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Dual‑level clustering ensemble 
algorithm with three consensus 
strategies
Yunxiao Shan 1, Shu Li 1,2*, Fuxiang Li 1*, Yuxin Cui 1 & Minghua Chen 2

Clustering ensemble (CE), renowned for its robust and potent consensus capability, has garnered 
significant attention from scholars in recent years and has achieved numerous noteworthy 
breakthroughs. Nevertheless, three key issues persist: (1) the majority of CE selection strategies 
rely on preset parameters or empirical knowledge as a premise, lacking adaptive selectivity; (2) 
the construction of co-association matrix is excessively one-sided; (3) the CE method lacks a more 
macro perspective to reconcile the conflicts among different consensus results. To address these 
aforementioned problems, a dual-level clustering ensemble algorithm with three consensus strategies 
is proposed. Firstly, a backward clustering ensemble selection framework is devised, and its built-in 
selection strategy can adaptively eliminate redundant members. Then, at the base clustering 
consensus level, taking into account the interplay between actual spatial location information and 
the co-occurrence frequency, two modified relation matrices are reconstructed, resulting in the 
development of two consensus methods with different modes. Additionally, at the CE consensus level 
with a broader perspective, an adjustable Dempster–Shafer evidence theory is developed as the third 
consensus method in present algorithm to dynamically fuse multiple ensemble results. Experimental 
results demonstrate that compared to seven other state-of-the-art and typical CE algorithms, the 
proposed algorithm exhibits exceptional consensus ability and robustness.

Clustering is an unsupervised analysis technique, which plays a crucial role in exploring the internal structure 
information of data. Over time, various forms of single clustering methods have been developed. However, 
the limited scope of application prevents their simultaneous application to datasets with diverse distribution 
characteristics1. Therefore, clustering ensemble (CE) stands out as an extended version of traditional clustering 
by adopting the concept of ensemble learning. Its objective is to integrate multiple base clustering information 
in order to generate a final clustering result with enhanced performance, which cannot be achieved by any single 
clustering method. CE possesses inherent unique advantages in terms of privacy protection and knowledge reuse, 
thereby avoiding information leakage caused by direct access to the original dataset.

It has been widely confirmed by numerous previous studies that achieving the optimal clustering result 
through the integration of all member information is not always feasible2–10. The presence of members with 
subpar quality can impede the effectiveness of ensemble methods. In light of this, the emergence of cluster-
ing ensemble selection (CES) technology serves as a remedy to mitigate this inherent risk. Nevertheless, it is 
important to note that there are still several obstacles and challenges that need to be overcome in order to attain 
a consensus result with better performance within the CES framework.

1.	 How to select base clustering members adaptively. It is understood that the majority of selection strategies, 
including soft and hard selection strategies, necessitate the establishment of parameter thresholds or empiri-
cal knowledge in advance for their implementation2–5,11–13. The algorithm’s dependence on parameters and 
the dataset’s structure will intensify, leading to an increase in the time-consuming issue associated with 
parameter tuning.

2.	 How to construct a more accurate representation of relationships between sample pairs. Scholars have 
expended considerable efforts towards reconstructing the relationship matrix, incorporating techniques 
such as rough set theory, random walk, and dark knowledge, among others. However, the current approaches 
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focus on extracting information from the base clustering results, neglecting the influence of the actual spatial 
location information between samples. This leads to a one-sided analysis of the relation matrix.

3.	 How to solve the highly conflicting problem of the inconsistent division at the CE consensus level. As an 
efficient approach to address conflicts and uncertainties, the traditional Dempster-Shafer (DS) evidence 
theory has been employed to integrate various base clustering outcomes within the same CE method. At 
this juncture, an issue is likely to arise. Specifically, the traditional DS evidence theory demonstrates a lack 
of robustness in instances characterized by a high level of conflict among evidences. This shortcoming could 
potentially diminish the credibility of the fusion results and further undermine the conflict resolution capa-
bilities of the DS theory. There exists a more significant aspect that this conflict persists at an elevated level, 
even after the consensus is achieved via diverse CE methods. That is to say, to effectively address the issue 
of high conflict at the consensus function level, the development of a novel approach presents a significant 
challenge.

Therefore, the present study proposes a backward clustering ensemble selection framework (BCESF), and 
designs a dual-level clustering ensemble algorithm with three consensus strategies based on the BCESF. In one 
aspect, BCESF presents an alternative effective selection strategy for CES that avoids the need for parameter 
thresholds or human intervention. In another aspect, two consensus strategies, utilizing the relationship matrix 
as crucial input, are designed at the base clustering consensus level. The co-occurrence frequency and actual 
spatial location information are simultaneously considered to reconstruct the relation matrices, which facilitate 
the mining of more realistic data structure information. Additionally, this study employs an enhanced adjustable 
DS evidence theory for the first time to integrate diverse ensemble results at the CE consensus level, offering a 
broader perspective. This constitutes the third consensus strategy proposed in this work. This consensus strat-
egy not only adaptively adjusts label probabilities to accommodate changes in dataset structure and integration 
methods, but also exhibits superior conflict resolution capabilities compared to traditional DS evidence theory, 
thus facilitating the attainment of higher-confidence consensus results.

Related works
In this section, we provide a concise overview of the underlying background and theoretical concepts relevant 
to this study, including a discussion of various effective processing techniques across different stages of CE, 
alongside DS evidence theory.

Clustering ensemble
At present, the CE technology has been effectively implemented in various data mining domains, such as bioin-
formatics, multimedia data analysis, dynamic detection, statistics, social network analysis and pattern recogni-
tion, among others11,14–25. The process of CES involves selecting base clustering members through an additional 
step beyond the CE method, prior to achieving consensus. Consequently, the CES implementation framework 
can be distilled into three processes: (1) base clustering generation process; (2) base clustering members selec-
tion process; (3) consensus clustering process. Occasionally, the latter two processes involve interleaving and 
iteration due to varying selection strategy principles. The treatment of the first and third processes is compatible 
and can be shared in both frameworks.

In the execution of the first process, the equilibrium between the quality and diversity of base clustering 
members has consistently been the central point of exploration. Higher quality means that the division of base 
clusterings is uniform highly, while higher diversity denotes substantial disparities between base clusterings. It 
is invariably anticipated to extract more knowledge from diverse perspectives to overcome the delusion induced 
by data deviation. Consequently, a multitude of distinct base clustering generation techniques have emerged. For 
instance, random initialization method, feature subspace method, multiple single cluster generation methods, 
resampling method and so forth26–28. Obviously, atop these existing technologies, the development of more 
sophisticated processing methods is indispensable to optimize the overall performance of the algorithm.

