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Solving real‑world optimization 
tasks using physics‑informed 
neural computing
Jaemin Seo 

Optimization tasks are essential in modern engineering fields such as chip design, spacecraft 
trajectory determination, and reactor scenario development. Recently, machine learning applications, 
including deep reinforcement learning (RL) and genetic algorithms (GA), have emerged in these 
real‑world optimization tasks. We introduce a new machine learning‑based optimization scheme that 
incorporates physics with the operational objectives. This physics‑informed neural network (PINN) 
could find the optimal path in well‑defined systems with less exploration and also was capable of 
obtaining narrow and unstable solutions that have been challenging with bottom‑up approaches like 
RL or GA. Through an objective function that integrates governing laws, constraints, and goals, PINN 
enables top‑down searches for optimal solutions. In this study, we showcase the PINN applications to 
various optimization tasks, ranging from inverting a pendulum, determining the shortest‑time path, 
to finding the swingby trajectory. Through this, we discuss how PINN can be applied in the tasks with 
different characteristics.

Optimization tasks are at the heart of many real-world applications across a variety of scientific disciplines, 
particularly in physics and engineering. From the seemingly simple task of swinging up a pendulum to the 
complex maneuver of a spacecraft swingby, these tasks demand a sophisticated and accurate understanding of 
various interconnected factors. At the core of an optimization task are three key components: governing laws, 
constraints, and goals. Governing laws, derived from physical principles, dictate the behavior and evolution 
of a system. For instance, Newton’s laws of motion govern the movement of a pendulum. Constraints, on the 
other hand, refer to the limits within which a system operates. These could be initial or boundary conditions, or 
operational constraints such as force or fuel limits. The last component of an optimization task is the goal. The 
goal sets the ultimate aim of the optimization, be it to reach a certain physical state or to minimize costs. Each 
kind of goal brings its own unique challenges, and hence demands a tailored approach for optimal solutions.

To resolve these optimization problems, traditional numerical methods have been predominantly used, yet 
they can be computationally expensive and may struggle with complex systems or constraints. Gradient descent 
or simplex methods are often used in real-world optimization tasks for minimizing duration time or cost, and 
in particular, the gradient descent method is actively used even in abstract tasks such as the optimization of 
internal parameters in machine learning. In large and complex real-world systems with expansive search space, 
genetic algorithms (GA) can be used, but they are computationally expensive as they require evaluating many 
potential solutions in each generation. Recently, optimization and control techniques utilizing deep reinforcement 
learning (RL) have been applied in various  fields1–4. For example, it has been used in optimizing semiconductor 
chip  design5,6 and actuation scenarios for fusion  reactors7–10, which are some of the most complex engineering 
systems. However, using RL, even in mathematically well-defined systems, typically requires millions of iterations 
to find the optimal scenario. Additionally, tasks that require temporally extended planning strategies or unstable 
scenario solutions are still challenging to achieve the final goal with  RL1,11,12.

In this study, we introduce a new approach to real-world optimization tasks using a physics-informed neural 
network (PINN). Specifically, we demonstrate that it can find the optimal scenario more efficiently in well-defined 
engineering systems than RL techniques. We showcase the optimization using PINN in different tasks: (1) Swing-
ing up a pendulum to reach the goal state, (2) determining the shortest-time path connecting two given points, 
and (3) finding a minimal-thrust swingby trajectory for a spacecraft.

Physics‑informed neural computing for real‑world optimization tasks
Physics-informed neural network (PINN) is a recent advancement in the field of deep learning that leverages the 
power of neural networks to solve differential equations and learn the underlying physics of a given  problem13,14. 
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The main idea behind PINN is to incorporate governing physics laws as another objective function along with 
given sparse data like boundary conditions during the training process of the neural network. By incorporat-
ing physics laws into the learning process, PINN can efficiently predict complex physical phenomena from 
sparse or absent data. It is rapidly emerging as an alternative scheme to traditional computational simulation 
 techniques15–19. The rise of PINN is attributed to its ability to operate without the use of a mesh and to easily 
implement arbitrary constraints beyond initial or boundary conditions.

Though initially used for solving physics equations unrelated to optimization tasks, PINN possesses poten-
tial features to be applied to a broader range of tasks. One of the potentials of PINN is its ability to integrate an 
additional objective function beyond governing physics laws and constraints. In the case of optimization tasks 
like our study, by integrating a penalty for violations of the desired goal into the objectives, PINN can find the 
optimal scenario that not only satisfies the given governing laws and constraints but also reaches the goal. Figure 1 
illustrates the architecture of PINN, which finds a solution by setting the governing laws, constraints, and goals 
of the given task as objective functions.

The main target function we wish to find (the neural network θ , Fig. 1b) is a function that maps the optimal 
path of design variables (Fig. 1c) within a given domain (Fig. 1a). Domain variables could be time, position, or 
available budget, depending on the given task. Design variables might be scenarios of force or power over time, 
or spatial coordinates of a trajectory. By constructing the target function with a neural network, where all the 
nodes are differentiable, the exact derivatives of the design variables with respect to the domain can be easily 
obtained with automatic differentiation. Using the computed design variables and their derivatives through the 
neural network θ , we can estimate how well the governing equations, constraints, and goals are satisfied. Figure 1d 
illustrates the calculation of the losses through Eqs. (1) (The physics loss, Lphys ) and (2) (The constraint loss, Lcon ) 
from the neural network outputs. The goal loss, Lgoal , shown in Fig. 1d is determined according to the given task.

