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Susceptible‑Infected‑Susceptible 
type COVID‑19 spread 
with collective effects
Amanda Crocker  & Daniel Strömbom *

Many models developed to forecast and attempt to understand the COVID‑19 pandemic are highly 
complex, and few take collective behavior into account. As the pandemic progressed individual 
recurrent infection was observed and simpler susceptible‑infected type models were introduced. 
However, these do not include mechanisms to model collective behavior. Here, we introduce an 
extension of the SIS model that accounts for collective behavior and show that it has four equilibria. 
Two of the equilibria are the standard SIS model equilibria, a third is always unstable, and a fourth 
where collective behavior and infection prevalence interact to produce either node‑like or oscillatory 
dynamics. We then parameterized the model using estimates of the transmission and recovery rates 
for COVID‑19 and present phase diagrams for fixed recovery rate and free transmission rate, and both 
rates fixed. We observe that regions of oscillatory dynamics exist in both cases and that the collective 
behavior parameter regulates their extent. Finally, we show that the system exhibits hysteresis when 
the collective behavior parameter varies over time. This model provides a minimal framework for 
explaining oscillatory phenomena such as recurring waves of infection and hysteresis effects observed 
in COVID‑19, and other SIS‑type epidemics, in terms of collective behavior.

Since the twentieth century, the world has seen multiple outbreaks of infectious diseases, including the Spanish 
flu, HIV/AIDS, SARS, Swine flu, Ebola, Zika, and most recently COVID-191. Transmission of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the root cause of Coronavirus disease 2019 
(COVID-19) in January  20202. By March 2020, the World Health Organization (WHO) classified COVID-19 as 
a global pandemic, and containment efforts to stop the spread of the virus began soon after. Early 2020 estimates 
for the transmissibility of the original virus suggested that each infected individual would spread the virus to 
1.4–2.5 people on  average3. Since then, the infectiousness of the virus has intensified, with an estimated 9.5 
people becoming infected from each person with the Omicron variant of  20214. Over three years later, COVID-
19 continues to persist in society, notably in recurring waves of  infection5–7 that are influenced by changes in 
compliance with mitigation efforts and  guidelines6,8,9.

Mitigation efforts are thought to help curb infection spread. A 2022 CDC report found that individuals who 
wore face masks were at least 56% less likely to test positive for COVID-19, in conjunction with any other pro-
tective measures they were  taking10. Social distancing also contributes to limiting COVID-19 spread, as the ten 
countries with the most COVID-19 cases in early 2020 saw a decline in active cases within four weeks of initiat-
ing social  distancing11. To make these protective changes in physical behavior, individuals must have received 
effective communication about the current status of infection in order to personally weigh the risks associated 
with certain  actions12–14. Thus behavior is also linked to media representation and portrayal of the pandemic’s 
status locally, nationally, and  globally15–17. While each individual must make their own decisions regarding how 
to behave in a pandemic environment, the collective decisions of an entire population will determine the fate of 
infection spread throughout a  community18. Conversely, the degree of infection spread and the perceived threat 
of disease also contribute to the willingness of the population to follow recommendations and  precautions12. A 
study of the 1918–1919 Influenza A outbreak found that as the severity of the epidemic increased, there were 
correspondingly high levels of perceived risk and increased indications that policy played a role in forming public 
perceptions. These three factors fluctuated together as the epidemic incidence became more and less severe, indi-
cating that willingness to cooperate with mitigation recommendations contributes to infection dynamics and vice 
 versa19. Ultimately, even with government or societal recommendations, the willingness and ability of a popula-
tion to follow these recommendations as a community drives whether or not these guidelines are  effective20.

Modeling disease spread may contribute to uncovering what factors affect the dynamics of infectious dis-
eases and be used for  forecasting21. For example, a model may be used to estimate the expected number of cases 
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within a specific time period or the anticipated impacts of different mitigation strategies to support public health 
decision-making22. A large number of models have been developed to forecast and investigate different aspects 
of the COVID-19 pandemic. In particular, so-called compartmental models where the population is partitioned 
into a number of compartments, e.g. susceptible and infected, and rates for the flow between the different com-
partments are specified, have a very long history in disease spread  modeling23–36. The SIR (susceptible, infected, 
recovered)  model37 has been particularly important to the study of infectious diseases, and has served as a base 
model for many COVID-19 model variations and extensions, for example, the  SEIR28–30,38,  SAIU31,  SAIR32, 
 SIRSi25,  SLIAR34,  SEIRD33,  SEAHIR23,35, and  SIDARTHE36 models. Agent-based models where individual-level 
behaviors and interactions are specified and the community-level spread that emerges from those individual-level 
features studied via simulation have also been used extensively to model COVID-1939–43.

