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Enhancing domain generalization 
in the AI‑based analysis of chest 
radiographs with federated 
learning
Soroosh Tayebi Arasteh 1*, Christiane Kuhl 1, Marwin‑Jonathan Saehn 1, Peter Isfort 1, 
Daniel Truhn 1,2 & Sven Nebelung 1,2

Developing robust artificial intelligence (AI) models that generalize well to unseen datasets is 
challenging and usually requires large and variable datasets, preferably from multiple institutions. In 
federated learning (FL), a model is trained collaboratively at numerous sites that hold local datasets 
without exchanging them. So far, the impact of training strategy, i.e., local versus collaborative, on 
the diagnostic on‑domain and off‑domain performance of AI models interpreting chest radiographs 
has not been assessed. Consequently, using 610,000 chest radiographs from five institutions across 
the globe, we assessed diagnostic performance as a function of training strategy (i.e., local vs. 
collaborative), network architecture (i.e., convolutional vs. transformer‑based), single versus cross‑
institutional performance (i.e., on‑domain vs. off‑domain), imaging finding (i.e., cardiomegaly, pleural 
effusion, pneumonia, atelectasis, consolidation, pneumothorax, and no abnormality), dataset size 
(i.e., from n = 18,000 to 213,921 radiographs), and dataset diversity. Large datasets not only showed 
minimal performance gains with FL but, in some instances, even exhibited decreases. In contrast, 
smaller datasets revealed marked improvements. Thus, on‑domain performance was mainly driven by 
training data size. However, off‑domain performance leaned more on training diversity. When trained 
collaboratively across diverse external institutions, AI models consistently surpassed models trained 
locally for off‑domain tasks, emphasizing FL’s potential in leveraging data diversity. In conclusion, FL 
can bolster diagnostic privacy, reproducibility, and off‑domain reliability of AI models and, potentially, 
optimize healthcare outcomes.

Abbreviations
AI  Artificial intelligence
AUROC  Area under the receiver operating characteristic curve
CNN  Convolutional neural network
FL  Federated learning
IID  Independent and identically distributed
NLP  Natural language processing
ResNet  Residual network
ViT  Visision transformer

Artificial Intelligence (AI) is increasingly indispensable for medical  imaging1,2. Deep learning models can analyze 
vast amounts of data, extract complex patterns, and assist in the diagnostic  workflow3,4. In medicine, AI models 
are applied in various tasks that range from detecting  abnormalities5 to predicting disease progression based 
on patient  data6. However, their success hinges on the availability and diversity of available training data. Data 
drives the learning process, and the performance and generalizability of AI models scale with the amount and 
variety of data they have been trained  on7,8.

In medical imaging, privacy regulations pose a considerable challenge to data sharing, which limits the ability 
of researchers and practitioners to access large and diverse datasets crucial for the development of equally robust 
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and performant, i.e., generalizing AI models. Federated learning (FL)9–14, particularly the Federated Averaging 
(FedAvg)11 algorithm, presents a promising solution. This approach allows AI models to be collaboratively trained 
across various sites without data exchange, thereby preserving data privacy. Each participating site utilizes its 
local data for model training while contributing updates, such as gradients, to a central server (see Fig. 1). These 
updates are then aggregated at the central server to refine the global model, which is subsequently redistributed 
to all sites for further training iterations. Critically, sensitive data are stored locally and not transferred, which 
reduces the risk of data breaches.

While FL is promising in scientific  contexts15, it faces several challenges, including independent and identi-
cally distributed (IID) versus non-IID data distributions and variations in image acquisition, processing, and 
 labeling10. These challenges may impede the convergence and generalization of the trained AI  models16,17. AI 
models trained with IID data (regarding the standardization of labels, image acquisition and image processing 
routines, cohort characteristics, sample sizes, and imaging feature distributions) perform better, and efforts have 
been made to harmonize the collaborative training process, benefiting all participating  institutions18–21.

Earlier studies have primarily focused on the impact of IID versus non-IID data settings and on-domain 
performance in FL  strategies22,23. ‘On-domain’ performance refers to single-institutional performance, i.e., the 
model is trained, validated, and tested on the local dataset from one site [Local] or performance on the test 
of an institution which participated in the initial collaborative training [FL]. In contrast, ‘off-domain’ perfor-
mance refers to ‘cross-institutional performance’, i.e., the model is trained on the local dataset from one site 
and subsequently validated and tested on the local datasets from other sites [Local] or performance on the test 
of an institution which did not participate in the initial collaborative training [FL]. Even though the regularly 
weaker off-domain performance of AI models is increasingly  recognized24–28, there is a substantial gap in our 

Figure 1.  Local and Collaborative Training Processes and the Challenges Associated with Domain Transfer. 
(A) Center I conventionally trains an AI model to analyze chest radiographs using local data, e.g., bedside chest 
radiographs of patients in intensive care (supine position, anteroposterior projection). The AI model performs 
well on test data from the same institution (on-domain), but fails on data from another hospital (Center X) 
that does not operate an intensive care unit but an outpatient clinic with special consultations. Thus, the chest 
radiographs to be analyzed have been obtained differently (standing position, posteroanterior projection). (B) 
Off-domain performance may be limited following collaborative training, i.e., federated learning.
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understanding of the impact of FL on the performance of diagnostic AI models. Beyond FL, additional con-
founding variables are underlying network architectures, dataset size and diversity, and the AI model’s outputs, 
for example, imaging findings.