Here, � is the domain of interest and ∂� is its boundary. N� or ∂� is the sampling counts on each domain. F  is 
the given governing equations and BC is the given boundary conditions, which could be Dirichlet, Neumann, 
or any custom boundary conditions. Through the estimated loss values, the function of solution path ( θ∗ ) can 
be determined with the converging process in Eq. (3). Here, wphys, con, or goal is the weight for each loss value.

The main distinction from traditional PINN solving differential equations is the objective function concerning 
the goal state, Lgoal . By appropriately defining Lgoal , it can be applied to various real-world optimization problems, 
such as achieving a given target state, minimizing consumed cost or time, or finding an optimal path. Specifically, 
PINN works effectively for well-defined problems through governing equations, although there are approaches 

(1)Lphys(θ) =
1

N�

N�
∑

j=1

�F
(

tj; θ
)

�22 for tj ∈ �.

(2)Lcon(θ) =

{

1
N∂�

∑N∂�
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(3)θ → θ∗ = *argminθ {wphysLphys(θ)+ wconLcon(θ)+ wgoalLgoal(θ)}.

Figure 1.  Neural network architecture using physics-informed loss to solve the optimization task. (a) The 
domain variables (ex. time or position) as neural network inputs. (b) The target function to be optimized ( θ ), 
composed of multi-layer perceptrons. (c) The design variables as neural network outputs. (d) The loss functions 
(physics loss, constraint loss, and goal loss) which are weighted-summed for the final objective function.
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even if the governing laws are unknown, which will be discussed later. The forms of the loss functions may vary 
depending on the characteristics of the problem, and in some cases, the constraint loss or the goal loss may be 
integrated into the governing equations. In the following sections, we will showcase how these are composed in 
different optimization tasks.

Swinging up a pendulum
Swinging up a fixed-axis pendulum is a well-known problem for testing the performance of a controller. Clas-
sical algorithms such as PID  controllers20 also work well for swing-up control of a pendulum. However, if the 
maximum available torque is limited, and it is grossly insufficient to invert the pendulum at once, PID or greedy 
methods hardly succeed in inverting it. In this section, we have taken the task of a fixed-axis pendulum shown 
in Fig. 2a where the torque magnitude ( τ ) is limited by |τ | ≤ 1.5 Nm . In this task, the goal is to reach a vertically 
inverted state at t = 10 s , as shown in Fig. 2b; in other words, cosφ(t = 10 s) = −1 with the angle from the rest 
state, φ . Here, we empirically know that reaching this goal requires a temporally extended and nonlinear scenario 
accumulating energy through multiple swings in different directions.

In this system, the task is to find the torque scenario to reach the goal state shown in Fig. 2b, with a low-torque 
actuator. The governing equation ( F  in Eq. (1)) is the equation of motion under gravity,

Here, m = 1 kg is the mass of the ball of the pendulum, l = 1 m is the length of the massless string, and 
g = 9.8 m/s2 is the gravitational acceleration. The constraints (Eq. 2) are the initial conditions with angle ( φ ) 
and angular velocity ( φ̇ ) being zero. If we use a greedy method like a proportional controller, it determines a 
unidirectional constant maximum torque command, trying to reduce the error from the goal. However, since 
the available torque magnitude is grossly small, a unidirectional swing alone cannot invert the pendulum. A 
solution must be found that can reach the goal in the long term, even if it momentarily moves away from it. GA 
or RL that use the sum of long-term discounted rewards can exhibit better performance in such problems that 
require long-term planning. Figure 2e and f show the scenarios of τ and the resulting trajectories of φ , obtained 
by using GA and RL, respectively. Here, the state variables are set as the angle φ and the angular velocity φ̇ , and 
the action variable is set as the torque ( −1.5 ≤ τ ≤ 1.5 ). For the RL, the TD3  algorithm21 was implemented, and 
the reward was set as R = −(cosφ − (−1))2 . More settings for the GA and RL baselines can be found in the 
"Methods" section. After 105 iterations of training, both GA and RL are observed to approach the inverted state of 
the pendulum ( cosφ = −1 ) at t = 10 s . However, since both GA and RL start at t = 0 s and proceed to the final 
state through random mutation and exploration (“bottom-up”) during training process, they produce a wiggling 
torque scenario due to meaningless exploration during intermediate periods that don’t significantly influence the 
final goal. Here, at the inference phase, the random exploration has been turned off, and the wiggling scenario 

(4)F = ml2φ̈ − (τ −mgl sin φ).

Figure 2.  Application of PINN for optimizing the torque scenario in swinging up a pendulum. (a) The 
description of the fixed-axis pendulum, where the design variables are the angle φ and the torque τ as functions 
of time t. (b) The goal state in this optimization task, cosφ = −1 at t = 10 s . (c) The history of loss values over 
iterations. (d) The illustration of the neural network incorporating the equation of motion into its objective 
function. The input is t and the outputs are φ and τ . (e) A baseline result of a GA algorithm. (f) A baseline result 
of an RL algorithm using TD3. Both GA and RL produce wiggling torque scenarios. (g) The result of PINN, 
which determines swinging the pendulum back and forth to accumulate its energy to reach the goal. (h) Several 
snapshots of swinging up the pendulum.
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is not due to the action noise. Introducing additional rewards or regularization to mitigate this wiggling leads 
to additional issues such as defining a metric to quantify the wiggling, deciding weights for different objectives, 
and dealing with trade-offs arising from multi-objectives.

