227), and the relationship was continuous and linear (Fig. 7). 
This result suggests that changes in leaf shape, including leaf angle, during wilting are strong factors learned by 
deep learning in the images. The linear relationship between leaf tip movement and Ψstem was confirmed in 
other trees planted in pots without the partial secession treatment (data not shown). Therefore, changes in leaf 
shape including leaf angle under water deficit stress condition was not largely different from trees with water 
deficit stress under natural conditions. Leaf water potential is related to cell  turgor35. A decrease in cell turgor 
should occur as the leaves wilt. Engelbrecht et al.36 confirmed the relationship between leaf water potential and 
leaf wilting which was categorized into five classes by visual assessment. Briglia et al.37 reported linear relationship 
between Ψstem and leaf angle which was measured from images of leaves in grape. These results are consistent 
with those of the present study. In the present study, leaf wilting was measured precisely using a laser rangefinder, 
and the observed linear relationship between stem water potential and leaf wilting is thought to be useful for 
interpreting changes in tree appearance during water deficit stress.

Although the partial secession treatment enables the collection of large datasets that are difficult to obtain 
under natural conditions, a gap between the artificial and natural drying of trees is potentially present. To apply 
this model to natural trees without secession treatment, a smaller dataset of natural water deficit conditions could 

Figure 3.  Changes of the mean squared error (MSE) during training by four pretrained models.

Figure 4.  Evaluation of trained model of Reset 50 using the test dataset. (a) predicted values of Ψstem of all 
frames; (b) averaged predicted values of Ψstem in each video.
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be used to adjust the weights of the model by fine-tuning. Continuous efforts to collect a dataset of natural drying 
conditions, including other growth stages which are one of the noise factors in image  diagnosis3, are needed to 
expand the adaptability of the model to different situations.

Regarding noise factors, light conditions, including time of day, weather, and the direction of the camera 
against the sun, are significant factors affecting the result of the prediction from images using deep  learning3. In 
the present study, videos were taken at various time of day with different weather (i.e., sunshine hours during the 
experiment varied from 0.0 to 11.2 hr per day) from random directions of branches. And the different timing 
of the partial secession treatment generated different Ψstem of branches at the same time under the same light 
condition. These methods which actively mix noise factors except for water deficit stress during training were 

Figure 5.  Histogram of predicted Ψstem of frames in each video. The number above each histogram represents 
the measured Ψstem (MPa) values.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22359  | https://doi.org/10.1038/s41598-023-49980-8

www.nature.com/scientificreports/

thought to decrease bias and contribute the robust prediction of Ψstem against mainly light conditions. Addi-
tionally, the relatively short drying time of the trees by the partial secession treatment is thought to contribute 
to the elimination of noise induced by changes in the growth stage during the experiment.

The proposed method of image diagnosis of large trees
Drone images could not be captured because some orchards were covered by nets. We plan to use the camera of a 
smartphone and/or field robot as future option and focus on plant images captured parallel to the ground. As for 
the cost estimation when a smartphone is used for diagnosis, the cost of a pressure chamber (e.g., around 3000 
to 6000 US dollar in Japan) and the labor of operating it can be reduced, instead of the usage fee of smartphone 
apps (e.g., 5 US dollars per month).

Trees grown in the field are large and have a complex structure of main branches, and solar radiation varies 
between the surface and inside the tree (Fig. 8). Detailed information is lost when capturing an image of an entire 
tree from a long distance, and the information of an entire tree cannot be obtained when capturing a single image 
of a small part of a tree from a close distance. Therefore, a different approach for capturing and analyzing images 
is required to diagnose water stress in field-grown trees. In this study, the extracted frames of close-shot videos of 
a tree were used for the analysis of deep learning, which can be used to obtain both overall and detailed informa-
tion simultaneously. Averaging the predicted values of the frames in a video can automatically eliminate noise 
and summarize the data into the representative value of a tree. Therefore, this method can be useful for image 
diagnosis of water deficit stress in field-grown trees. Analysis of frames with predicted values near or far from 
the average can reveal the location where the feature value of the target exists and for the appropriate frames to 
be taken. Finally, this method can be applied to other image diagnoses of fruit trees grown in the field, such as 

Figure 6.  Frames for which predicted values were close to the average values in each video in test dataset. 
Values shown are the measured Ψstem values.

Figure 7.  The relationship between distance of leaf tip movement and Ψstem.
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the nutrient level, vigor, and density of leaves and fruits, because every image diagnosis has the same issues to be 
addressed. Further research is required to improve and apply this method for the image diagnosis of fruit trees.

Plant material availability
This study complies with local and national guidelines. Plant experiments were also performed in accordance 
with the relevant guidelines and regulations.

Data availability
All data generated or analyzed during this study are included in this article.
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