Our study explores the potential for domain generalization of AI models trained via FL (see Fig. 1), utilizing 
over 610,000 chest radiographs from five large datasets. To our knowledge, this is the first analysis of FL applied 
to the AI-based interpretation of chest radiographs on such a large scale. We conducted all experiments using 
convolutional and transformer-based network architectures—specifically, the  ResNet5029 and the Vision Trans-
former (ViT)30 base models, to assess the potential influence of the underlying  architecture5,31.

We first implement FL across all datasets to study its on-domain effects under non-IID conditions, com-
paring local versus collaborative training on various datasets. We then assess the off-domain performance of 
collaboratively trained models, examining the impact of dataset size and diversity. The AI models are collabo-
ratively trained using data from four sites, each with equal contributions, and tested on the fifth site. We also 
train local models on individual datasets and evaluate their performance on the omitted site. Finally, we test the 
collaboratively trained models’ scalability using each site’s full training data sizes. We hypothesize that (i) FL is 
advantageous in non-IID data conditions and (ii) increased data diversity (secondary to the FL setup) brings 
about improved off-domain performance.

Results
Federated learning improves on‑domain performance in interpreting chest radiographs
On-domain performance varied substantially, often even significantly, between those networks trained locally (at 
each site) and collaboratively (across the five sites, including the VinDr-CXR32, ChestX-ray1433,  CheXpert34, and 
MIMIC-CXR35, and  PadChest36 datasets, see Table 1) (Fig. 2). Notably, the VinDr-CXR, ChestX-ray, CheXpert, 
MIMIC-CXR, and PadChest datasets contained n = 15,000, n = 86,524, n = 128,356, n = 170,153, and n = 88,480 
training radiographs, respectively.

Table 1.  Dataset characteristics. Indicated are the included datasets, i.e., VinDr-CXR28, ChestX-ray1429, 
 CheXpert30, MIMIC-CXR31, and  PadChest32, and their characteristics. Only frontal chest radiographs (both 
anteroposterior and posteroanterior projections) were used for this study, while lateral projections were 
disregarded. Multiple radiographs may have been included per patient. N/A not available, NLP natural 
language processing.

VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR PadChest

Number of radiographs total (training 
set/test set) [n] 18,000 (15,000/3000) 112,120 (86,524/25,596) 157,878 (128,356/29,320) 213,921 (170,153/43,768 110,525 (88,480/22,045)

Number of patients (Total) [n] N/A 30,805 65,240 65,379 67,213

Patient age [years]

 Median 42 49 61 N/A 63

 Mean ± Standard deviation 54 ± 18 47 ± 17 60 ± 18 N/A 59 ± 20

 Range (minimum, maximum) (2, 91) (1, 96) (18, 91) N/A (1, 105)

Patient sex female/male [%]

 Training set 47.8/52.2 42.4/57.6 41.4/58.6 N/A 50.0/50.0

 Test set 44.1/55.9 41.9/58.1 39.0/61.0 N/A 48.2/51.8

Projections [%]

 Anteroposterior 0.0 40.0 84.5 58.2 17.1

 Posteroanterior 100.0 60.0 15.5 41.8 82.9

Country Vietnam USA USA USA Spain

Contributing hospitals [n] 2 1 1 1 1

Clinical setting N/A N/A Inpatient and Outpatien t Intensive Care Unit N/A

Radiography systems [n]  ≥ 8 N/A N/A N/A N/A

Labeling method Manual Automatic (NLP) Automatic (NLP) Automatic (NLP) Partially manual, Partially 
Automatic (NLP)

Radiographs with cardiomegaly [%] 11.8 2.5 12.6 19.7 8.9

Radiographs with Pleural effusion [%] 4.1 11.9 41.3 22.6 6.3

Radiographs with pneumonia [%] 4.0 1.3 2.5 6.5 4.7

Radiographs with atelectasis [%] 0.8 10.3 16.7 19.9 5.6

Radiographs with consolidation [%] 1.2 4.2 6.0 4.0 1.5

Radiographs with pneumothorax [%] 0.4 4.7 10.3 4.6 0.4

Radiographs without abnormality [%] 70.3 53.8 10.8 37.7 32.9
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Considering the on-domain performance and all imaging findings, smaller datasets, i.e., VinDr-CXR, ChestX-
ray14, and PadChest, were characterized by significantly higher area under the receiver operating characteristic 
curve (AUROC) values following collaborative training than local training. In contrast, the larger datasets, i.e., 
CheXpert and MIMIC-CXR, were characterized by similar or slightly lower AUROC values following collabora-
tive training than local training, irrespective of the underlying network architecture (Fig. 2).