On the other hand, to solve this torque scenario optimization task using PINN, the goal loss is defined as 
Lgoal =

(

cosφ(t = tf )− (−1)
)2 , with the target time tf = 10 s . The neural network input (Fig. 1a) is set to 

time t, and the output (Fig. 1c) is set to angle φ and torque τ , as shown in Fig. 2d. While GA or RL decide on an 
action based on the state at every time step, sequentially generating a scenario from t = 0 to 10 s, PINN takes 
the time variable as an input and outputs the scenario over time in a single pass. Through such an I/O approach, 
PINN potentially allows for more efficient inference in tasks designing a trajectory over time, rather than real-
time decision-making. To impose a limitation on the torque size, a tanh activation is applied only to the torque 
output. A detailed description of the system, hyperparameters, and numerical environments can be seen in 
the "Methods" section. The evolutions in loss values during iterative updates through Eq. (3) are depicted in 
Fig. 2c. After 9804 iterations, the training becomes converged with Lphys < 10−5 , Lcon < 10−9 , and Lgoal < 10−4 . 
Considering each term in Eq. (4) is O(1), Lphys < 10−5 indicates a high enough level of physical fidelity. The 
solution at the converged iteration can be seen in Fig. 2g. With limited torque, PINN has derived a scenario that 
effectively accumulates energy by swinging the pendulum back and forth and attains a force balance at the goal 
state. Compared to the baselines in Fig. 2e and f, it can be observed that PINN produces a smoother scenario to 
reach the goal with fewer modulations of torque direction. It is worth noting that neither PINN nor the baselines 
were given a goal of minimal modulations. Snapshots of the pendulum during this process can be seen in Fig. 2h.

We also observed that the training of PINN proceeds in a non-chronological and top-down manner. GA 
and RL operate in a chronological and bottom-up manner, where each episode progresses from t = 0 to t = tf  , 
with the final state getting closer to the goal as episodes accumulate. In this case, learning a reward model and 
approaching the goal rely on trial-and-error exploration to understand the environment, thus there needs to 
be sufficient random noise or mutation to find better solutions. In PINN, however, the environment is directly 
informed by the mathematical form of governing equations. PINN then seeks an optimal solution based on 
a mathematical objective function that incorporates goal information as well, eliminating the need for many 
empirical trials and errors to explore the environment. As seen in Fig. 2c, Lgoal first converges to a sufficiently 
low level ( < 10−4 ) from the early phase of iterations, followed by the decrease of Lcon and Lphys , exemplifying 
a top-down approach. Through this approach of PINN, even if the solution path is complex, it can be derived 
with fewer iterations than GA and RL, as shown in Fig. 2e–g. A more quantitative comparison of computational 
efficiency can be found in the "Methods" section (Table 2).

Determining the shortest‑time path connecting two given points
Many real-time optimization problems involve minimizing the cost or time taken to reach a goal. In this section, 
we test the PINN method on the task of finding the shortest-time path in several environments where an analytic 
solution exists. One significant difference from the previous example (swinging up a pendulum) is that the time 
taken is a variable and the subject to be minimized.

We present two famous examples of finding the shortest-time path. (1) Fermat’s principle, or the principle of 
least time, is that the path of the light ray between two given points is determined as the path that can be traveled 
in the shortest time. (2) Another one is the shortest-time descent path between two given points under gravity, 
known as the brachistochrone curve. It has been mathematically proven that it is part of a cycloid.

The refraction of light can be explained by Fermat’s principle. When the refraction index in a medium varies 
according to the location, the speed of the ray changes. In this case, the path of the ray bends to find a shorter-
time path in the medium. An example of the refraction of light within a medium where the refraction index 
varies is shown in Fig. 3a.

Figure 3.  Applications of PINN for determining the shortest-time path under specific environments. (a) 
Finding the shortest-time path of a light ray within the medium where the refraction index varies along y. (b) 
Finding the shortest-time descent path between two given points under constant gravity. In the two figures, the 
analytic solutions are given in yellow dashed lines and the converged solutions by PINN are shown in blue. For 
baselines, the results using RL with 105 iterations are shown in magenta lines.
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In the 2D xy space of Fig. 3a, the refraction index (n) has a sinusoidal profile with respect to y, as represented 
by the contour color. The ray slows down around y = 0.5 where the n is high. Therefore, the path of light that 
passes in the shortest time will be determined to become more vertical near the slowest region, y = 0.5 . Thus, 
the ray trajectory will bend according to the changes in the refraction index, consistent with the analytic solu-
tion dictated by the law of refraction, as shown in yellow dashed line in Fig. 3a. When using RL to search for the 
shortest-time arrival trajectory, even after 105 iterations of training, a trajectory far from the analytic solution 
emerges, as indicated by the magenta line. While this trajectory does become vertical around y = 0.5 where n 
is high, it is still far from being the shortest possible time.