In the second implementation process, it is imperative to identify the optimal base clustering members 
combination adhering to a specific criterion. The objective of this process is to remove the division of relative 
redundancy and establish a more advantageous information foundation for consensus clustering. The majority 
of researchers evaluate the combination of base clustering members from the perspective of quality and diversity. 
Consequently, a series of methods have been proposed. Naldi et al.11 employed six distinct criteria to assess the 
quality of base clustering, and the selected combination of members was used to get the final fusion result. Wang 
et al.6 incorporated rough set theory to screen base clustering subset with a more positive contribution. Lu7 and 
Akbari et al.10 constructed the diversity measure matrix based on covariance and pairing-constraint respectively, 
presenting two novel CES algorithms. Fern and Lin12 were the first to employ a comprehensive index derived from 
the trade-off between quality and diversity for selecting base clustering combinations, and designed three CES 
strategies. Azimi13 and Hong et al.4 both proposed the CES method to determine base clustering combination 
in accordance with preset thresholds. In addition, Hong et al.4 used the ensemble results obtained by resampling 
technique as an index to assess quality and diversity. Zhou et al.29 advanced an ensemble learning framework 
capable of automatically estimating the difficulty of base clustering members and optimize base clustering. Shi 
et al.30 designed a multi-objective self-evolution process to discern the relationship between quality and diversity 
within the source domain dataset, and facilitate the transfer of this established relationship to the target data-
set. Banerjee et al.31 introduced a new metric of base clustering quality and diversity, concurrently designing 
a polynomial heuristic CES algorithm. Khalili et al.32 evaluated the diversity/quality of subsets via the Jaccard 
similarity measure, and adopted three consensus functions to achieve consistent solutions. In addition to this 
series of evaluation criteria, various strategies from other models were incorporated into the selection process 
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for base clustering members. Yang et al.33 optimized the base clustering combination to obtain a CE model with 
superior performance by integrating the concept of CE with genetic algorithm. Arizad8, Nazari34, and Parvin 
et al.35 developed multiple strategies with distinct modes for picking class clusters instead of base clusterings. 
Yu et al.9 applied four feature selection methods to obtain the final base clustering subset. Yu et al.36 proposed 
a method that determines the base clustering combination based on the distribution information of various 
clustering members. In contrast to these hard selection strategies, for example, Li and Ding37 introduced a soft 
selection strategy within NMF framework38 to weight base clusterings. However, most CES strategies necessitate 
the implemented of pre-set parameter thresholds or empirical knowledge, resulting in algorithms that are too 
dependent on parameters and the structure of the dataset.

When executing the last process, it is crucial to take into account the information of the base clustering mem-
bers selected by the first two processes, and the corresponding consensus method is employed to generate the 
final consistent result. From diverse perspectives, numerous effective approaches have been proposed to address 
the consensus process in this step. Depending on the distinct input information required by the consensus func-
tion, consensus methods can be roughly categorized into four types. (1) Graph-based consensus strategy39–44. 
It uses graph theory to partition nodes, thereby generating the final clustering results, in which the nodes are 
composed of sample points or clusters or both, and the edges represent the relationship between nodes. (2) Co-
association matrix-based consensus strategy45–48. This kind of method learns the pairwise relationship between 
sample points by leveraging the base clustering member information, so that the relationship matrix is used as the 
input for the consensus function to yield the ensemble result. (3) Direct method-based consensus strategy44,49–51. 
This method involves determining the corresponding relationship between clusters, followed by the ultimate 
division based on voting outcomes. (4) Rough set-based consensus strategy46,52. This series of methods analyze 
the incomplete information generated by different base clusterings, and subsequently obtains the possibility of 
sample points belonging to a cluster during the final consensus process. Despite the development of numerous 
consensus strategies, designing those with superior performance remains a significant challenge, particularly at 
the CE consensus level with a broader perspective.

Dempster–Shafer evidence theory
The DS evidence theory, initially proposed and refined by mathematicians A. P. Dempster and G. Shafer. As a 
consequence, an entire suite of evidence theory capable of effectively addressing the uncertainty problem has 
emerged. In numerous domains of information fusion52–55, DS evidence theory has demonstrated its superior 
ability to resolve conflicts.

According to the description of DS evidence theory, the hypothesis space � =
{
θ1, θ2, . . . , θq

}
 is a set of 

non-empty finite set, which consists of q elements. The power set 2� of � is defined as Eq. (1):

The mass function m is a mapping from 2� to [0, 1] , also known as the basic probability assignment func-
tion (BPA) on the hypothesis space. Ai refers to a specific hypothesis. Then, m(Ai) represents the probability 
distribution of hypothesis Ai . Under the conditions of Eqs. (2) and (3), the mass function m(Ai) is the reliability 
measure of the final result.

where ∅ is an empty set. Under the premise that the mass function m is known, the definitions of belief function 
(Bel) and plausibility function (Pl) are expressed by Eqs. (4) and (5), respectively:

The belief interval [Bel(Ai), Pl(Ai)] represents the degree of confirmation of the hypothesis Ai , and there is 
a one-to-one correspondence among m(Ai) , Bel(Ai) , and Pl(Ai) . DS evidence theory regards the value with the 
highest credibility obtained by the fusion rules as the final result. For ∀A ⊆ � , the fusion rule of n mass functions 
m(m1,m2, . . . ,mn) is shown in Eq. (6):

where A1,A2, . . . ,An ⊆ � , K  is the normalization factor. It represents high degree of conflict when K  is 1 or 
infinitely close to 1. The calculation formula of K is shown in Eq. (7):

(1)2� = {Ai|Ai ⊆ �}

(2)m(∅) = 0

(3)
∑

Ai⊆�

m(Ai) = 1

(4)Bel(Ai) =
∑

Bi⊆Ai

m(Bi)

(5)Pl(Ai) =
∑

Bi∩Ai �=∅

m(Bi)

(6)(m1⊕m2 ⊕ · · · ⊕mn)(A) =
1

K

∑

A1∩A2∩···∩An=A

m1(A1) ·m2(A2) · · · · ·mn(An)

(7)

K =
∑

A1∩A2∩···∩An �=∅

m1(A1) ·m2(A2) · · · · ·mn(An) = 1−
∑

A1∩A2∩···∩An=∅

m1(A1) ·m2(A2) · · · · ·mn(An)
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Precisely because the DS evidence theory can effectively integrate the data and represent uncertain informa-
tion through its mathematical model without necessitating prior knowledge of the target. This makes it stand out 
in many fields with conflicting challenges, including the field of CE. Both Wu53 and Li54 employed DS theory to 
consolidate multiple single clustering outcomes into a final result, and calculated class probabilities by Gaussian 
mixture modeling and nearest neighbor techniques, respectively. However, Wang et al.55 used the DS theory to 
fuse multiple clustering validity functions, aiming to identify the optimal number of class clusters. It should be 
highlighted that the applications of these existing DS evidence theory in CE all focus on the level of fusing single 
clustering result. Moreover, these approaches consistently employ traditional DS evidence theory to solve the 
issue. That is, this entails assuming that each clustering result possesses equivalent reliability, disregarding any 
discrepancies between them. Consequently, when there is a high degree of conflict among different clustering 
results, the credibility of the final clustering results derived from traditional DS evidence theory will be signifi-
cantly undermined. Furthermore, it is also unreliable to directly obtain the class probability when the quality of 
the randomly generated single clustering result is poor, which will still prejudice the final fusion results. As such, 
this study presents an advanced CE framework from a broader perspective, which can automatically adjust the 
weight according to the reliability of different CE results at the level of CE consensus, rather than base clustering 
consensus, thereby minimizing the adverse impact of high conflict.

Methodology
In this section, the proposed backward clustering ensemble selection framework (BCESF) is described in detail. 
Under this framework, three consensus strategies with varying modes are designed. Specifically, the general form 
of BCESF is elaborated first; subsequently, two consensus strategies are developed based on two newly defined 
co-association matrices; ultimately, the third consensus strategy proposed is explicated based on the adjustable 
DS evidence theory. The overall implementation process facilitated by BCESF is illustrated in Fig. 1.