Considering individual imaging findings (or labels), AUROC values varied substantially as a function of 
dataset, imaging finding, and training strategy (Tables 2 and 3). Cardiomegaly, pleural effusion, and no abnor-
mality had consistently (and significantly) higher AUROC values following collaborative training than local 
training across all datasets. Notably, we found the highest AUROC values for the VinDr-CXR dataset, where 
collaborative training resulted in close-to-perfect AUROC values for pleural effusion (AUROC = 98.6 ± 0.4%) 
and pneumothorax (AUROC = 98.5 ± 0.7%) when using the ResNet50 architecture. Similar observations were 
made for the ViT architecture. In contrast, for pneumonia, atelectasis, and consolidation, we found similar, or in 
parts even lower AUROC values following collaborative training (Tables 2 and 3), indicating that these imaging 
findings did not benefit from collaborative training and, consequently, larger datasets.

Data diversity is critical for enhancing off‑domain performance in federated learning
We adjusted the training data size to extend our analysis to off-domain performance. We randomly sampled 
n = 15,000 radiographs from the training sets of each dataset for the collaborative training process. We studied 
five distinct FL scenarios where one dataset was excluded for off-domain assessment and collaborative training 
was conducted using the remaining four datasets. This approach meant that each FL training process included 
n = 60,000 training radiographs. For comparison, we randomly selected n = 60,000 training radiographs from 

Figure 2.  On-domain Evaluation of Performance—Averaged Over All Imaging Findings. The results are 
represented as the area under the receiver operating characteristic curve (AUROC) values averaged over 
all labeled imaging findings, i.e., cardiomegaly, pleural effusion, pneumonia, atelectasis, consolidation, and 
pneumothorax, and no abnormalities. “Local Training” (first column, orange) indicates the AUROC values 
when trained on-domain and locally. “Collaborative Training” (second column, light blue) indicates the 
corresponding AUROC values when trained on-domain yet collaboratively while including the other datasets 
(federated learning) as well. The datasets are VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, and 
PadChest, with training datasets totaling n = 15,000, n = 86,524, n = 128,356, n = 170,153, and n = 88,480 chest 
radiographs, respectively, and test datasets of n = 3,000, n = 25,596, n = 39,824, n = 43,768, and n = 22,045 chest 
radiographs, respectively. (A) Performance of the ResNet50 architecture, a convolutional neural network. 
(B) Performance of the ViT, a vision transformer. Crosses indicate means, boxes indicate the ranges (first 
[Q1] to third [Q3] quartile), with the central line representing the median (second quartile [Q2]), whiskers 
indicate minimum and maximum values, and outliers are indicated with dots. Differences between locally and 
collaboratively trained models were assessed for statistical significance using bootstrapping, and p-values are 
indicated.
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each dataset’s training set and used these images to train locally. Subsequently, we evaluated off-domain perfor-
mance by testing each locally trained network against all other datasets. No overlap existed between the training 
and test sets in any experiment. We then compared the locally and collaboratively trained models on the same 
test set. Collaboratively trained models significantly outperformed locally trained models regarding off-domain 
performance (averaged over all imaging findings) across nearly all datasets (Tables 4 and 5).

Federated learning’s off‑domain performance scales with dataset diversity and size
To validate whether the collaborative training strategy retains its superior off-domain performance when applied 
to large and diverse multi-centric datasets, we replicated the off-domain assessment outlined above using the 
full training size for each dataset following local and collaborative training. We studied five distinct FL scenarios 
where one dataset was excluded for off-domain assessment, and collaborative training was conducted using the 
remaining four datasets’ full sizes for training (Fig. 3).

Table 2.  On-domain evaluation of performance of the convolutional neural network—individual imaging 
findings. Performance metrics are indicated as the area under the receiver operating characteristic curve 
(AUROC) values for each dataset, training strategy (i.e., local or collaborative training), and imaging finding. 
See Table 1 for further details on dataset characteristics. Differences between locally and collaboratively trained 
models were assessed for statistical significance using bootstrapping, and p values were indicated.

Dataset
Training 
Strategy Cardiomegaly

Pleural 
Effusion Pneumonia Atelectasis Consolidation Pneumothorax No Abnormality Average

VinDr-CXR

Local 92.2 ± 0.7 93.7 ± 1.4 88.3 ± 1.2 78.4 ± 3.13 88.1 ± 1.9 93.3 ± 2.3 87.08 ± 0.7 88.7 ± 5.2

Collaborative 95.3 ± 0.5 98.6 ± 0.4 89.9 ± 1.0 91.2 ± 1.4 94.7 ± 1.0 98.5 ± 0.7 92.9 ± 0.5 94.4 ± 3.2

P value 0.001 0.001 0.896 0.001 0.001 0.003 0.001 0.001

ChestX-ray14

Local 87.5 ± 0.5 81.5 ± 0.3 68.8 ± 1.1 74.7 ± 0.4 72.8 ± 0.5 84.4 ± 0.4 72.2 ± 0.3 77.4 ± 6.6