To find the shortest-time path using PINN, the input of the neural network of Fig. 1 is set to the normalized 
time ( tN  ), and the outputs are the x and y coordinates. The governing equation is given by 
F =

(

1
T

dx
dtN

)2
+

(

1
T

dy
dtN

)2
−

(

c
n

)2 , where c = 1 is the speed of light in vacuum and T is the time taken from 
the starting point to the endpoint. Here, T is unknown and a trainable variable during the neural network train-
ing. Constraints are set as the coordinates of the starting and ending points, respectively (0, 0), (1, 1), and the 
goal is set as Lgoal = T , aiming to minimize the time taken. More specific settings can be found in the "Methods" 
section.

The solid lines in Fig. 3a depict the solution paths at each checkpoint (iteration I = 500, 1000, 1500, 2000 ), 
with the blue solid line representing the converged final solution ( I = 2232 ). Unlike traditional methods that 
explore the shortest-time curve from a fixed start point to an endpoint, the PINN approach shows the charac-
teristic of searching for the shortest-time curve while simultaneously approaching the start and endpoint. The 
converged solution shows a path that almost coincides with the analytic solution.

Figure 3b illustrates the search for the shortest-time descent curve (brachistochrone curve) connecting two 
given points under gravity ( g = 9.8 m/s2 ). Here, the yellow dashed line is the analytic solution for the shortest-
time curve, which is a cycloid. In the RL solution with 105 iterations shown in magenta, the path more vertically 
free-falls to increase velocity and then changes direction horizontally at the lower altitude to move at a high 
speed. While this seems intuitively plausible, it deviates from the actual shortest curve, the cycloid. On the other 
hand, for PINN, the governing equation is set as the mechanical energy conservation law, 

F = gy0 −

(

gy + 1
2

(

(

1
T

dx
dtN

)2
+

(

1
T

dy
dtN

)2
))

 , and the constraints were set using the start ( (x0, y0) = (0, 1) ) 

and endpoint coordinates ( (x1, y1) = (1, 0) ). The goal, similar to Fig. 3a, was set as Lgoal = T to find the shortest-
time curve. In Fig. 3b, at the initial phase ( I = 500 ), a non-physical path that fails to align the start and endpoints 
is derived. But it gradually converges to a path close to the analytic solution shown in yellow. This approach using 
PINN to search for the shortest-time path can be utilized in chip design to find the minimum-loss circuit.

Finding a swingby trajectory of a spacecraft
The last example is a case where the goal can be integrated into the governing equation. We present the problem of 
finding the swingby trajectory of a spacecraft that can reach the given destination using the least amount of thrust, 
leveraging gravity. In a situation with multiple astronomical objects, the spacecraft experiences dynamic gravity 
depending on its position. The goal is to find a path that allows the spacecraft to reach its target position without 
using its onboard fuel, utilizing these gravitational forces. In this problem, even a slight deviation from the solu-
tion path can sensitively change the gravity acting on the spacecraft, resulting in a completely different path and 
destination, like falling into a star. This is an example of a problem with a very narrow and unstable solution, and it 
has been challenging to find the narrow solution path using random exploration or mutation with RL or GA. Fig-
ure 4a shows three different astronomical objects located at positions (xo, yo) = (−0.5,−1.0), (−0.2, 0.4), (0.8, 0.3) 
and having masses multiplied by the gravitational constant GMo = 0.5, 1.0, 0.5.

To address this problem, we first consider the use of the RL approach. Here, the RL agent receives the cur-
rent position coordinates (x, y) and decides on the x and y components of the thrust. Each episode starts from 
the position (x0, y0) = (−1,−1) and terminates when the spacecraft reaches x = x0 ± 2 or y = y0 ± 2 , at which 
point the final reward is given by R = −Mean(|Thrust|2)− ((x − 1)2 + (y − 1)2) . More detailed RL settings can 
be found in the "Methods" section. The blue solid line in Fig. 4a represents the path of the spacecraft obtained 
using RL over 105 iterations. The gray arrows on the trajectory signify 1/5 of the gravity at each point, while the 
yellow arrows indicate the additional thrust required to follow that path. The results of the checkpoint models 
every 20,000 iterations during the learning process are represented by the black dashed lines, with darker colors 
indicating later checkpoints. As seen from the checkpoint results, even though the spacecraft starts at the same 
position with the same velocity, the final trajectory can vary sensitively depending on the thrust scenario. The 
blue path, the final result, derived a thrust scenario that reaches the final destination of (1, 1), but it’s evident 
that its magnitude is still substantial. Figure 4b shows the magnitudes of the gravitational forces exerted by each 
object with respect to the normalized time, in addition to the total gravity and thrust. The magnitude of the 
thrust needed to follow the trajectory derived by RL is relatively small compared to gravity, but it still possesses 
a magnitude > 0.5 . Here, more increasing the total learning iterations in RL couldn’t dramatically reduce the 
required thrusts.