Collective behavior, especially collective cooperation or defection, has been incorporated into a number of 
 models44–47. However, many of these models are highly complex due to their large number of states/compartments 
(SIR+) and parameters, which limits their use as tools to investigate causal links between specific factors and 
specific features of the spread. As the COVID-19 pandemic progressed it was observed that individual reinfec-
tion was  common48,49. Calling the inclusion of the recovered class in compartmental models into question, an SI 
model was constructed by generating an exponential fit to early COVID-19  data50. However, this model does not 
account for collective behavior, and we cannot find any other SI or SIS models for COVID-19 in the literature that 
investigates the impacts of collective behavior. This is unfortunate, given that individual reinfection is an empiri-
cal fact and that collective behavior is known, or suspected, to affect and drive certain features of the spread. For 
example, that the reinfection waves are influenced by collective changes in compliance with mitigation efforts 
and  guidelines6,8,9. While collective behavior plays a role in other SIS type epidemics, e.g. influenza, the collective 
mitigation efforts in response to COVID-19 are unparalleled by recent epidemics and therefore an ideal starting 
point for modeling efforts aimed at developing an understanding of collective behavior in SIS-type epidemics.

Model and results
Here we extend the standard SIS  model21,50 to include collective behavior. See Fig. 1. The proposed general model 
becomes a set of two ordinary differential equations, one for the proportion of infected ( I = I(t) ) and one for 
the proportion of cooperators ( C = C(t) ) of the form

where g is the disease transmission rate and r is the recovery rate from the standard SIS model, and T is a col-
lective cooperation threshold described below. Note that the top equation generalizes the SIS model in that a 
cooperation-dependent disease transmission rate g(1− C) replaces the constant disease transmission rate g used 
in the standard SIS model. This factor was defined in this way to make disease transmission 0 when every individ-
ual is cooperating ( C = 1 ) and makes the model reduce to the standard SIS model when there is no cooperation 
( C = 0 ). The bottom equation which governs the evolution of cooperative behavior was chosen to be a logistic-
type equation with an additional factor that regulates whether cooperation is increasing or decreasing depending 
on whether the infection prevalence I in the community is above or below the threshold T. The rationale for the 
logistic part of the equation, i.e. Ċ = C(1− C) , is that it is the simplest model of a diffusion type process. It has 
an s-shaped solution that mimics common behavioral acquisition patterns observed in imitation processes in 
 animal51 and  human52 communities. The additional factor (I − T) is included to model the empirical observation 
that infection prevalence influences the willingness of a population to cooperate and follow  recommendations12. 
The threshold T corresponds to the sensitivity of the community to disease prevalence. A low threshold will lead 
to cooperative behavior even at low infection prevalence, and a high threshold will require a higher infection 
prevalence before the community starts to cooperate with safety recommendations and guidelines.

Qualitative analysis of the general model
We employed standard qualitative analysis for 2D ODE systems to obtain the following main result.

The four equilibria of the model and their stability properties ∀(g , r,T) ∈ (0, 1)3 with g  = r are 

(1)
{

İ = g(1− C)I(1− I)− rI
Ċ = C(1− C)(I − T)

Figure 1.  Schematic representation of the extended SIS model with collective effects. I = I(t) is the proportion 
of population infected at time t, C = C(t) is the proportion of the population cooperating, g is the disease 
transmission rate, r is the disease recovery rate. The left diagram illustrates the flow between susceptible and 
infected and is identical to the standard SIS model, except that the constant transmission rate g in the SIS model 
has been replaced by a cooperation-dependent transmission rate g(1− C) , and C is governed by the process in 
the right diagram. In particular, C decreases in a logistic type manner if the disease prevalence I is less than the 
collective cooperation threshold T, and C increases if I is larger than T.
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Equilibrium 1: I = 0 and C = 0 is a stable node if g < r ( ∀T).
Equilibrium 2: I = 0 and C = 1 is always unstable.
Equilibrium 3: I = 1− r

g  and C = 0 is a stable node if r < g < � ( ∀T).
Equilibrium 4: I = T and C = 1+ r

g(T−1)
 is a

stable spiral if r < A and g > Ŵ

stable node if r < A and � < g < Ŵ

stable node if r > A and g > �

where A = 4(T−1)2

T  , Ŵ = 4r(1−T)
4(T−1)2−rT

 , and � = r
1−T .