Collaborative 89.4 ± 0.5 82.6 ± 0.3 73.3 ± 1.1 77.1 ± 0.4 74.7 ± 0.5 87.5 ± 0.3 73.1 ± 0.3 79.7 ± 6.4

P value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

CheXpert

Local 86.7 ± 0.3 87.3 ± 0.2 76.4 ± 0.8 68.4 ± 0.4 74.4 ± 0.5 85.5 ± 0.3 87.2 ± 0.3 80.8 ± 7.1

Collaborative 86.7 ± 0.3 88.1 ± 0.2 73.8 ± 0.9 68.8 ± 0.4 74.6 ± 0.5 86.3 ± 0.3 87.7 ± 0.3 80.8 ± 7.5

P value 0.443 0.001 0.001 0.864 0.681 0.001 0.001 0.509

MIMIC-CXR

Local 80.9 ± 0.2 90.7 ± 0.2 73.9 ± 0.5 81.7 ± 0.2 80.3 ± 0.5 86.5 ± 0.4 85.4 ± 0.2 82.8 ± 5.0

Collaborative 78.8 ± 0.2 90.9 ± 0.1 74.1 ± 0.5 81.2 ± 0.2 82.2 ± 0.4 86.5 ± 0.5 85.0 ± 0.2 82.7 ± 5.1

P value 0.001 0.045 0.768 0.001 0.001 0.442 0.001 0.088

PadChest

Local 92.2 ± 0.3 95.5 ± 0.3 84.8 ± 0.7 84.4 ± 0.6 89.0 ± 0.9 86.8 ± 2.0 85.8 ± 0.3 88.3 ± 3.9

Collaborative 92.5 ± 0.2 95.9 ± 0.3 85.1 ± 0.6 84.3 ± 0.6 90.0 ± 0.8 92.5 ± 1.5 85.0 ± 0.3 89.3 ± 4.3

P value 0.017 0.003 0.806 0.371 0.922 0.001 0.001 0.001

Table 3.  On-domain evaluation of performance of the vision transformer—individual imaging findings. See 
Table 2 for further details on table organizaiton.

Dataset
Training 
strategy Cardiomegaly

Pleural 
effusion Pneumonia Atelectasis Consolidation Pneumothorax No abnormality Average

VinDr-CXR

Local 95.0 ± 0.5 97.2 ± 0.8 90.6 ± 0.9 86.9 ± 1.7 91.1 ± 1.7 87.7 ± 3.9 90.7 ± 0.6 91.3 ± 3.9

Collaborative 96.9 ± 0.3 98.4 ± 0.5 91.2 ± 1.0 92.8 ± 1.1 96.2 ± 0.7 98.1 ± 0.8 93.8 ± 0.5 95.3 ± 2.6

P value 0.001 0.018 0.699 0.001 0.001 0.003 0.001 0.001

ChestX-ray14

Local 88.1 ± 0.5 81.4 ± 0.3 69.5 ± 1.0 75.3 ± 0.4 73.6 ± 0.5 84.3 ± 0.4 72.3 ± 0.3 77.8 ± 6.4

Collaborative 90.2 ± 0.4 82.3 ± 0.3 73.2 ± 1.0 76.9 ± 0.4 75.3 ± 0.5 86.7 ± 0.3 72.5 ± 0.3 79.6 ± 6.4

P value 0.001 0.001 0.001 0.001 0.001 0.001 0.919 0.001

CheXpert

Local 87.7 ± 0.3 87.6 ± 0.2 76.8 ± 0.9 68.8 ± 0.4 75.1 ± 0.5 86.3 ± 0.3 87.7 ± 0.3 81.4 ± 7.2

Collaborative 87.1 ± 0.3 88.3 ± 0.2 74.9 ± 1.0 69.3 ± 0.4 75.1 ± 0.5 86.6 ± 0.3 87.8 ± 0.3 81.3 ± 7.3

P value 0.001 0.001 0.002 0.039 0.471 0.946 0.802 0.175

MIMIC-CXR

Local 81.5 ± 0.2 90.8 ± 0.1 74.4 ± 0.5 81.6 ± 0.2 82.4 ± 0.4 86.8 ± 0.4 85.4 ± 0.2 83.3 ± 4.8

Collaborative 79.2 ± 0.2 91.1 ± 0.1 73.6 ± 0.5 81.5 ± 0.2 82.0 ± 0.4 87 ± 0.4 84.8 ± 0.2 82.7 ± 5.2

P value 0.001 0.001 0.001 0.264 0.077 0.686 0.001 0.001

PadChest

Local 91.9 ± 0.3 95.3 ± 0.3 83.0 ± 0.7 81.6 ± 0.6 88.1 ± 0.8 89.5 ± 1.3 84.3 ± 0.3 87.7 ± 4.7

Collaborative 92.8 ± 0.2 96.0 ± 0.3 84.5 ± 0.6 85.1 ± 0.6 91.0 ± 0.6 92.6 ± 1.3 85.4 ± 0.3 89.6 ± 4.3

P value 0.001 0.001 0.002 0.001 0.001 0.009 0.001 0.001
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Surprisingly, we observed that all datasets, regardless of their size, were characterized by significantly higher 
AUROC values following collaborative training than local training (Fig. 3), irrespective of the underlying network 
architecture (P < 0.001 [ResNet50]; P < 0.004 [ViT]). This finding contrasts with our corresponding findings on 
the on-domain performance (Fig. 2), which indicates that collaborative training (vs. local training) does not 
substantially improve performance on larger datasets.