On the other hand, to apply PINN for this task, the neural network input is the normalized time tN , while 
the normalization factor T (or the time taken from the starting point to the endpoint) is a trainable variable, 
and the outputs are the x and y coordinates for the swingby trajectory. Constraints are set as the coordinates 
of the starting and ending points, respectively (−1,−1) , (1, 1). The goal in this task can be integrated with the 
governing law by setting the thrust (Eq. 5) as F  for the physics loss.
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Equation (5) represents the x and y components of the thrust vector required to follow a given path (x, y), derived 
from the equations of motion. By setting these expressions as a function F  in Eq. (1), the objective function to 
minimize, PINN can find the spacecraft’s path where F  approximates 0 at every point along the path. This solu-
tion not only satisfies the equations of motion under gravity but also minimizes the magnitude of thrust required 
to follow the path. The blue solid line in Fig. 4c shows the converged path of the spacecraft through this method, 
after 3,215 iterations. The gray arrows represent 1/5 of the gravity acting at each point, while the yellow arrows 
indicate the additional thrust required to follow that path. Figure 4d shows the magnitudes of the gravitational 
forces exerted by each object with respect to the normalized time tN , in addition to the total gravity and thrust. 
The required thrust is negligible compared to gravity, and the acceleration needed to follow the path (shown 
by the blue dashed line in Fig. 4d) almost exactly matches the total gravity acting on the spacecraft. This means 
that, if the spacecraft moves along the obtained solution path, it can reach the target point (1, 1) solely guided 
by gravity, almost without using its own thrust.

Discussion
In this study, we introduce a new approach using PINN to perform real-world optimization tasks. We have 
validated this method on well-known test problems with different characteristics: Swinging up a pendulum, 
Fermat’s principle, the brachistochrone curve, and the swingby of a spacecraft. These results demonstrate that 
PINN can be applied to optimize the trajectory or scenario in well-defined systems.

(5)F = Thrust vector =
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Figure 4.  Application of RL and PINN for finding the swingby trajectory of a spacecraft with minimal 
additional thrust. (a) The description of the system with three astronomical objects and the converged solution 
path of the spacecraft swingby obtained by RL after 105 iterations. 1/5 of the gravity and the thrust are shown in 
the arrows of gray and yellow, respectively. (b) The magnitudes of the gravitational forces exerted by each object, 
total gravity, thrust, and the required force to follow the trajectory determined by RL. (c) The converged solution 
path of the spacecraft swingby obtained by PINN after 3215 iterations. (d) The magnitudes of the gravitational 
forces exerted by each object, total gravity, thrust, and the required force to follow the trajectory determined by 
PINN.
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In most optimization tasks, such as the examples in our work, there is a need to find the trajectory of inter-
mediate steps that satisfy a given desired final state - making it an inverse problem. Such inverse problems are 
often ill-posed, with solutions that are highly unstable and narrow or highly sensitive to changes in the final 
 state22. Traditional optimization solutions often address this by converting it into multiple forward problems. For 
instance, other machine learning techniques such as RL and GA deal with each episode as a series of chronologi-
cal action-response tasks that build up to reach the final state (forward problem), subsequently adjusting the 
policy through these tasks. This approach, however, brings its own set of drawbacks such as the exploration-
exploitation trade-off11. In contrast, PINN effectively works with inverse and ill-posed  problems23–25. In other 
words, instead of chronological interactions with the environment, PINN intrinsically integrates information 
about the environment (via the governing equation) and the goal, optimizing trajectories within the input 
domain non-chronologically.

Therefore, PINN doesn’t learn about the environment through explorative trial and error (as RL or GA do) but 
is informed directly via the governing equation in its mathematical form. Thus, there’s less need for exploration 
to understand the environment, yielding fewer iterative learning for convergence as shown in Fig. 2. Moreover, 
in tasks that aren’t about real-time decision-making but rather designing trajectories or scenarios, PINN is more 
efficient as it can deduce them in only a single pass. (In RL approaches, the trajectory is built up by deciding 
actions sequentially at every time step.) While RL is more suited than PINN for real-time  control8,  chatbot26, or 
competitive  games27 where interactive decision-making is needed in various states, PINN can outperform for a 
single optimization task that requires finding a narrow solution path. In future research, a quantitative analysis 
with model-based RL will also be needed, which is more suitable in cases like this study where a clear model is 
provided.

However, PINN does face a challenge in that it can struggle in systems where governing laws are unknown 
and thus cannot define the physics loss in Eq. (1). In many real-world, industry-level optimization problems, the 
governing law may be unknown or difficult to express mathematically. For example, in nuclear fusion reactors, 
one of the most advanced engineering systems, many phenomena are not explainable by physical  theories28. In 
our previous study on RL-based optimization of fusion reactor operation scenarios, to address this issue, we used 
a surrogate model composed of experimental data-driven neural networks as a training  environment7. Similarly, 
in the case of PINN, a neural network surrogate model could be used to implement physics loss instead of gov-
erning laws expressed with differential equations. Especially since the neural network of this surrogate model is 
also composed of differentiable nodes, it can play a similar role to the differential equation through Eq. (3). By 
using PINN optimization with a surrogate model that describes fusion plasma physics, we will be able to search 
the optimal fusion reactor operation scenario for efficient nuclear fusion energy production, which is part of 
our future work.

Methods
Common numerical environment
To implement PINN for optimization tasks, we utilized the DeepXDE  library14. For the optimization of the neural 
network in the PINN framework, the  Adam29 and L-BFGS30 algorithms were applied sequentially. All instances 
of the neural network in our work are designed with the same structure, consisting of three hidden layers, each 
with 64 nodes. Hyperbolic tangent (tanh) activation is applied to each hidden layer to provide nonlinearity. 
Table 1 summarizes the governing laws, constraints, and goals used in the optimization examples presented 
in this study. The detailed settings for numerical environments and the Python scripts can be found at https://
github.com/jaem-seo/pinn-optimization.