See the “Methods and calculations” section for the derivation of this result.

COVID‑19 parameterization of the general model
For some analyses of the model (1), estimates of r and g specific to COVID-19 are required and we use the fol-
lowing estimates. The standard conservative incubation period for COVID-19 is up to 14  days53, so we set the 
recovery rate to r = 1/14 , as the probability of recovering on any one time step. For the transmission rate, g, we 
used the estimated basic reproductive number R0 for the ancestral strain of SARS-CoV-2 of 2.954, the relationship 
R0 = gr21, and r = 1/14 , to obtain the estimate g = 0.2.

Classification of the equilibria in the model with COVID‑19 recovery rate r = 1/14
When the recovery rate is fixed to r = 1/14 , how the equilibria and their stability properties depend on the 
parameters g and T can be illustrated in a phase diagram. Figure 2 depicts the A, Ŵ , and � curves as functions 
of g and T and indicates the stability of the equilibria present in each region. For fixed g > 1/14 we note that as 
T increases from a low value, the stability of equilibrium 4 changes from a stable spiral to a stable node when it 
reaches the Ŵ curve, and then when it reaches the � curve equilibrium 4 becomes unstable and equilibrium 3 
becomes a stable node.

Classification of the equilibria in the model with COVID‑19 recovery rate r = 1/14 and transmission rate g = 0.2
When the disease transmission rate is fixed to g = 0.2 and the recovery rate to r = 1/14 , the value of the thresh-
old T alone dictates which equilibrium is stable and its stability properties. Figure 3a illustrates the outcomes 
on a phase line for T. We note that for increasing T the transition from the stable spiral to the stable node for 
equilibrium 4 occurs at the intersection with the Ŵ curve, where T ≈ 0.61 , and the transition from equilibrium 
4 being a stable node to equilibrium 3 being a stable node occurs at the intersection with the � curve, where 
T ≈ 0.64 . Figure 3b shows the infection and cooperation curves for T = 0.2 , which corresponds to equilibrium 
4 being a stable spiral. Note that Fig. 3b indicates that spikes in cases will occur roughly every 100 days. Figure 3c 
shows infection and cooperation curves when T = 0.62 , which corresponds to equilibrium 4 being a stable node. 

Figure 2.  Type of equilibria for constant recovery rate. With fixed recovery rate r = 1/14 the long-term stability 
properties of the system can be illustrated in the (g, T)-plane. There are four possible outcomes determined 
by where the parameter pair (g, T) of interest is located relative to the four curves r = 1/14 , A, Ŵ , and � . 
For g < � the two standard SIS model equilibria are stable g < r . More specifically, for r < g equilibrium 1 
(I ,C) = (0, 0) is a stable node, if r < g < � equilibrium 3 (1− r/g , 0) is a stable node. For g > � equilibrium 4 
(T , 1+ r/g(T − 1)) is stable. A stable node if � < g < Ŵ , and a stable spiral if g > Ŵ.
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Figure 3d shows infection and cooperation curves when T = 0.7 , which corresponds to equilibrium 3 being a 
stable node.

Hysteresis behavior in the model with COVID‑19 recovery rate r = 1/14 and transmission rate g = 0.2
We also investigated the impacts of changing the collective cooperation threshold T over time on the propor-
tions of infected and cooperating to detect potential hysteresis effects. Figure 4 shows how the proportions of 
the population infected and cooperating change over time as the threshold T increases from 0 to 1 and then back 
from 1 to 0. We note that there is a dramatic difference between the forward infection and cooperation propor-
tion curves as T increases from its minimum, and the corresponding curves as T decreases from its maximum. 
In particular, when T decreases continuously from 1 to 0, it takes longer for the proportions to begin shifting, 
and when they do, the decline in infection and increase in cooperation proportions occurs directly without any 
oscillatory behavior. See the “Methods and calculations” section for the analysis details.