Problem formula
The process of CE involves integrating multiple base clustering results to achieve a more ideal consensus result. 
Generally, the mathematical formulation in the CE problem is defined as follows. Let X = {x1, x2, . . . , xN } ∈ Rh 
denotes a target dataset with N sample points, where xi is the i th sample point in the target dataset X , and h is the 
attribute dimension of each sample point. A set of M base clustering results generated by M different parameters 
or clustering algorithms setting can be described as � =

{
π1,π2, . . . ,πM

}
 , where πm =

{
Cm
1 ,C

m
2 , . . . ,C

m
am
}

 
denotes the m th base clustering in � , Cm

j  is the j th cluster of the m th base clustering πm , am is the number 
of clusters in the m th base clustering πm . For convenience, the set of all clusters in the base clustering set � is 
represented by C =

{
C1,C2, . . . ,CAC

}
 , AC is the total number of all clusters in �.

General form of the backward clustering ensemble selection framework
BCESF can be decomposed into three modules: (a) base clustering generation process; (b) base clustering mem-
ber subsets selection process and (c) consensus clustering process. In this section, an overview of the implemen-
tation mechanism of BCESF is provided, with the specific operational details of each module delineated below.

Base clustering generation process
To generate base clustering randomly with better quality and diversity balance, a more refined generation 
approach is implemented. For the target dataset X = {x1, x2, . . . , xN } ∈ Rh , M/2 base clustering results are gen-
erated by fuzzy C-means (FCM)56 and density peaks clustering (DPC)57 algorithms, respectively. Consequently, 
a total of M base clustering results � =

{
π1,π2, . . . ,πM

}
 are obtained. FCM is a soft clustering method, which 

accomplishes clustering by updating the membership matrix and the cluster centers. Compared to the K-means 
algorithm, FCM possesses a stronger ability to handle uncertain points. Meanwhile, DPC is an advanced density-
based clustering algorithm that has been intensively studied in recent years. It is suitable for a wider range of data 
structures58–60. Generating base clustering under these two distinct and complementary partitioning methods 
can better achieve a balance of quality and diversity.

It is worth noting that when the random generation range of the number of clusters is set in the traditional 
way 

([
2,
⌊√

N
⌋])

 , it may generate base clustering that deviate significantly from the actual, especially if the right 
boundary significantly deviates from the actual number of clusters. Therefore, it is imperative to establish a more 
plausible right boundary value under the premise of ensuring quality and diversity. To achieve this, we adopt the 
idea of the DPC algorithm for cluster number screening, enabling the identification of the appropriate right 
boundary for the random generation range. The identification of cluster centers via the DPC algorithm hinges 
on two crucial variables. One is the local density ρi and the other is the relative distance δi.

Specifically, the calculation formula of the local density ρi is as follows:

where dc is the cut-off distance, which is regarded as the only hyper-parameter for the consensus strategy.
When xi is a non-maximum local density point, relative distance δi is determined by the nearest sample point 

xj , which has a large local density relatively:

(8)ρi =
∑

j �=i

χ
(
di,j − dc

)
,χ(a) =

{
1, a < 0
0, a ≥ 0

(9)δi = minj:ρj>ρi

(
di,j

)
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When xi is the maximum local density point, its δi is denoted as δmax , as follows:

The DPC algorithm posits that the cluster centers exhibit two distinct features: greater local density ρ com-
pared with surrounding points, and greater relative δ distance between cluster centers. Thus, the potential number 
of candidate cluster centers can be ascertained by leveraging these two salient features and their corresponding 
expansion processing. The objective of this approach is to lock in a more plausible range of cluster number gen-
eration, thereby precluding the emergence of untenable base clustering outcomes which could negatively impact 
on the final ensemble results. Here, we use ρi and δi to determine the set CP of possible candidate cluster centers:

(10)δmax = maxj
(
di,j

)

Figure 1.   The overall implementation flowchart based on BCESF.
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In fact, any sample point xt corresponds to a pair of ρt and δt . Set CP stores all sample points where both ρi 
and δi are greater than the mean. This means that the real number of clusters will be derived from the potential 
number of samples in CP . CP provides a reasonable space that closely adheres to reality and inclusive for the 
random generation range of cluster number. In practical problems, the real number of clusters of a dataset is 
generally less than |CP | or 

⌊√
N
⌋
 . Then, the random initialization range of the number of clusters is finally set to 

[
2,min

(
|CP |,

⌊√
N
⌋)]

 , where |CP | indicates the number of elements in the set CP.
In addition, the Pearson correlation coefficient (Pcc) is employed to randomly eliminate one of the attribute 

pairs characterized by a high degree of correlation, where the attribute pair satisfies |corr(.)| > θ . The remaining 
feature attributes are used to generate base clustering results.

By executing the aforementioned process, the generation process of base clustering not only mitigates the 
emergence of extreme members but also optimally balances quality and diversity. Concurrently, a solid founda-
tion is established for the subsequent execution of crucial steps.

Base clustering member subsets selection process
Numerous studies have confirmed that fusing all base clustering information may not necessarily yield the opti-
mal consensus results26–35. The involvement of noise members can attenuate the overall ensemble effect. Moreover, 
most selection strategies necessitate the introduction of additional hyper-parameters as a cost. Consequently, it 
is crucial to eliminate noise members to enhance the consensus quality of the base clustering combination. In 
the proposed BCESF, the given consensus function is embedded into the selection strategy and the final base 
clustering combination is determined by iteration. In theory, any known consensus function can be embedded 
into the framework for use. The specific execution steps are as follows:

Step 1: Starting from the combination � =
{
π1,π2, . . . ,πM

}
 composed of all M base clustering results, 

calculate the Davies–Bouldin index (DBI)61 value of the consensus result of the combination under the given 
consensus strategy. The DBI is defined as follows:

where C is the number of clusters in the consensus result; si  represents the average distance from the sample 
points to the center of mass in the i th cluster; dij is the Euclidean distance between the center of mass of cluster 
i and the center of mass of cluster j.

Step 2: On the basis of the combination � =
{
π1,π2, . . . ,πM

}
 in the previous step, separately calculate the 

DBI value of M combinations formed by removing one base clustering result in order (each base clustering combi-
nation contains M − 1 base clustering results), and then remove the base clustering from � =

{
π1,π2, . . . ,πM

}
 

that makes the DBI value of the updated base clustering combination reach the optimal one.
Step 3: On the basis of the combination obtained in the previous step, continue to calculate the DBI value 

independently of M − 1 combinations formed by removing one base clustering result in order (each base clus-
tering combination contains M − 2 base clustering results), the base clustering whose DBI value of the updated 
base clustering combination reaches the optimal will be eliminated. And so on, until there is no base clustering 
result that can be eliminated.

At this time, the base clustering combination �∗ =
{
π1∗,π2∗, . . . ,πL∗}, L ≤ M with the lowest DBI score 

is regarded as the best base clustering result subset. So the final consensus result based on �∗ is obtained under 
the premise of a given consensus strategy.