For the baseline results using RL, we used the TD3  algorithm21 with the Stable-Baseline3  library31. All the RL 
agents shown in this work are composed of three hidden layers, each with 64 nodes, and trained for 105 iterations.

Table 2 shows the comparison of elapsed wall time using each machine learning method in the four examples 
shown in Figs. 2, 3 and 4. For these computations, an RTX-3080Ti GPU was utilized.

Table 1.  Description of the optimization examples presented in this study. The hyperparameters shown are for 
PINN.

Swinging up a pendulum Fermat’s principle Brachistochrone curve Swingby of a spacecraft

Governing law Equation of motion Constant light speed Conservation of mechani-
cal energy Equation of motion

Constraints Initial angle, angular 
speed, and torque

Initial and final coordi-
nates

Initial and final coordi-
nates

Initial and final coordi-
nates

Goal Inverted state Shortest duration time Shortest duration time Zero thrust

Note Fixed target time Variable duration time Variable duration time Integrated goal and gov-
erning law

Epochs for Adam 5000 2000 2000 2000

Learning rate for Adam 0.02 0.001 0.001 0.001

Weights (1, 10, 1) (1, 1, 0.01) (1, 1, 0.01) (1, 1, −)

Output transform tanh
(only for τ) Sigmoid Sigmoid tanh
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Setting for swinging up a pendulum
To solve the torque scenario that reaches the inverted state of a pendulum by using PINN, the outputs of the 
neural network are set as û = {φ, τlogit} , with the angle from the rest φ and the torque logit τlogit . To limit the 
maximum magnitude of the torque τ , the torque logit is transformed via the tanh function, and then multiplied 
by the maximum available torque ( 1.5 Nm ). The governing equation ( F  in Eq. (1)) to describe the motion of a 
pendulum under gravity is shown in Eq. (4). As constraints, the initial conditions for BC in Eq. (2) are given, as 
in Eq. (6), representing a state of rest.

To make PINN find the torque scenario that reaches the inverted state of the pendulum at t = 10 s , the goal loss 
Lgoal is defined as in Eq. (7).

The physics, constraints, and goal losses obtained through Eqs. (4), (6) and (7) are weighted-summed into a final 
objective function through the weights {wphys,wcon,wgoal} = {1, 10, 1} . For the solution of PINN using this, Adam 
and L-BFGS optimizers were used sequentially. Adam was applied for 5000 epochs at a learning rate of 0.02, after 
which L-BFGS was applied for 4,804 iterations until convergence, as shown in Fig. 2c.

For the RL baseline (shown in Fig. 2f) to compare the performance of PINN, an RL model with observation 
variables S = {φ, φ̇} and an action variable A = {τ } was used. The reward is set as the negative value of Lgoal 
in Eq. (7), which is given each steps densely. The RL agent was trained for 100,000 iterations through  TD321, 
implemented by Stable-Baselines331. The GA baseline shown in Fig. 2e has been obtained by  PyGAD32 with the 
same environment as RL. For GA, the number of total learning steps has been determined to be the same as the 
others: 100,000 learning steps = 25 generations × 4 parents × 1000 steps per generation.

Figure 5 shows the learning curves when using PINN, RL, and GA. The variations among the ensemble models 
with 5 different random seeds are also shown in each plot. Since different machine learning methods use different 
metrics as the cost function, here we compare the difference between the achieved state and the goal, shown in 
Eq. (7). In Fig. 5a, the variation in ensemble models for PINN is smaller than the other methods. Although all 
three methods successfully find the scenarios for accumulating the pendulum energy, RL or GA hardly match 
the goal state at the final point, as shown in Fig. 5b.

(6){φ, φ̇, τ } = {0, 0, 0} at t = 0 s.

(7)Lgoal = (cosφ(t = 10 s)− (−1))2.

Table 2.  The elapsed wall time taken for each machine learning method in the four examples shown in Figs. 2, 
3 and 4. The average and the standard deviation of five ensembles are shown for the wall time. The unit of the 
wall time is seconds.

PINN RL GA

Swinging up a pendulum 44±16 892±10 4015±34

Fermat’s principle 45±29 887±7 –

Brachistochrone curve 36±11 923±8 –

Swingby of a spacecraft 62±17 906±12 –

Figure 5.  The variation among five ensemble models in PINN, RL, and GA. (a) The learning curve variation. 
For the RL and GA curves, smoothed lines are shown in solid lines, while the original curves are indicated with 
transparent colors. (b) The variation of inference results after the training, without exploration noise. The goal 
states ( cosφ = −1 ) are also shown in red dashed lines.
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Setting for determining the shortest‑time path connecting two given points
To determine the shortest-time path by using PINN, the outputs of the neural network are set to û = {x, y} , the 
coordinates with respect to the normalized time tN . In these tasks, we constrain the range of the path within 
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 , thus, the last activation function is set to the sigmoid function. The governing equa-
tions for Fig. 3a and b are shown in Eqs. (8) and (9), respectively.

The constraints are given by the boundary conditions Eq. (10), where (x0, y0) and (x1, y1) are shown with start 
and end points in Fig. 3.