Discussion
Here we have introduced a model that generalizes the SIS model to include collective effects. The main differences 
from the original SIS model are that the constant transmission rate g is replaced by a cooperation-dependent 
transmission rate g(1− C) and that the proportion cooperating C is governed by a logistic-type equation with 
an additional factor that governs whether the proportion cooperating is increasing or decreasing, depending on 
whether the proportion infected I is larger than a collective cooperation threshold T.

The general model has four equilibria whose stability properties are dependent on the three parameters g, 
r, and T. Two of these equilibria (1 and 3) correspond to the standard SIS model equilibria with the expected 
stability  properties21. Specifically, the extinction equilibrium (I ,C) = (0, 0) is stable for g < r and the spread 
equilibrium (I ,C) = (1− r

g , 0) is stable for g > r . We note that both of these equilibria have C = 0 so there is 
no cooperation. Equilibrium 2 (I ,C) = (0, 1) where there is full cooperation and the infection vanishes is not 
observed in the standard SIS model, but it is also largely irrelevant here since it is always unstable. The interesting 
equilibrium in our model is equilibrium 4 (I ,C) = (T , 1+ r

g(T−1)
) where the proportion infected approaches 

the collective cooperation threshold as the proportion cooperating approaches 1+ r
g(T−1)

 . Depending on the 

Figure 3.  Type of the equilibria for constant transmission and recovery rates. For the ancestral COVID-19 
parameters r = 1/14 and g = 0.2 , the possible stability outcomes depend only on the value of T. (a) Line 
indicating which values of T result in the three outcomes in terms of the intersections with the Ŵ and � curves. 
(b–d) Shows the changes in proportions infected (red) and cooperating (blue) over five years time for different 
values of T. (b) Proportion infected and cooperating curves for T = 0.2 . For any value of T < 0.61 we expect 
the proportions infected and cooperating to exhibit damped oscillations while converging to equilibrium 4 
(T , 1+ r/g(T − 1)) , and with the parameters used here that would be (0.2, 0.55) which is reflected in the figure. 
(c) Proportion infected and cooperating curves for T = 0.62 . Because T satisfies 0.61 < T < 0.64 we expect 
the proportions infected and cooperating to approach equilibrium 4 (T , 1+ r/g(T − 1)) , here (0.62, 0.06), 
which is reflected in the figure. We note that initially the infection grows rapidly towards the standard SIS model 
equilibrium ( 1− r/g = 0.64 ) and only when it passes T = 0.62 does cooperation kick in and eventually drags 
the infection down to 0.62 where it stabilizes. (d) Proportion infected and cooperating curves for T = 0.7 . 
For any value of T > 0.64 equilibrium 3 (1− r/g , 0) is stable, i.e. the proportion infected I will approach the 
standard SI model equilibrium 1− r/g = 0.64 and cooperation C will approach 0. We see this reflected in the 
figure. This is a consequence of the fact that the threshold T is larger than the standard SIS model equilibrium 
1− r/g , so I will never exceed T, and therefore cooperation will decrease towards 0.
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parameter values this equilibrium can be a stable spiral or a stable node. In particular, over a large range of 
parameter values, it is a stable spiral ( r < A and g > Ŵ ) and in this case, the model generates damped oscillation 
in the proportion of infected. This general model may be useful as a base model for any disease spread where 
reinfection is  common48,49 so an SIS model is appropriate, collective behavior affects the  spread8,9,12,18,19, and the 
collective cooperation response depends on disease prevalence relative to a community-specific  threshold19,20.

We then fixed the recovery rate to r = 1/14 which corresponds to the typical recovery time of approximately 
two weeks for COVID-1953. The resulting phase diagram in only g and T is presented in Fig. 2 and we note the 
standard SIS model equilibria (1 and 3), as well as both the stable node and stable spiral forms of equilibrium 4, 
are still present. In particular, the stable spiral form of equilibrium 4 which corresponds to damped oscillations 
in the proportion of infected over time, consistent with the waves of infection observed during COVID-195–7, 
is present over a large range of g and T parameter values, and that as the transmission rate increases, the range 
of collective action thresholds T over which oscillatory behavior (spiral) rather than a direct approach to the 
equilibrium (node) increases with the threshold T. This restricted version of the model may be particularly useful 
for considering the impacts of different strains of COVID-19. As mutations became favorable to the SARS-CoV-2 
virus, new strains became increasingly infectious, with Delta and Omicron having higher R0 values compared 
to earlier  variants4, corresponding to higher g transmission rates. Especially because many newer variants are 
 regional55, understanding the thresholds required to limit infection spread in places with unique variants could 
be useful for future preparation. Models investigating spread differences between distinct COVID-19  variants56,57 
could be combined with our approach to understand the changes in the degree of collective cooperation neces-
sary to limit disease spread for different strains.