Consensus clustering process
This section delineates the last process of BCESF. Aiming at the execution of this process, three innovative con-
sensus strategies with varying modalities are developed, which are spectral-based (SC), density-peaks-based 
(DC), and DS-based (DSC). The BCESF-SC is elaborated in the “1) BCESF-SC” section, and it belongs to 
consensus mode which utilizes a modified similarity matrix as input for complete clustering. The BCESF-DC 
is detailed in the “2) BCESF-DC” section, which belongs to consensus mode that employs a modified distance 
matrix for input to achieve clustering. The third consensus strategy, BCESF-DSC takes class probability matrix 
as input to accomplish fusion, which is introduced in the “3) BCESF-DSC” section. The first two consensus 
strategies, SC and DC, are executed at the base clustering consensus level by means of a newly defined relation-
ship matrix. However, the third consensus strategy, DSC is founded on the adjustable DS theory, which various 
different ensemble results at the CE consensus level with a broader perspective.

To mirror the resemblance between sample pairs, the conventional co-association matrix is typically 
employed as the input of the consensus function in the CES problem. For a given set of base clustering members 
� =

{
π1,π2, . . . ,πM

}
 , the set of clusters of all base clustering results in � is C =

{
C1,C2, . . . ,CAC

}
 . The co-

association matrix A ∈ RN×N represents the degree of similarity between any two samples, and aij= [A]ij denotes 
the element at i-th row j-th column of matrix A . The larger aij is, the sample points xi and xj are divided into the 
same cluster in more base clustering results, which is defined as follows:

(11)CP =

{
xt |ρt >

∑N
i=1 ρi

N
&δt >

∑N
i=1 δi

N
, t ∈ [1,N]

}

(12)DBI =
1

C

C∑

i=1

max
j �=i

(
si + sj

dij

)
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Although the CES algorithm based on traditional co-association matrix addresses numerous practical issues. 
But in essence, it merely tallies the co-occurrence of sample pairs within each base clustering, neglecting the 
intrinsic attractiveness disparities between sample pairs. Even within the same cluster, the actual distance has a 
non-negligible impact on the similarity degree between sample pairs. In view of this, two modified relationship 
matrices are designed to capture the co-occurrence relationship between sample pairs in a more comprehensive 
manner. Both matrices concurrently consider the interaction between co-occurrence frequency and local spatial 
location information. One is the modified similarity matrix SDIS∈ RN×N , which is obtained by modifying the 
co-association matrix with local spatial location information, and its expression is as follows:

where di,j is expressed as the Euclidean distance between sample points xi and xj in the whole text, and it is also 
the element at i-th row j-th column of matrix D∗∈ RN×N . min(d) and max(d) are the minimum and maximum 
distance values among all distances, respectively.

The other is the modified distance matrix DSIM∈ RN×N , which is derived by modifying the local spatial loca-
tion information with co-association matrix, and its calculation formula is as follows:

By meticulously examining the two newly constructed relationship matrices, it becomes evident that they 
not only reflect the co-occurrence relationship of sample pairs in the macro view, but also take into account 
the intrinsic structure information of the sample pair from a microscopic viewpoint. Both of them are deeply 
intertwined. The two matrices furnish more precise and realistic input information for the subsequent consensus 
strategy, enhancing its diversification from a methodological perspective.

BCESF‑SC.  In the consensus strategy of BCESF-SC, a new undirected graph needs to be constructed. Subse-
quently, the final consensus result is obtained by partitioning the graph, where the sample points are treated as 
nodes within the graph, and the modified similarity matrix SDIS is used as the adjacency matrix between nodes. 
That is:

where V = X is the node set composed of sample points, and Ẽ is the edge set. In the graph G̃ , the edge weights 
are determined by the modified similarity matrix SDIS . For a given node xi and xj , the edge weight between them 
is defined as:

Then, the Laplacian matrix of the graph is normalized, which is:

where I is the identity matrix. D ∈ RN×N is a degree matrix with any element on its diagonal di =
∑N

j=1 s
DIS
ij  . 

Next, the eigenvalue decomposition of ̃Lsym is performed to obtain the eigenvectors corresponding to the smallest 
first C∗ eigenvalues. The C∗ eigenvectors are expanded by column normalization to form a new matrix represent-
ing F ∈ RN×C∗ . Finally, on the basis of F , the K-means clustering algorithm is used to obtain the final consensus 
clustering result πSC:

where �∗
SC is the optimal base clustering member combination obtained by embedding SC as a consensus strategy 

into BCESF. BCESF-SC model can be summarized in Algorithm 1.

BCESF‑DC.  In the consensus strategy of BCESF-DC, the distance matrix between sample points is employed 
as the input. Two crucial variables, namely the local density ρi and the relative distance δi , are derived based on 

(13)aij= [A]ij =
1

M

M∑

m=1

δmij

(14)δmij =
{
1, ifxi , xj ∈ Cr , r = 1, 2, . . . ,AC

0, otherwise

(15)sDISij =
[
SDIS

]
ij
=

1− d∗i,j

2M

M∑

m=1

δmij

(16)d∗i,j =
di,j −min(d)

max(d)−min(d)

(17)dSIMij =
[
DSIM

]
ij
=

M · di,j
1+

∑M
m=1 δ

m
ij

(18)G̃ =
(
V , Ẽ

)

(19)ẽij = sDISij

(20)L̃sym = I − D−1/2SDISD−1/2

(21)πSC = BCESF− SC
(
�∗

SC

)
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the distance matrix. The specific calculation methods of ρi and δi are shown in Eqs. (8)–(10). Then, the cluster 
centers required by the model are selected according to ρi and δi . Eventually, the remaining non-center points 
are allocated to achieve the final consensus clustering result. In particular, the modified distance matrix DSIM 
is regarded as the input matrix of the model. That is, dSIMij  replaces the fundamental distance information di,j 
required in the original ρi and δi calculation formulas, thereby supplementing more similarity information to 
accurately depict the actual relationship between sample points.

Here, a two-dimensional decision graph is constructed with ρi and δi as abscissa and ordinate. All the sample 
points are mapped to the decision graph. Subsequently, the points in the upper right corner of the decision graph 
are identified as the cluster centers, which have large ρi and δi relatively. Finally, each remaining non-center point 
is assigned to the same cluster as its nearest point, which has a larger local density. So far, the final consensus 
clustering result πDC is obtained:

where �∗
DC is the optimal base clustering member combination obtained by embedding DC as a consensus 

strategy into BCESF. The execution steps of BCESF-DC model are summarized as Algorithm 2.

BCESF‑DSC.  Following the processing of the target dataset by diverse CE algorithms, the issue of inconsistent 
partition outcomes remains. That is, there is a lack of a higher-dimensional perspective for globally integrating 
diverse consistent results. Therefore, we propose a consensus strategy founded on the adjustable DS evidence 
theory, which effectively addresses the conflicts and contradictions among various consensus results. The fusion 
diagram of this model is depicted in Fig. 2.