For the goal of minimizing the time taken, the goal loss is defined as Lgoal = T . The weights for the losses are set 
to {wphys,wcon,wgoal} = {1, 1, 0.01} , which prioritize satisfying the governing equation and the boundary condi-
tions over reducing the time taken. Adam was applied for 2000 epochs at a learning rate of 0.001. Then, L-BFGS 
was applied for 1232 and 2692 iterations until convergence in Fig. 3a and b, respectively.

For the RL baselines, the observation variables S = {x, y} and an action variable A = {arctan (dy/dx)} are 
set. The reward of R = −wTT − ((x − x1)

2 + (y − y1)
2) is given at the termination when the position reaches 

x = x0 ± 1 or y = y0 ± 1 , where the weight for the punishment on the time taken wT is set 10−2 and 10 for Fig. 3a 
and b, respectively.

Setting for finding a swingby trajectory of a spacecraft
To finding the minimal-thrust swingby trajectory of a spacecraft by using PINN, the neural network outputs 
are set to û = {x, y} , similarly to the previous example. Here, the starting point is (x0, y0) = (−1,−1) and the 
endpoint is (x1, y1) = (1, 1) , and the last activation function is set to the tanh function. The governing equations 
under universal gravitation with three astronomical objects are shown in Eq. (5), and the constraints are given 
by the boundary condition, Eq. (10). The weights for the losses are set to {wphys,wcon} = {1, 1} , where the goal 
loss is included in the physics loss. Adam was applied for 2000 epochs at a learning rate of 0.001. Then, L-BFGS 
was applied for 1215 iterations until convergence.

For the RL baseline, the observation variables S = {x, y, ẋ, ẏ} and action variables A = {Thrustx , Thrusty} 
are set. The reward of R = −Mean(|Thrust|2)− ((x − x1)

2 + (y − y1)
2) is given at the termination when the 

position reaches x = x0 ± 2 or y = y0 ± 2.

Data availability
The Python scripts producing the data that support the findings of this study are openly available at https://
github.com/jaem-seo/pinn-optimization.

Received: 5 September 2023; Accepted: 14 December 2023

References
 1. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533. https:// doi. org/ 10. 1038/ natur 

e14236 (2015).
 2. Luong, N. C. et al. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. 

Surv. Tutor. 21, 3133–3174. https:// doi. org/ 10. 1109/ COMST. 2019. 29165 83 (2019).
 3. Garnier, P. et al. A review on deep reinforcement learning for fluid mechanics. Comput. Fluids 225, 104973 (2021).
 4. Panzer, M. & Bender, B. Deep reinforcement learning in production systems: A systematic literature review. Int. J. Prod. Res. 60, 

4316–4341. https:// doi. org/ 10. 1080/ 00207 543. 2021. 19731 38 (2022).
 5. Zheng, H. & Louri, A. An energy-efficient network-on-chip design using reinforcement learning. Proc. 56th Annu. Des. Autom. 

Conf. 2019 47, 6. https:// doi. org/ 10. 1145/ 33167 81. 33177 68 (2019).
 6. Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207–212. https:// doi. org/ 10. 1038/ s41586- 

021- 03544-w (2021).
 7. Seo, J. et al. Feedforward beta control in the kstar tokamak by deep reinforcement learning. Nucl. Fusion 61, 106010. https:// doi. 

org/ 10. 1088/ 1741- 4326/ ac121b (2021).
 8. Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419. https:// doi. 

org/ 10. 1038/ s41586- 021- 04301-9 (2022).
 9. Seo, J. et al. Development of an operation trajectory design algorithm for control of multiple 0d parameters using deep reinforce-

ment learning in kstar. Nucl. Fusion 62, 086049. https:// doi. org/ 10. 1088/ 1741- 4326/ ac79be (2022).
 10. Seo, J. et al. Avoiding fusion plasma tearing instability with deep reinforcement learning. Naturehttps:// doi. org/ 10. 21203/ rs.3. 

rs- 31638 42/ v1 (2024).
 11. Osband, I., Blundell, C., Pritzel, A. & Van Roy, B. Lee, D., Sugiyama, M., Luxburg, U., Guyon, I. & Garnett, R. (eds) Deep exploration 

via bootstrapped dqn. (eds Lee, D., Sugiyama, M., Luxburg, U., Guyon, I. & Garnett, R.) Advances in Neural Information Processing 
Systems, Vol. 29 (Curran Associates, Inc., 2016). https:// proce edings. neuri ps. cc/ paper_ files/ paper/ 2016/ file/ 8d881 8c8e1 40c64 
c7431 13f56 3cf75 0f- Paper. pdf.

(8)F =

(

1

T

dx

dtN

)2

+

(

1

T

dy

dtN

)2

−
( c

n

)2

(9)F = gy0 −

(

gy +
1

2

(

(

1

T

dx

dtN

)2

+

(

1

T

dy

dtN

)2
))

.

(10)(x, y) =

{

(x0, y0) at tN = 0
(x1, y1) at tN = 1

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1080/00207543.2021.1973138
https://doi.org/10.1145/3316781.3317768
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1088/1741-4326/ac121b
https://doi.org/10.1088/1741-4326/ac121b
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1088/1741-4326/ac79be
https://doi.org/10.21203/rs.3.rs-3163842/v1
https://doi.org/10.21203/rs.3.rs-3163842/v1
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf


10

Vol:.(1234567890)

Scientific Reports |          (2024) 14:202  | https://doi.org/10.1038/s41598-023-49977-3

www.nature.com/scientificreports/

 12. Henderson, P. et al. Deep reinforcement learning that matters. Proc. of the AAAI Conference on Artificial Intelligence, 32, (2018). 
https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 11694.