Discussion
In this study, we examined the impact of federated learning on domain generalization for an AI model that 
interprets chest radiographs. Utilizing over 610,000 chest radiographs from five datasets from the US, Europe, 
and Asia, we analyzed which factors influence the off-domain performance of locally versus collaboratively 
trained models. Beyond training strategies, dataset characteristics, and imaging findings, we also studied the 
impact of the underlying network architecture, i.e., a convolutional neural network  (ResNet5029) and a vision 
transformer (12-layer  ViT30).

We examined the on-domain performance, i.e., the AI model’s performance on data from those institutions 
that provided data for the initial training, as a function of training strategy using the full training datasets of all 
five institutions. The collaborative training process unfolded within a predominantly non-IID data setting, with 
each institution providing inherently variable training images regarding the clinical situation, labeling method, 
and patient demographics. Previous studies have indicated that FL using non-IID data settings may yield sub-
optimal results for AI  models14,18,19,19,20,37. Our results complement these earlier findings as we observed that 
the degree to which non-IID settings affect the AI models’ performance depends on the training data quantity. 
Institutions with access to large training datasets, such as MIMIC-CXR35 and  CheXpert34, containing n = 170,153 
and n = 128,356 training radiographs, respectively, demonstrated the least performance gains secondary to FL. 
In contrast, the VinDr-CXR32 dataset, with only n = 15,000 training radiographs, had the largest performance 
gains. Our findings confirm that training data size is the primary determinant of on-domain model performance 
following collaborative training in non-IID data settings, representing most clinical situations.

Table 4.  Off-domain evaluation of performance of the convolutional neural network—standardized training 
data sizes. Following local or collaborative training and testing on another dataset, performance was evaluated 
by averaging AUROC values over all imaging findings. Collaborative training used the remaining four datasets, 
each contributing n = 15,000 training radiographs. Notably, the VinDr-CXR local model was trained using all 
available images (*), i.e., n = 15,000, while the local models of the other datasets were trained using n = 60,000 
training radiographs. Differences between locally and collaboratively trained models were assessed for 
statistical significance using bootstrapping, and p values were indicated. Data are presented as AUROC value 
(p value). OND on-domain.

Train on: Test on:

Training strategy Dataset [Size] VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR PadChest

Local training

VinDr-CXR [n = 15000] 
(*) OND 64.2 ± 5.0 (0.001) 67.5 ± 10.4 (0.001) 71.2 ± 6.2 (0.001) 75.8 ± 8.1 (0.001)

ChestX-ray14 [n = 60000] 84.6 ± 6.6 (0.005) OND 73.6 ± 7.8 (0.001) 74.6 ± 7.4 (0.001) 80.4 ± 7.6 (0.001)

CheXpert [n = 60000] 85.6 ± 6.9 (0.020) 74.0 ± 5.6 (0.339) OND 76.9 ± 7.1 (0.006) 81.2 ± 8.0 (0.001)

MIMIC-CXR [n = 60000] 86.9 ± 6.3 (0.553) 73.4 ± 4.2 (0.008) 76.5 ± 7.3 (0.001) OND 82.4 ± 6.3 (0.794)

PadChest [n = 60000] 84.7 ± 6.6 (0.012) 70.7 ± 6.9 (0.001) 73.0 ± 8.5 (0.001) 74.5 ± 7.3 (0.001) OND

Collaborative Training All Datasets 
[n = 4 × 15000] 87.0 ± 6.0 73.9 ± 5.0 74.5 ± 8.6 76.6 ± 6.2 82.8 ± 6.7

Table 5.  Off-domain evaluation of performance of the vision transformer—standardized training data sizes. 
Table organization as in Table 4 above.

Train on: Test on:

Training strategy Dataset [Size] VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR PadChest

Local training

VinDr-CXR 
[n = 15000] (*) OND 66.4 ± 5.9 (0.001) 69.3 ± 10.1 (0.001) 73.4 ± 6.3 (0.001) 79.6 ± 6.6 (0.001)

ChestX-ray14 
[n = 60000] 85.9 ± 6.7 (0.001) OND 75.0 ± 7.6 (0.001) 76.5 ± 6.1 (0.001) 82.9 ± 6.6 (0.001)

CheXpert 
[n = 60000] 85.3 ± 8.3 (0.001) 75.3 ± 7.6 (0.039) OND 78.0 ± 6.6 (0.001) 82.1 ± 7.9 (0.001)