It is worth noting that BCESF-DSC requires that the consensus results derived from distinct CE algorithms 
all have the same number of clusters C∗ . Furthermore, BCESF-DSC matches the cluster labels in various results 
one by one through the maximum intersection method among clusters. Based on this, the consensus strategy 
of BCESF-DSC firstly calculates the k nearest neighbors NNk(xi) of each sample point xi . The distance matrix 
required for the calculation process is already obtained when the base clustering outcomes are generated. NNk(xi) 
is defined as follows:

where Nk(xi) is the k-th nearest neighbor for sample point xi.
Then, an initial mq(Ar) is calculated based on NNk(xi) and the q-th CE algorithm Yq . mq(Ar) is the basic 

probability value that the sample point xi belongs to the cluster label r , and its calculation formula is as follows:

(22)πDC = BCESF− DC
(
�∗

DC

)

(23)NNk(xi) =
{
xj ∈ X

∣∣di,j ≤ di,Nk(xi), j �= i
}

(24)mq(Ar) =
∣∣r
(
xj
)∣∣+ 1

C∗ + k
, xj ∈ NNk(xi)and1 ≤ r ≤ C∗
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where 
∣∣r
(
xj
)∣∣ represents the number of elements belonging to the cluster label r in the k nearest neighbors of the 

sample point xi . Obviously, mq(Ar) can effectively represent the basic probability that any sample point belongs 
to any cluster label by counting the label distribution in the nearest neighbors.

To minimize the adverse effects induced by high collision, the discrepancies in performance among various 
CE algorithms are taken into account, and the initial mq(Ar) is updated to m̃q(Ar) . m̃q(Ar) is determined by the 
adjustable coefficients wq and mq(Ar) . The expression of the adjustable coefficient wq is:

Then, m̃q(Ar) determined by wq and mq(Ar) is described as:

Next, the Q consensus results EQ can be fused, and the specific fusion result mAr is shown in Eq. (28):

At this point, the credibility value (Bel) of Ar can be obtained by Eq. (29) :

Finally, the allocation of cluster labels for sample points is ultimately determined by their calculated credibility 
values. Specifically, the cluster label with the highest credibility value is the cluster in which the sample point xi 
is located, as illustrated in Eq. (30):

So far, the fusion result πDSC based on the third consensus strategy DSC is obtained:

The BCESF-DSC algorithm accomplishes the organic fusion of Q CE methods by employing adjustable DS 
evidence theory. This approach effectively minimizes the concealed risks resulting from the high conflict of 

(25)wq =
Uq∑Q
q=1 Uq

, q = 1, 2, . . . ,Q

(26)Uq =
√∑C∗

r=1

(
mq(Ar)− 1/C∗

)2

(27)m̃q(Ar) = wq·mq(Ar)

(28)mAr =
∑

r=1
C∗
Ar = A

∏Q
q=1m̃q(Ar)

1−
∑

r=1
C∗
Ar = A

∏Q
q=1m̃q(Ar)

(29)BelAr =
mAr∑C∗
r=1mAr

(30)BelA = max
(
BelA1 ,BelA2 , . . . ,BelAC∗

)

(31)πDSC = BCESF− DSC
(
Y1,Y2, . . . ,YQ

)

Figure 2.   Schematic diagram of adjustable DS evidence theory model.
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consensus results, thereby providing a novel and efficient solution to the inconsistent division issue at the CE 
consensus level. The details of the BCESF-DSC model are described in Algorithm 3.

Experiments and results
In this section, the performance of three proposed algorithms (BCESF-SC, BCESF-DC, BCESF-DSC) and seven 
state-of-the-art CE algorithms are evaluated through experimental settings from various angles. Seven state-
of-the-art comparison algorithms include entropy-based consensus clustering (ECC)62, weighted hierarchical 
agglomerative clustering (WHAC)31, evidence accumulation clustering (EAC)45, probability trajectory-based 
graph partitioning (PTGP)63, dual-granularity weighted ensemble clustering (DGWEC)52, ensemble cluster-
ing by propagating cluster-wise similarities (ECPCS-HC)64 and hybrid genetic clustering ensemble algorithm 
(HGCEA)33.

Experimental settings and metrics
In the subsequent comparative analysis experiments, a total of fourteen datasets that are commonly used to test 
the performance of clustering algorithms are incorporated in this study. These include the four two-dimensional 
synthetic datasets65 (http://​cs.​joens​uu.​fi/​sipu/​data-​sets/) and ten UCI real datasets (http://​archi​ve.​ics.​uci.​edu/​
ml). Table 1 presents the basic information of the fourteen datasets in terms of serial number, name, instances, 
attributes, and class. To conduct a quantitative and efficient analysis of the performance disparity between the 
proposed algorithm and other CE algorithms, two classical metrics are adopted, namely normalized mutual 
information (NMI)44 and adjusted rand index (ARI)66. The larger the value of these two indicators, the closer 
the ensemble result is to the actual division, and the maximum value is 1.

The configuration of parameters for the seven comparative CE algorithms is based on the recommendations 
of the original literature31,33,45,52,62–64. To mitigate the potential impact of randomness on the fairness evaluation, 
the average index values (NMI and ARI) of each algorithm across 20 runs on each dataset are adopted in our 
study. In the experiment, the ensemble size is set as M = 20 . Under different M settings, the robustness of the 
proposed method will be evaluated in the “The effect of ensemble size M on the robustness of BCESF” section. 
The random initialization range of the number of clusters is set in 

[
2,min

(
|CP |,

⌊√
N
⌋)]

 , which is explained in 
the “Base clustering generation process of BCESF” section. The θ in the condition ( |corr(.)| > θ ) of high correla-
tion attribute pair is 0.95. In addition, the value range of the number of nearest neighbors k in the BCESF-DSC 
is [4, 10] , and k within this range can more effectively represent the basic probability scenario that sample points 
belong to distinct clusters. Note that the BCESF-DSC approach consolidates the consensus results generated by 
the two newly developed CE algorithms, BCESF-SC and BCESF-DC, in the experimental settings.

Comparative analysis of experimental results on four synthetic datasets
The primary focus of this section is to analyze the performance disparities among ten CE algorithms on four 
two-dimensional synthetic datasets. Table 2 presents the NMI and ARI evaluation scores for each CE algorithm 
on each synthetic dataset. For each dataset, the index value corresponding to the algorithm with the highest score 
is displayed as "score*". As illustrated in Table 2, the proposed BCESF-SC, BCESF-DC and BCESF-DSC models 
all achieved the outstanding performance of juxtaposing the first on S-1, S-2 and S-4 datasets. These results are 
followed by the ECPCS-HC and HGCEA models.

However, BCESF-DSC demonstrates superior performance over BCESF-SC and BCESF-DC on the relatively 
complex S-3 dataset. This is attributed to the internal mechanism of BCESF-DSC, which effectively integrates 

Table 1.   Basic information of the experimental datasets.

Serial number Dataset name #Instances Attributes #Class

Synthetic datasets

 S-1 Aggregation 788 2 7

 S-2 R15 600 2 15

 S-3 Compound 399 2 6

 S-4 Spiral 312 2 3

UCI real datasets

 D-1 Yeast 1484 8 10

 D-2 Ecoli 336 7 8

 D-3 Glass 214 9 6

 D-4 Iris 150 4 3

 D-5 IS 2310 19 7

 D-6 LR 20,000 16 26

 D-7 LS 6435 36 6

 D-8 SPF 1941 27 7

 D-9 Wine 178 13 3

 D-10 CTG​ 2126 21 10

http://cs.joensuu.fi/sipu/data-sets/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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the ensemble results of BCESF-SC and BCESF-DC. Furthermore, it can also be observed that when the basic CE 
algorithm embedded within the BCESF-DSC model achieves ideal clustering results, the potential for BCESF-
DSC to further enhance the clustering effect is almost very small. In order to provide a clearer and more intuitive 
visualization of the clustering effects of the ten approaches on the synthetic datasets, Figs. 3, 4, 5 and 6 display 
their respective visualization outcomes. From Figs. 3, 4, 5 and 6, we can find that BCESF-SC, BCESF-DC and 
BCESF-DSC can accurately identify complex sample points at the junction of clusters, showing more outstand-
ing conflict resolution ability than other approaches. In addition, for the S-4 dataset with manifolds distribution 
in Fig. 6, the three algorithms also exhibit exceptional clustering performance. This can be attributed to their 
incorporation of both co-occurrence relationship between sample points and the actual spatial location informa-
tion, and enhance the integration quality by eliminating the redundant clustering outcomes.