 13. Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

 14. Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. Deepxde: A deep learning library for solving differential equations. SIAM Rev. 63, 
208–228. https:// doi. org/ 10. 1137/ 19M12 74067 (2021).

 15. Cai, S., Mao, Z., Wang, Z., Yin, M. & Karniadakis, G. E. Physics-informed neural networks (pinns) for fluid mechanics: A review. 
Acta Mech. Sin. 37, 1727–1738. https:// doi. org/ 10. 1007/ s10409- 021- 01148-1 (2021).

 16. Bai, Y., Chaolu, T. & Bilige, S. The application of improved physics-informed neural network (ipinn) method in finance. Nonlinear 
Dyn. 107, 3655–3667. https:// doi. org/ 10. 1007/ s11071- 021- 07146-z (2022).

 17. Joung, S. et al. Gs-deepnet: Mastering tokamak plasma equilibria with deep neural networks and the grad-shafranov equation. 
Sci. Rep. 13, 15799. https:// doi. org/ 10. 1038/ s41598- 023- 42991-5 (2023).

 18. Huang, B. & Wang, J. Applications of physics-informed neural networks in power systems –A review. IEEE Trans. Power Syst. 38, 
572–588. https:// doi. org/ 10. 1109/ TPWRS. 2022. 31624 73 (2023).

 19. Seo, J. Leveraging physics-informed neural computing for transport simulations of nuclear fusion plasmas. SSRNhttps:// doi. org/ 
10. 2139/ ssrn. 45541 49 (2023).

 20. Bennett, S. Development of the pid controller. IEEE Control Syst. Mag. 13, 58–62. https:// doi. org/ 10. 1109/ 37. 248006 (1993).
 21. Fujimoto, S., van Hoof, H. & Meger, D. Dy, J. & Krause, A. Addressing function approximation error in actor-critic methods. In Dy, 

J. & Krause, A. (eds) Proc. of the 35th International Conference on Machine Learning, Proc. of Machine Learning Research, Vol. 80, 
1587–1596 (PMLR, 2018). https:// proce edings. mlr. press/ v80/ fujim oto18a. html.

 22. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 
2005). https:// doi. org/ 10. 1137/1. 97808 98717 921.

 23. Cai, S., Wang, Z., Wang, S., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks for heat transfer problems. J. 
Heat Transf. 143, 060801. https:// doi. org/ 10. 1115/1. 40505 42 (2021).

 24. Jagtap, A. D., Mao, Z., Adams, N. & Karniadakis, G. E. Physics-informed neural networks for inverse problems in supersonic flows. 
J. Comput. Phys. 466, 111402 (2022).

 25. Nechita, M. Solving ill-posed Helmholtz problems with physics-informed neural networks. J. Numer. Anal. Approx. Theory 52, 
90–101 (2023).

 26. Ouyang, L. et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 35, 27730–
27744 (2022).

 27. Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354–359. https:// doi. org/ 10. 1038/ natur e24270 
(2017).

 28. Na, Y.-S. et al. Observation of a new type of self-generated current in magnetized plasmas. Nat. Commun. 13, 6477. https:// doi. 
org/ 10. 1038/ s41467- 022- 34092-0 (2022).

 29. Kingma, D.P. & Ba, J. Adam: A method for stochastic optimization. Preprint at http:// arxiv. org/ abs/ 1412. 6980 (2014).
 30. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Progr. 45, 503–528. https:// doi. 

org/ 10. 1007/ BF015 89116 (1989).
 31. Raffin, A. et al. Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res. 22, 1–8 (2021).
 32. Gad, A.F. Pygad: An intuitive genetic algorithm python library. Preprint at http:// arxiv. org/ abs/ 2106. 06158 (2021).

Acknowledgements
This research was supported by the Chung-Ang University Research Grants in 2023. This work was also sup-
ported by the National Research Foundation of Korea(NRF) funded by the Korea government. (Ministry of 
Science and ICT) (RS-2023-00255492).

Author contributions
J.S. contributed to the design of this study, numerical experiments, analyses, and preparing the manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://ojs.aaai.org/index.php/AAAI/article/view/11694
https://doi.org/10.1137/19M1274067
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s11071-021-07146-z
https://doi.org/10.1038/s41598-023-42991-5
https://doi.org/10.1109/TPWRS.2022.3162473
https://doi.org/10.2139/ssrn.4554149
https://doi.org/10.2139/ssrn.4554149
https://doi.org/10.1109/37.248006
https://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.1115/1.4050542
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s41467-022-34092-0
https://doi.org/10.1038/s41467-022-34092-0
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
http://arxiv.org/abs/2106.06158
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Solving real-world optimization tasks using physics-informed neural computing
	Physics-informed neural computing for real-world optimization tasks
	Swinging up a pendulum
	Determining the shortest-time path connecting two given points
	Finding a swingby trajectory of a spacecraft
	Discussion
	Methods
	Common numerical environment
	Setting for swinging up a pendulum
	Setting for determining the shortest-time path connecting two given points
	Setting for finding a swingby trajectory of a spacecraft

	References
	Acknowledgements