MIMIC-CXR 
[n = 60000] 90.0 ± 5.4 (0.008) 75.0 ± 4.6 (0.468) 77.6 ± 7.1 (0.001) OND 85.1 ± 5.4 (0.747)

PadChest 
[n = 60000] 88.8 ± 5.0 (0.001) 72.6 ± 5.6 (0.001) 74.3 ± 7.9 (0.001) 76.7 ± 6.2 (0.001) OND

Collaborative 
training

All datasets 
[n = 4 × 15000] 91.1 ± 4.2 75.0 ± 6.0 76.5 ± 7.8 78.7 ± 5.8 85.2 ± 5.7
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Consequently, we examined FL and its effects on off-domain performance, i.e., the AI models’ performance 
on unseen data from institutions that did not partake in the initial  training25–27,38. First, to study if factors other 
than data size would impact off-domain performance, we compared the off-domain performance of the AI model 
trained locally when each dataset’s size matched the combined dataset size used for collaborative training. We 
found significant improvements in AUROC values in most collaborative and local training strategies. This finding 
suggests that -contrary to on-domain performance, which is affected by dataset size- off-domain performance 
is influenced by the diversity of the training data. Notably, the MIMIC-CXR35 and the  CheXpert34 datasets used 
the same labeling approach, which may explain why the AI models trained on either of these datasets performed 
at least as well as their counterparts trained collaboratively. Second, we evaluated the off-domain performance 
using the complete training datasets to determine the scalability of FL. The collaboratively trained AI models 
consistently outperformed their locally trained counterparts regarding average AUROC values across all imaging 
findings. Thus, FL enhances the off-domain performance by leveraging dataset diversity and size.

To study the effect of the underlying network architecture, we assessed convolutional and transformer-based 
networks, namely ResNet50 and ViT base models. Despite marginal differences, both architectures displayed 
comparable performance in interpreting chest  radiographs39.

Surprisingly, the diagnostic performance regarding pneumonia, atelectasis, and consolidation did not ben-
efit from larger datasets (following collaborative training) as opposed to cardiomegaly, pleural effusion, and no 
abnormality. This finding is surprising in light of the variable, yet still relatively low prevalence of pneumonia 
(1.3–6.5%), atelectasis (0.8–19.9%), and consolidation (1.2–6.0%) across the datasets. Intuitively, one would 
expect the diagnostic performance to benefit from more and more variable datasets. While the substantial vari-
ability in image and label quality may be responsible, further studies are necessary to corroborate or refute this 
finding.

Our study has limitations: First, we recognize that our collaborative training was conducted within a single 
institution’s network. By segregating the computing entity for each (virtual) site participating in the AI model’s 
collaborative training, we emulated a practical scenario where network parameters from various sites converge 

Figure 3.  Off-domain Evaluation of Performance—Averaged Over All Imaging Findings. The results are 
represented as AUROC values averaged over all labeled imaging findings. The dataset outlined above each 
subpanel provides the test set, while the first four columns (orange) indicate the AUROC values when trained 
locally on other datasets, i.e., off-domain. The fifth column (light blue) indicates the corresponding AUROC 
values when trained off-domain yet collaboratively while including all four datasets (federated learning). 
Otherwise, the figure is organized as Fig. 2. Mind the different y-axis scales.
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at a central server for aggregation. Hyperparameter settings were subject to systematic optimization, and the 
selected parameters represent those optimized for our specific use case. Nonetheless, given the close association 
between hyperparameters and the performance of any machine-learning approach, it is likely that differently 
tuned hyperparameters would have brought about different performance metrics. Yet, these effects would impact 
both because our comparisons were inherently paired, and similar hyperparameters were used for each dataset, 
irrespective of the underlying training strategy. Our FL simulation was asynchronous, enabling different par-
ticipating sites to deliver updates to the server at different times. Collaborative training across institutions in 
real-world scenarios translates to disparate physical locations where network latency and computational resources 
affect procedural efficiency. Importantly, diagnostic performance metrics will not be affected by these factors. 
Second, we had to rely on the label quality and consistency provided along with the radiographs by the dataset 
providers, which may be  problematic40. Third, although our study used numerous real-world datasets, it exclu-
sively focused on chest radiographs. In the future, AI models that assess other imaging and non-imaging features 
as surrogates of health outcomes should be studied. Lastly, the AUROC was our primary evaluation metric, yet 
its broad scope encompasses all decision thresholds, likely including unrealistic ones. We included supplemen-
tary metrics such as accuracy, specificity, and sensitivity to provide more comprehensive insights. Nevertheless, 
when applied at a single threshold, these metrics can be overly specific and bring about biased interpretations, as 
recently illustrated by Carrington et al.41. The authors proposed a deep ROC analysis to measure performance in 
multiple groups, and such approaches may facilitate more comprehensive performance analyses in future studies.

In conclusion, our multi-institutional study of the AI-based interpretation of chest radiographs using variable 
dataset characteristics pinpoints the potential of federated learning in (i) facilitating privacy-preserving cross-
institutional collaborations, (ii) leveraging the potential of publicly available data resources, and (iii) enhancing 
the off-domain reliability and efficacy of diagnostic AI models. Besides promoting transparency and reproduc-
ibility, the broader future implementation of sophisticated collaborative training strategies may improve off-
domain deployability and performance and, thus, optimize healthcare outcomes.