Comparative analysis of experimental results on ten UCI real datasets
Compared to two-dimensional synthetic datasets, UCI real datasets exhibit higher feature dimensions and more 
complex data structures, resulting in a generally higher clustering difficulty. In this section, NMI and ARI are still 
adopted to quantitatively evaluate the ensemble effect of the proposed algorithms and their comparative CE algo-
rithms. Moreover, the disparity between the performance of the algorithms is further analyzed horizontally and 
vertically, taking into account the size of the index value and overall ranking. In this section of the experiments, 

Table 2.   NMI and ARI values of 10 clustering ensemble algorithms on synthetic datasets.

Dataset ECC WHAC EAC PTGP DGWEC ECPCS-HC HGCEA BCESF-SC BCESF-DC BCESF-DSC

NMI

 S-1 0.8294 0.8816 0.8733 0.8536 0.7671 0.9319 0.9263 0.9924* 0.9924* 0.9924*

 S-2 0.9576 0.9249 0.9619 0.9146 0.9476 0.9706 0.9647 0.9942* 0.9942* 0.9942*

 S-3 0.6727 0.7178 0.7506 0.7673 0.7646 0.8348 0.8047 0.8383 0.8329 0.8598*

 S-4 0.5083 0.3438 0.5544 0.5312 0.0065 0.7937 0.8502 1* 1* 1*

ARI

 S-1 0.6533 0.8096 0.7760 0.7275 0.6755 0.9221 0.8904 0.9956* 0.9956* 0.9956*

 S-2 0.8915 0.8232 0.9029 0.8305 0.8535 0.9397 0.9288 0.9928* 0.9928* 0.9928*

 S-3 0.5044 0.5869 0.7359 0.7598 0.7335 0.7991 0.7788 0.8060 0.7949 0.8324*

 S-4 0.4640 0.2398 0.4569 0.4165 0.0040 0.7379 0.8345 1* 1* 1*

Figure 3.   Clustering results on the synthetic dataset S-1.
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Figure 4.   Clustering results on the synthetic dataset S-2.

Figure 5.   Clustering results on the synthetic dataset S-3.
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ten real datasets with varying data structures are employed as carriers. Tables 3 and 4 display the NMI and ARI 
index scores of the ten algorithms across each dataset, respectively. It is imperative to highlight that the index 
value of the algorithm that obtained the first is displayed in "score*", and the index value of the algorithms rank-
ing among the top three is displayed in "bold" on each dataset. As a result, it is convenient to identify the number 
of times each algorithm has won the first and top three. Specifically, we can promptly determine the number 
of times that each algorithm ranks the first by looking up the "*" marks for each column in Tables 3 and 4. In a 
similar manner, seeking the "bold" marks to rapidly determine the number of times each algorithm gets the top 
three. The corresponding ranking statistics are presented in Figs. 7 and 8.

As illustrated in Tables 3 and 4, the NMI and ARI outcomes for BCESF-SC, BCESF-DC, BCESF-DSC and the 
seven comparison algorithms are reported. Specifically, the NMI values of BCESF-SC, BCESF-DC and BCESF-
DSC algorithms are ranked first in 1 (D-6), 2 (D-3, D-10) and 6 (D-2, D-4, D-5, D-7, D-8, D-9) datasets, respec-
tively. For ARI values, BCESF-SC, BCESF-DC and BCESF-DSC algorithms obtained the optimal performance 
in 2 (D-6, D-4), 2 (D-3, D-10) and 6 (D-2, D-4, D-5, D-7, D-8, D-9) datasets, respectively. However, ECPCS-HC 
secured the top position once in both indexes, with its performance trailing only the three proposed algorithms.

To provide a more comprehensive and insightful comparison of the performance of the ten algorithms, 
Figs. 7 and 8 count the number of times in which each algorithm ranks the first and the top three on the two 

Figure 6.   Clustering results on the synthetic dataset S-4.

Table 3.   NMI values of 10 clustering ensemble algorithms on UCI real datasets.