To obtain a better understanding of the impact of the collective cooperation threshold T for ancestral COVID-
19 strain parameters we fixed the transmission rate g = 0.2 calculated from the reported R0 value of 2.954, keep-
ing the r = 1/14 from the previous analysis. For a given fixed T the model produces the long-term dynamics 
illustrated in Fig. 3. Specifically, for T < 0.61 , equilibrium 4 is a stable spiral, which corresponds to damped 
oscillations in the proportion of infected over time. For 0.61 < T < 0.64 , equilibrium 4 is a stable node, and for 
T > 0.64 equilibrium 3 is a stable node. We note that equilibrium 3 is a standard SIS model equilibrium with 
no cooperation, suggesting that in the current model for ancestral COVID-19, cooperation only influences the 
spread if the threshold is sufficiently low. This suggests that in communities with high thresholds for cooperative 
behavior, even if cooperation is present, it will have no long-term effect and the disease spread will be SIS-like. 
Our model is able to reproduce the timing of the original spikes of COVID-19 in 2020 in the United States. At 
a low threshold, as shown in Fig. 3b, oscillations restart roughly every 100 days. WHO data for weekly cases in 
the United States indicate major spikes starting in early April, mid-July, and mid-to-late October, each around 
three months  apart58. This indicates that our model, when only accounting for recovery rate, transmission 
rate, and a threshold on collective behavior, can replicate qualitative features of COVID-19 spread that match 
published data. However, the type of data-driven modeling and forecasting activities presented in studies with 
more complex models, e.g.25–27,31,36,39,42,44,46,50,57,59,60 are beyond the capabilities of our minimal model alone and 
the scope of our investigation.

Throughout the COVID pandemic most communities have gone through periods with stricter and more 
lax  restrictions11,20, as well as changes in public perception of the danger of the  disease12–14, and how the media 
reports on the  disease15–17. Such changes would correspond to a change of T in our model. T would decrease 
when the individuals in a community become more concerned, and increase when a community becomes less 

Figure 4.  Hysteresis effect with varying collective cooperation threshold T. As T increases from 0 to 1 the 
proportion of infected I and cooperating C initially exhibit damped oscillations as in Fig. 3b, but instead of 
stabilizing at equilibrium 4, as it would for a fixed T, the increasing threshold eventually renders equilibrium 
4 unstable and the system instead approaches and stabilizes at equilibrium 3 ( C = 0 and I = 1− r/g ). 
From there, when T decreases from 1 back to 0, the proportion infected and cooperating does not follow the 
increasing T path in reverse. Instead, the system remains in equilibrium 3 until T has decreased beyond 0.25 at 
which point the system abruptly switches to approach equilibrium 4 and bypasses the oscillatory phase observed 
when T was increasing. Indicating that this system exhibits substantial hysteresis effects.
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concerned. To determine if the diagram in Fig. 3a, in particular, the location of the T limits, would be appropriate 
for determining the outcomes as the T parameter changes over time, we performed simple hysteresis analysis 
and found strong hysteresis effects (Fig. 4). In particular, we observe that when the proportion infected starts 
relatively high with no cooperation, even as T decreases, it takes much longer for cooperation to commence than 
it took for cooperation to cease when going in the other direction. This suggests that using short-term assess-
ments to determine whether certain COVID-19 strategies are effective may not be appropriate, because it could 
take time to see the effects on a system. This finding could contribute to explaining the result seen  in11 in which 
it took up to four weeks after the most stringent social distancing guidelines were put into place for daily cases 
and deaths to decrease in the United States, and even longer in Russia. More broadly, hysteresis effects are known 
to influence processes across the physical and life sciences, including infectious disease  epidemiology61, and our 
work here may offer a potential explanation for some of these in terms of collective behavior.