Materials and methods
Ethics statement
The study was performed in accordance with relevant local and national guidelines and regulations and approved 
by the Ethical Committee of the Faculty of Medicine of RWTH Aachen University (Reference No. EK 028/19). 
Where necessary, informed consent was obtained from all subjects and/or their legal guardian(s).

Patient cohorts
Our study includes 612,444 frontal chest radiographs from various institutions, i.e., the VinDr-CXR32, ChestX-
ray1433,  CheXpert34, MIMIC-CXR35, and the  PadChest36 datasets. The median patient age was 58, with a mean 
(± standard deviation) of 56 (± 19) years. Patient ages ranged from 1 to 105 years. Beyond dataset demographics, 
we provide additional dataset characteristics, such as labeling systems, label distributions, gender, and imaging 
findings, in Table 1.

The VinDr-CXR32 dataset, collected from 2018 to 2020, was provided by two large hospitals in Vietnam and 
includes 18,000 frontal chest radiographs, all manually annotated by radiologists on a binary classification scheme 
to indicate an imaging finding’s presence or absence. For the training set, each chest radiograph was indepen-
dently labeled by three radiologists, while the test set labels represent the consensus among five  radiologists32. 
The official training and test sets comprise n = 15,000 and n = 3,000 images, respectively.

The ChestX-ray1433 dataset, gathered from the National Institutes of Health Clinical Center (US) between 
1992 and 2015, includes 112,120 frontal chest radiographs from 30,805 patients. Labels were automatically gener-
ated based on the original radiologic reports using natural language processing (NLP) and rule-based labeling 
techniques with keyword matching. Imaging findings were also indicated on a binary basis. The official training 
and test sets contain n = 86,524 and n = 25,596 radiographs, respectively.

The  CheXpert34 dataset from Stanford Hospital (US) features n = 157,878 frontal chest radiographs from 
65,240 patients. Obtained from inpatient and outpatient care patients between 2002 and 2017, the radiographs 
were automatically labeled based on the original radiologic reports using an NLP-based labeler with keyword 
matching. The labels contained four classes, namely “positive”, “negative”, “uncertain”, and “not mentioned in the 
reports”, with the “uncertain” label capturing both diagnostic uncertainty and report  ambiguity34. This dataset 
does not offer official training or test set divisions.

The MIMIC-CXR35 dataset includes n = 210,652 frontal chest radiographs from 65,379 patients in intensive 
care at the Beth Israel Deaconess Medical Center Emergency Department (US) between 2011 and 2016. The 
radiographs were automatically labeled based on the original radiologic reports utilizing the NLP-based labeler 
of the  CheXpert34 dataset detailed above. The official test set consists of n = 2,844 frontal images.

The  PadChest36 dataset contains n = 110,525 frontal chest radiographs from 67,213 patients. These images were 
obtained at the San Juan Hospital (Spain) from 2009 to 2017. 27% of the radiographs were manually annotated 
using a binary classification by trained radiologists, while the remaining 73% were labeled automatically using 
a supervised NLP method to determine the presence or absence of an imaging  finding36.

Hardware
The hardware used in our experiments were Intel CPUs with 18 cores and 32 GB RAM and Nvidia RTX 6000 
GPU with 24 GB memory.
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Experimental design
To maintain benchmarking consistency, we standardized the test sets across all experiments. Specifically, we 
retained the original test sets of the VinDr-CXR and ChestX-ray14 datasets, consisting of n = 3,000 and n = 25,596 
radiographs, respectively. For the other datasets, we randomly selected a held-out subset comprising 20% of the 
radiographs, i.e., n = 29,320 (CheXpert), n = 43,768 (MIMIC-CXR), and n = 22,045 (PadChest), respectively. 
Importantly, there was no patient overlap between the training and test sets.

We assessed the AI models’ on-domain and off-domain performance in interpreting chest radiographs. On-
domain performance refers to applying the AI model on a held-out test set from an institution that participated 
in the initial training phase through single-institutional local training or multi-institutional collaborative train-
ing (i.e., federated learning). Conversely, off-domain performance involves applying the AI model to a test set 
from an institution that did not participate in the initial training phase, regardless of whether the training was 
local or collaborative.

Federated learning
When designing our FL study setup, we followed the FedAvg algorithm proposition by McMahan et al.11. Conse-
quently, each of the five institutions was tasked with carrying out a local training session, after which the network 
parameters, i.e., the weights and biases, were sent to a secure server. This server then amalgamated all local 
parameters, resulting in a unified set of global parameters. For our study, we set one round to be equivalent to a 
single training epoch utilizing the full local dataset. Subsequently, each institution received a copy of the global 
network from the server for another iteration of local training. This iterative process was sustained until a point 
of convergence was reached for the global network. Critically, each institution had no access to the other institu-
tions’ training data or network parameters. They only received an aggregate network without any information 
on the contributions of other participating institutions to the global network. Following the convergence of the 
training phase for the global classification network, each institution had the opportunity to retain a copy of the 
global network for local utilization on their respective test  data12,14.