Dataset ECC WHAC EAC PTGP DGWEC ECPCS-HC HGCEA BCESF-SC BCESF-DC BCESF-DSC

D-1 0.1962 0.2643 0.2601 0.2273 0.1180 0.2710 * 0.2574 0.2188 0.2602 0.2579

D-2 0.5337 0.5716 0.6035 0.5316 0.6201 0.6994 0.6351 0.7262 0.7252 0.7278*

D-3 0.3023 0.3603 0.3611 0.3617 0.0348 0.3225 0.3061 0.3204 0.3979* 0.3735

D-4 0.7069 0.7852 0.7787 0.6821 0.7397 0.8756 0.8813 0.9011 0.8851 0.9144*

D-5 0.5377 0.5321 0.5310 0.5509 0.5914 0.6058 0.5914 0.6239 0.6507 0.6655*

D-6 0.3668 0.3575 0.3741 0.4022 0.4135 0.4013 0.4008 0.4546* 0.4437 0.4493

D-7 0.5542 0.6182 0.6157 0.6291 0.6332 0.6405 0.6026 0.6398 0.6742 0.6775*

D-8 0.1981 0.1407 0.1546 0.1598 0.2317 0.2864 0.2943 0.3639 0.3641 0.3648*

D-9 0.8754 0.4372 0.8662 0.8813 0.7024 0.8926 0.8731 0.8926 0.9115 0.9226*

D-10 0.2471 0.2546 0.2611 0.2553 0.2605 0.2692 0.2613 0.2689 0.3128* 0.2786

Avg.value 0.4518 0.4322 0.4806 0.4681 0.4345 0.5264 0.5103 0.5410 0.5625 0.5632

Avg.rank 8.6 7.6 7.1 6.9 7.05 4.05 6.05 3.75 2.2 1.7
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metrics, respectively. The results reveal that the NMI values of BCESF-SC, BCESF-DC and BCESF-DSC are in 
the top three for 6 times, 10 times and 9 times, respectively. The ARI values of the three algorithms are 6 times, 
9 times and 9 times are in the top three. In contrast, ECPCS-HC, which performs best among the seven com-
parison algorithms, won the top three on NMI and ARI for 4 times and 4 times, respectively. In addition, the 
average index values of each algorithm are also listed in Tables 3 and 4. By further calculation, it is indicated 
that the average NMI of BCESF-SC is 19.74%, 25.17%, 12.57%, 15.57%, 24.51%, 2.77% and 6.02% higher than 
the seven comparison algorithms (ECC, WHAC, EAC, PTGP, DGWEC, ECPCS-HC, HGCEA), respectively. 
The average NMI of BCESF-DC was increased by 24.50%, 30.15%, 17.04%, 20.17%, 29.46%, 6.86% and 10.23%, 
respectively. Compared with the seven comparison algorithms, the average NMI of BCESF-DSC increased by 
24.66%, 30.31%, 17.19%, 20.32%, 29.62%, 6.99% and 10.37%, respectively. BCESF-DSC emerges as the top 
scorer in terms of average NMI. In a parallel manner, the average ARI improvement rate for the three methods 
maintains a similar advantage as the NMI improvement rate, which will not be reiterated here. As illustrated by 
the average rankings presented in Tables 3 and 4, BCESF-DSC and BCESF-DC, which ranked first and second, 
exhibit a significantly superior performance compared to other algorithms. This is followed by BCESF-SC and 
ECPCS-HC, which exhibit comparable results, but BCESF-SC demonstrates a marginally superior performance 
compared to ECPCS-HC. The overall performance of BCESF-DC and BCESF-SC is only inferior to that of 
BCESF-DSC, but the performance of BCESF-DC is slightly better in comparison. This discrepancy may be 
caused by the more robust working mechanism of the consensus strategy employed in BCESF-DC, as compared 
to the one used in BCESF-SC. The descending order of the average ranking performance of the remaining six 

Table 4.   ARI values of 10 clustering ensemble algorithms on UCI real datasets.

Dataset ECC WHAC EAC PTGP DGWEC ECPCS-HC HGCEA BCESF-SC BCESF-DC BCESF-DSC

D-1 0.1023 0.1657 0.1558 0.1346 0.0193 0.1801* 0.1581 0.1235 0.1621 0.1355

D-2 0.3804 0.4914 0.5266 0.3652 0.5954 0.7553 0.5997 0.7671 0.7438 0.7763*

D-3 0.1623 0.2355 0.2387 0.2401 0.0058 0.1831 0.1657 0.1806 0.2735* 0.2576

D-4 0.7253 0.8101 0.7996 0.7122 0.7631 0.8984 0.9011 0.9222* 0.9038 0.9222*

D-5 0.4142 0.4078 0.3991 0.4371 0.4693 0.4786 0.4692 0.4898 0.5328 0.5451*

D-6 0.1433 0.1395 0.1513 0.1654 0.1628 0.1627 0.1598 0.1978* 0.1667 0.1786

D-7 0.4697 0.5602 0.5517 0.5468 0.5773 0.5882 0.5496 0.5726 0.6085 0.6093*

D-8 0.0445 0.0162 0.0171 0.0169 0.1225 0.1735 0.1903 0.2163 0.2166 0.2182*

D-9 0.8893 0.4657 0.8914 0.9021 0.7428 0.9126 0.8908 0.9149 0.9230 0.9344*

D-10 0.0925 0.1074 0.1121 0.1080 0.1116 0.1203 0.1135 0.1074 0.1489* 0.1219

Avg.value 0.3424 0.3400 0.3843 0.3628 0.3570 0.4453 0.4198 0.4492 0.4680 0.4699

Avg.rank 8.8 7.45 6.7 7.1 6.9 4 5.7 4.2 2.3 1.85

Figure 7.   The number of times statistics that each algorithm ranks (a) first and (b) top three in NMI.

Figure 8.   The number of times statistics that each algorithm ranks (a) first and (b) top three in ARI.
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algorithms is HGCEA, EAC, DGWEC, PTGP, WHAC, and ECC. All in all, the proposed BCESF-DSC, BCESF-
DC, and BCESF-SC methods outperformed the other seven state-of-the-art comparison algorithms in terms of 
their comprehensive performance.

After conducting a comprehensive analysis from various perspectives, several significant findings have 
emerged. (1) The BCESF-DSC demonstrates the most superior overall performance among all the ten compet-
ing CE algorithms. This superiority can be attributed to its employment of an adjustable DS evidence theory, 
which enables the organic fusion of multiple ensemble algorithms. Consequently, the issue of inconsistent divi-
sion at the CE consensus level is effectively addressed. (2) The BCESF-DSC, BCESF-DC, and BCESF-SC models 
simultaneously incorporate co-occurrence frequency and local spatial location information, which can more 
accurately capture the similarity relationship between sample points. (3) The processing power of the three pro-
posed algorithms is relatively weak when applied to D-1, D-3, D-6, and D-10 datasets, and fail to achieve optimal 
clustering results. Additionally, the index value scores of all other compared experimental algorithms are also 
unsatisfactory. This may be due to the high complexity and sparsity of the dataset. In the follow-up work, we will 
delve into the internal mechanisms underlying such complex datasets in order to attain a more ideal partition.

Ablation experiment
The experiments conducted in the preceding section have substantiated the significance of the key building 
blocks (adjustable DS evidence theory) in the BCESF-DSC model. This section continues to explore the specific 
utility of the “generation of base clustering results”, “backward selection strategy” and “modified relationship 
matrix” of the main building blocks recommended in the BCESF-SC and BCESF-DC models. To illustrate this, 
we consider four exemplary datasets S-2, S-4, D-2 and D-9, which comprise two synthetic datasets and two real 
datasets. Subsequently, employing a controlled variable method, we establish six comparative models.

GC-BCESF-SC (GC-BCESF-DC) is a derivative model of BCESF-SC (BCESF-DC), which indicates that dur-
ing the generation of base clustering results in the BCESF-SC (BCESF-DC) model, the random generation 
range for the number of clusters is changed to 

[
2,
⌊√

N
⌋]

 , which is widely adopted. Additionally, the step 
involving filtering redundant features by Pcc is eliminated, while maintaining consistency with other imple-
mentation details of BCESF-SC (BCESF-DC).
NS-BCESF-SC (NS-BCESF-DC) is another derivative model of BCESF-SC (BCESF-DC), which means that 
only the selection process for base clustering results is removed on the basis of BCESF-SC (BCESF-DC) model, 
while all other building blocks remain unchanged.
OI-BCESF-SC (OI-BCESF-DC) is the third derivative model of BCESF-SC (BCESF-DC). In contrast to the 
BCESF-SC (BCESF-DC) model, it eliminates the utilization of the modified similarity matrix (modified 
distance matrix) designed in this study and solely relies on the original input matrix, while keeping all other 
building blocks unchanged.

The experimental outcomes are presented in Table 5. Based on the NMI and ARI index values presented 
in Table 5, it is evident that the methods (BCESF-SC and BCESF-DC) with the proposed building blocks have 
yielded superior clustering results. Moreover, the three main building blocks actually exhibit a positive role in 
promoting the overall performance of the model. Among them, the promoting effect of the module “generation 
of base clustering results” is relatively small, and the modification of “backward selection strategy” and “modi-
fied relationship matrix” modules exert a great impact on the final clustering outcomes. Furthermore, for the 
S-2 dataset with a relatively simple structure, the original input matrix is able to effectively capture the internal 
structure information. In this case, the “modified relationship matrix” building block does not provide addi-
tional enhancement. However, in terms of the degree of the overall impact, the “modified relationship matrix” 
exhibits greater potential for enhancing the performance of CE model. It is worth noting that once the clustering 
effect reaches a certain feasible degree, further improvements in clustering performance become increasingly 
challenging. This phenomenon becomes evident when examining the fusion effect of the DSC strategy on both 
BCESF-SC and BCESF-DC models as discussed in the previous section.

Table 5.   NMI and ARI values for models with different building blocks.