Many available COVID-19 models are complex SIR+  models23,25,28–36,38 which may be disadvantageous because 
the explanatory power of a model tends to decrease with complexity. Especially, when complexity is added by 
components that may be of limited relevance, e.g. the R compartment in SIR+ models of COVID-19 since 
recurrent individual reinfection is  frequent48,49. Therefore, to explain some fundamental features of COVID-19 
an SIS model may be more appropriate. Furthermore, many COVID-19 models do not account for collective 
 behavior23–27,39–43,49,50. While each individual has the power to choose the degree to which they follow mitiga-
tion efforts, it is the collective behavior of a community that drives spread, not a single individual, indicating 
why population behavior is vital to understand and  model12,18. The model proposed here aims to fill the gap in 
understanding how collective behavior contributes to disease spread in its simplest form. Because it reduces to 
standard SIS spread when there is no cooperation, all differences between this model and the standard SIS spread 
are due to the incorporated collective behavior. The information provided by this model can be used to evaluate 
disease mitigation strategies or identify important population thresholds in preparation for future pandemics.

Methods and calculations
Qualitative analysis
Here we present a brief overview of the method and then apply it to obtain our main result. For a general system 
of nonlinear, autonomous differential equations of the form

the equilibria are the solutions (I∗,C∗) to the system

The stability properties of each equilibrium (I∗,C∗) is then found by calculating the eigenvalues �1 and �2 of the 
Jacobian matrix J evaluated at the equilibrium

where subscripts indicate the partial derivative with respect to that variable. Once the eigenvalue have been 
obtained the Hartman-Grobman  theorem62 can be used to determine the stability type of the equilibrium. The 
theorem parts that are relevant to our work are summarized here. If both eigenvalues are real and distinct, the 
equilibrium will be an unstable node if 0 < �1 ≤ �2 , a stable node if �1 ≤ �2 < 0 , and a saddle if �1 < 0 < �2 . 
For complex eigenvalues of the form � = a± bi , the equilibrium will be a stable spiral if a < 0 and an unstable 
spiral if a > 0.

Below we apply this method to establish our main result for the general model. Recall that we only consider 
g, r, T in (0, 1) and g  = r . These conditions are used throughout.

Equilibria of our model
To find the equilibria of our model 1 we solve the following system of equations

Note that C(1− C)(I − T) = 0 if C = 0 , 1− C = 0 , and/or I − T = 0.
If C = 0 , the top equation simplifies to I(g − gI − r) = 0 , which has two solutions I = 0 and I = 1− r

g .
If C = 1 , the top equation simplifies to −rI = 0 which has the solution I = 0.
If I = T , the top equation simplifies to C = 1− r

g(1−T).
Therefore, the four equilibria of the model are 

Equilibrium 1: I = 0 , C = 0

Equilibrium 2: I = 0 , C = 1

Equilibrium 3: I = 1− r
g  , C = 0

Equilibrium 4: I = T , C = 1− r
g(1−T)

(2)
{

İ = f (I ,C)
Ċ = g(I ,C)

(3)
{

f (I∗,C∗) = 0

g(I∗,C∗) = 0

(4)J(I∗,C∗) =

[

fI (I
∗,C∗) fC(I

∗,C∗)

gI (I
∗,C∗) gC(I

∗,C∗)

]

(5)
{

g(1− C)I(1− I)− rI = 0

C(1− C)(I − T) = 0
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Stability of the equilibria in our model
The Jacobian corresponding to the linearization of our model becomes

and calculating the eigenvalues of the Jacobian evaluated at each the four equilibria (I∗,C∗) gives their stability 
properties.

Equilibrium 1: (0, 0)

has the eigenvalues �1 = g − r and �2 = −T . �2 is always negative. �1 < 0 when g < r , and �1 > 0 when g > r . 
Therefore, equilibrium 1 (0, 0) is a stable node when g < r , and unstable (node) when g > r , for all T.

Equilibrium 2: (0, 1)

has the eigenvalues �1 = −r and �2 = T . �1 is always negative and �2 is always positive. Therefore, equilibrium 
2 (0, 1) is always unstable (saddle).