Pre‑processing
The diagnostic labels of interest included cardiomegaly, pleural effusion, pneumonia, atelectasis, consolidation, 
pneumothorax, and no abnormality. To align with previous  studies13,25,42,43, we implemented a binary multi-label 
classification system, enabling each radiograph to be assigned a positive or negative class for each imaging find-
ing. As a result, labels from datasets with non-binary labeling systems were converted to a binary classification 
system. Specifically, for datasets with certainty levels in their labels, i.e., CheXpert and MIMIC-CXR, classes 
labeled as “certain negative” and “uncertain” were summarized as “negative”, while only the “certain positive” 
class was treated as “positive”. To ensure consistency across datasets, we implemented a standardized multi-step 
image pre-processing strategy: First, the radiographs were resized to the dimension of 224× 224 pixels. Second, 
min–max feature scaling, as proposed by Johnson et al.35, was implemented. Third, to improve image contrast, 
histogram equalization was  applied13,35. Importantly, all pre-processing steps were carried out locally, with each 
institution applying the procedures consistently to maintain the integrity of the federated learning framework.

DL network architecture and training
Convolutional neural network
We utilized a 50-layer implementation of the ResNet architecture (ResNet50), as introduced by He et al.29, for 
our convolutional-based network architecture. The initial layer consisted of a ( 7× 7 ) convolution, generating an 
output image with 64 channels. The network inputs were ( 224× 224× 3 ) images, processed in batches of 128. 
The final linear layer was designed to reduce the ( 2048× 1 ) output feature vectors to the requisite number of 
imaging findings for each comparison. A binary sigmoid function converted output predictions into individual 
class probabilities. The optimization of ResNet50 models was performed using the  Adam44 optimizer with learn-
ing rates set at 1× 10

−4 . The network comprised approximately 23 million trainable parameters.

Transformer network
We adopted the original 12-layer vision transformer (ViT) implementation, as proposed by Dosovitskiy et al.30, 
as our transformer-based network architecture. The network was fed with ( 224× 224× 3 ) images in batches 
of size 32. The embedding layer consisted of a ( 16× 16 ) convolution with a stride of ( 16× 16 ), followed by a 
positional embedding layer, which yielded an output sequence of vectors with a hidden layer size of 768. These 
vectors were supplied to a standard transformer encoder. A Multi-Layer Perceptron with a size of 3072 served 
as the classification head. As with the ResNet50, a binary sigmoid function was used to transform the output 
predictions into individual class probabilities. The ViT models were optimized using the  AdamW45 optimizer 
with learning rates set at 1× 10

−5 . The network comprised approximately 86 million trainable parameters.
All models commenced training with pre-training on the ImageNet-21K46 dataset, encompassing approxi-

mately 21,000 categories. Data augmentation strategies were employed, including random rotation within [− 10, 
10] degrees and horizontal  flipping11. Our loss function was binary-weighted Cross-Entropy, inversely propor-
tional to the class frequencies observed in the training data. Importantly, the hyperparameters were selected 
following systematic optimization, ensuring optimal convergence of the neural networks across our experiments.

Evaluation metrics and statistical analysis
We analyzed the AI models using Python (v3) and the SciPy and NumPy packages. The primary evaluation 
metric was the area under the receiver operating characteristic curve (AUROC), supplemented by additional 
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evaluation metrics such as accuracy, specificity, and sensitivity (Supplementary Tables S1–S3). The thresholds 
were chosen according to Youden’s  criterion47. We employed  bootstrapping48 with repetitions and 1,000 redraws 
in the test sets to determine the statistical spread and whether AUROC values differed significantly. Multiplicity-
adjusted p-values were determined based on the false discovery rate to account for multiple comparisons, and 
the family-wise alpha threshold was set to 0.05.

Data availability
The accessibility of the utilized data in this study is as follows: The ChestX-ray14 and PadChest datasets are pub-
licly available via https:// www. v7labs. com/ open- datas ets/ chestx- ray14 and https:// bimcv. cipf. es/ bimcv- proje cts/ 
padch est/, respectively. The VinDr-CXR and MIMIC-CXR datasets are restricted-access resources, which can 
be accessed from PhysioNet by agreeing to the respective data protection requirements under https:// physi onet. 
org/ conte nt/ vindr- cxr/1. 0.0/ and https:// physi onet. org/ conte nt/ mimic- cxr- jpg/2. 0.0/, respectively. The CheXpert 
dataset may be requested at https:// stanf ordml group. github. io/ compe titio ns/ chexp ert/.

Code availability
All source codes for training and evaluation of the deep neural networks, data augmentation, image analysis, and 
pre-processing are publicly available at https:// github. com/ tayeb iaras teh/ FLdom ain. All code for the experiments 
was developed in Python v3.9 using the PyTorch v2.0 framework.
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