Model

S-2 S-4 D-2 D-9

NMI ARI NMI ARI NMI ARI NMI ARI

BCESF-SC 0.9942 0.9928 1 1 0.7262 0.7671 0.8926 0.9149

GC-BCESF-SC 0.9942 0.9928 1 1 0.7130 0.7461 0.8722 0.8858

NS-BCESF-SC 0.9584 0.8912 0.7937 0.7379 0.5735 0.5636 0.7625 0.7562

OI-BCESF-SC 0.9942 0.9928 0.7212 0.7080 0.5258 0.3679 0.6669 0.5580

BCESF-DC 0.9942 0.9928 1 1 0.7252 0.7438 0.9115 0.9230

GC-BCESF-DC 0.9942 0.9928 1 1 0.6853 0.7340 0.8759 0.8975

NS-BCESF-DC 0.9893 0.9857 0.8453 0.8268 0.5688 0.5497 0.7955 0.8025

OI-BCESF-DC 0.9942 0.9928 0.7937 0.7379 0.5146 0.4112 0.8473 0.8636
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The effect of ensemble size M on the robustness of BCESF
The stability of the three proposed algorithms is investigated in this section, employing ten real datasets with 
varying ensemble sizes M = 10, 20, 30, 40, 50 , which is reflected by the fluctuations in the metrics NMI and 
ARI. By observing Figs. 9 and 10, it can be found that the values of NMI and ARI derived from the BCESF-SC, 
BCESF-DC, and BCESF-DSC algorithms tend to achieve a relatively stable state as the number of base clustering 
members increases, without exhibiting significant fluctuations. That is attributed to the fact that the three algo-
rithms developed in this study establish a selection process for base clustering members, eliminating redundant 
members and retaining more valuable information. In consequence, despite an increase in the ensemble size 
M , the index values of the algorithms do not demonstrate a notable upward or downward trend. Consequently, 
only a small number of base clustering members need to be generated in our algorithm to achieve relatively ideal 
consensus results. Furthermore, as illustrated in Figs. 9 and 10, all three algorithms exhibit slight fluctuations on 
the D-3, D-7, and D-10 datasets, while they remain stable on the other seven datasets. This phenomenon might 
be caused by the intricate structure of the D-3, D-7, and D-10 datasets. However, this does not detract from the 
overall ensemble effect. Therefore, the BCESF-SC, BCESF-DC and BCESF-DSC algorithms are insensitive to 
the ensemble size M . Under various settings of M , the three algorithms consistently demonstrate outstanding 
stability.

Running time
To illustrate the disparity in execution time of ten ensemble methods more graphically, a dynamic evolution 
approach is employed. A large-scale dataset LR with 20,000 sample points is selected to assess the efficiency of 
the algorithm. The ten algorithms randomly select sample points of different scales in the range of [0, 20, 000] , 
and the outcomes of execution time are presented in Fig. 11. Upon examining Fig. 11, an intriguing observation 
can be made. According to the variation trend of execution time, the images of the ten algorithms can be dis-
tinctly categorized into two groups. One group is distributed centrally in the upper left corner of the figure and 
necessitates a relatively lengthy execution time, encompassing six algorithms: HGCEA, WHAC, BCESF-DSC, 
BCESF-SC, BCESF-DC, and DGWEC. The other group is located in the lower right corner of the figure and 
demands a relatively brief execution time, consisting of four algorithms: PTGP, ECC, ECPCS-HC, and EAC. The 
underlying reason for this phenomenon lies in the disparity of the internal execution mechanisms employed by 
the algorithms. Specifically, to effectively enhance the division capability of the algorithm, the six algorithms in 
the top-left corner either incorporate an additional iterative selection process or employ the single clustering algo-
rithm with relatively higher complexity. Consequently, they consume more time compared to the four algorithms 
in the bottom-right corner. Nonetheless, the execution time of all six algorithms remains within an acceptable 

Figure 10.   ARI values of the proposed three algorithms on ten real datasets under varying ensemble size. (a) 
BCESF-SC, (b) BCESF-DC, (c) BCESF-DSC.

Figure 9.   NMI values of the proposed three algorithms on ten real datasets under varying ensemble size. (a) 
BCESF-SC, (b) BCESF-DC, (c) BCESF-DSC.
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and reasonable range, enabling them to effectively handle large-scale datasets. In addition, the proposed three 
algorithms exhibit higher operational efficiency than HGCEA and WHAC, which belong to the same category. 
It should be noted that it does not make sense to have high execution efficiency but poor ensemble quality.

In order to conduct a more detailed analysis of the time cost details of BCESF-DSC, 5000 sample points are 
randomly selected from the LR datasets. Then, the BCESF-DSC is divided into four main components, includ-
ing the generation process of base clustering results (T1), based-SC selection process (T2), based-DC selection 
process (T3), and the fusion process of DSC (T4), so as to discuss the specific time spent on each component. 
The experimental results are presented in Table 6. As observed from Table 6, T1 accounts for most of the execu-
tion time of BCESF-DSC. The fusion process of DSC is remarkably fast. It is worth noting that the BCESF-DSC 
takes the ensemble results of BCESF-SC and BCESF-DC models as the fusion object in the experiment. How-
ever, the complexity of the single clustering algorithms used in both models is relatively high. In other words, 
the execution time of BCESF-DSC takes into account all the time costs involved, which consequently results in 
higher time expenditure. In fact, if other fast CE models are used as fusion objects for BCESF-DSC in practical 
applications, less time can be spent.

Conclusions
At the dual-level of base clustering consensus and CE consensus, an extended CE algorithm with three consensus 
strategies, called BCESF-DSC, is successfully proposed, which has the best overall performance in the experiment. 
First of all, a backward clustering ensemble selection framework is designed, in which the selection strategy can 
adaptively pick out the optimal member combination without preset parameters. Second, at the base clustering 
consensus level, the SC and DC consensus strategies profoundly mine the interrelation between co-occurrence 
frequency and actual spatial location information, thereby capturing the co-occurrence relationship of sample 
pairs more comprehensively. Among them, the SC strategy employs the modified similarity matrix, derived from 
the distance matrix, as the crucial input for the ultimate consensus result. DC modifies the distance matrix using 
the similarity matrix to complete the final clustering. Furthermore, the third consensus strategy, DSC, employs 
an adjustable DS evidence theory to effectively and dynamically fuse multiple ensemble algorithms. This funda-
mentally resolves the conflict issue of inconsistent division at the CE consensus level with a broader perspective. 
Finally, the effectiveness of the proposed algorithm is further corroborated by multi-angle comparative analysis 
experiments. It is worth noting that the indirectly proposed CE algorithms, BCESF-SC and BCESF-DC, can also 
be utilized effectively and independently.

Although this study presents three novel and potent strategies for the field of clustering research, the algo-
rithm may suffer from unbearable time cost when addressing huge-scale clustering tasks. Consequently, our 
future research endeavors will focus on the development of ingenious sparse techniques to further enhance the 
algorithm’s efficiency.

Figure 11.   Execution time of ten clustering ensemble methods under varying data scales.

Table 6.   The time cost of the BCESF-DSC algorithm on each component.

Each component T1 T2 T3 T4

Execution time 280.9 s 48 s 55.9 s 2.9

Total time 387.7 s
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Data availability
All data generated or analysed during this study are included in this article.
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