Equilibrium 3: (1− r
g , 0)

has the eigenvalues �1 = r − g and �2 = 1− T − r
g  . �1 < 0 when g > r . �2 < 0 when 1− T − r

g < 0 which is 
equivalent to g < r

1−T  . Noting that T ∈ (0, 1) implies that r < r
1−T  we can combine the two criteria into one 

r < g < r
1−T . Therefore, equilibrium 3 (1− r

g , 0) is a stable node when r < g < � , where � = r
1−T , and unstable 

otherwise.

Equilibrium 4: (T , 1− r
g(1−T) )

has the eigenvalues

where A = 4(T−1)2

T  , Ŵ = 4r(1−T)
4(T−1)2−rT

 , and � = r
1−T .

These eigenvalues will be a complex conjugate pair � = a± bi (with a = −T�
2

< 0 ) if and only if 
(g − Ŵ)(r − A) < 0 . For unconstrained parameters this results from either of the following two cases 

1. g > Ŵ and r < A.
2. g < Ŵ and r > A.

To determine the relevant case for our constrained parameters we note that Ŵ can be expressed in terms of A as

Note that the numerator is always positive. Now, if r < A the denominator is also positive so Ŵ > 0 . However, 
if r > A the denominator is negative so Ŵ < 0 , and then there are no g > 0 that satisfies the condition g < Ŵ 
for case 2 above, and it is thus irrelevant here. Therefore, we conclude that equilibrium 4 is a stable spiral only 
for g > Ŵ and r < A.

The eigenvalues will be a real if and only if (g − Ŵ)(r − A) > 0 which for unconstrained parameters result 
from either of the following two cases 

(6)J(I ,C) =

[

g(2I − 1)(C − 1)− r gI(I − 1)

C − C2 2TC − 2IC −+I − T

]

(7)J(0, 0) =

[

g − r 0

0 − T

]

(8)J(0, 1) =

[

−r 0

0 T

]

(9)J(1−
r

g
, 0) =

[

r − g r2

g − r

0 1− r
g − T

]

(10)J(T , 1−
r

g(1− T)
) =

[

rT
T−1

gT(T − 1)

−
r(gT−g+r)

g2(T−1)2
0

]

(11)�1,2 =
rgT ±

√

−4((−
gT
4
+ T − 1)r + g(T − 1)2)rgT

2g(T − 1)
= −

T�

2

(

1±

√

(g − Ŵ)(r − A)

gr

)

(12)Ŵ =
4r(1− T)

T(A− r)
.
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1. g > Ŵ and r > A.
2. g < Ŵ and r < A.

We are interested in when the equilibrium will be stable (node), which requires both eigenvalues to be nega-
tive. From Eq. (11) we note that this will occur when

Including this condition ( g > � ) in cases 1 and 2 above gives 

1. For g to satisfy both g > Ŵ and g > � we must have g > max{Ŵ,�} = � . The reason max{Ŵ,�} = � here 
is because when r > A

 and � is always positive so Ŵ < 0 < �.
2. For g to satisfy both g < Ŵ and g > � we must have � < g < Ŵ . We also note that � < Ŵ when r > A so 

there is a range of g over which case 2 is relevant.

Therefore we conclude that Equilibrium 4 is a stable node when 

1. g > � and r > A , and
2. � < g < Ŵ and r < A.

Summary stability analysis

Equilibrium 1: (0, 0) is a stable node when g < r.
Equilibrium 2: (0, 1) is always unstable.
Equilibrium 3: (1− r

g , 0) is a stable node when r < g < �.
Equilibrium 4: (T , 1− r

g(1−T) ) is a

stable spiral when r < A and g > Ŵ,
a stable node if r < A and � < g < Ŵ,
a stable node if r > A and g > �.

Hysteresis analysis
To investigate the impacts of changing the collective cooperation threshold T over time on the proportion of 
infected I and cooperating C in the model with COVID-19 recovery rate r = 1/14 and transmission rate g = 0.2 
we used the Matlab function ode45 to continuously solve the system as the parameter T was varied. Initially, T 
was set to 0 and increased incrementally to 1 over a time period of 10,000-time steps. The values for the pro-
portion infected and cooperating from the final increase time step were then used as initial conditions for the 
decrease phase where the threshold T decreased from 1 down to 0. See the Code availability statement for how 
to access the complete code needed to perform the calculations and plot the result.

Code availability
The code required to verify the computational part of this work can be found here https:// github. com/ danie lstro 
mbom/ SIcol lecti ve.

Received: 17 August 2023; Accepted: 13 December 2023
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