
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22379  | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports

A modular technique of Booth 
encoding and Vedic multiplier 
for low‑area and high‑speed 
applications
C. M. Kalaiselvi 1* & R. S. Sabeenian 2

A technique for efficiently multiplying two signed numbers using limited area and high speed is 
presented in this paper. This work uses both the Booth and Vedic multiplication sutra methodologies 
to enhance the speed and reduction in the area by using two VLSI architectures of radix encoding 
techniques—Radix‑4 and Radix‑8—with the Vedic multiplier. The functionality of the proposed 
methods is tested using an Artix‑7 Field Programmable Gate Array (FPGA‑XC7A100T‑CSG324) in Xilinx 
Vivado 2019.1 and ASIC 45 nm technology. Two methods of Booth encoding using Vedic multiplier 
(Urdhva‑Tiryakbhyam sutra) were used to develop, and examine the benefits of rapid computational 
multiplier. The results of the proposed multiplier for Booth‑Vedic‑Radix‑4 encoding (BVR‑4) decrease 
area by 89% and improve Area‑Delay Product (ADP) by 72% for a 16‑bit multiplier when subjected to 
other existing multipliers. The Booth‑Vedic‑Radix‑8 (BVR‑8) method shows that there will be an 89% 
reduction in area and an improvement in ADP by 72% for the 16‑bit multiplier. The performance is 
evaluated regarding area occupancy (i.e., LUTs number) and propagation delay (output time). In terms 
of resource utilization, the proposed BVR‑4 and BVR‑8 multipliers outperform all the current designs 
with a marginal effect on speed and area for narrower bit‑width ranges.

Everyone nowadays wants portable technology that is quick, takes little power, and packs as many components 
as possible into a small space. To achieve all of these goals, it is critical to develop an algorithm that solves all of 
these challenges. Although these methods are fast, the actual calculation time is determined by the processor’s 
system  clock1. In processors, Multiplication is now an essential component of binary computers. Therefore, 
building multipliers is critical for computer scientists and engineers on both theoretical and practical  levels2. 
Multipliers can generally be built in parallel or serial fashion. Serial multipliers are crucial when contemplating 
low-cost designs. Parallel multipliers are the preferred solution if a high-speed architecture is required. Further-
more, multipliers can be both signed and  unsigned3.

Related work
The prevalent multiplication procedure consists of three major phases:

1. Partial product generation (PPG)—Reduction of bitlength.
2. Partial product reduction (PPR)—Vertical processing.
3. Partial product accumulation (PPA)—Addition.

The second phase is critical for power consumption, cost, and overall performance. As a result, the power 
consumption and performance constraints of the multiplier are  essential4. The add-and-shift operation of the 
array multiplier produces more partial products (PP) than the tree multiplier, boosting Power and  Delay5. Despite 
having fewer components than an array multiplier, the PPs are organized in rows or columns and have extensive 
 interconnections6. Dadda Multiplier has a higher carry propagation adder since it just makes the necessary reduc-
tion. Dadda Multiplier outperforms Wallace Multiplier in terms of  speed7. The Karatsuba algorithm performs 
quick multiplication. It employs a smaller number of little multipliers than the Wallace tree  multiplier8. To do the 
multiplication, a fast Carry-Save Add-shift (CSAs) multiplier is employed, which results in one-third the speed 
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of an unsigned  multiplier9. A fast multiplication in 2’s complement format is described to create fewer PP rows 
from n/2 + 1 to n/2 before applying the PPR approach to prevent the occurrence of the additional row, which 
increases multiplication speed for 8-bit and 16-bit  multipliers10.

Using one of the several multiplication algorithms available, the speed of operation can be boosted over the 
classic shift and add approach. Booth’s method, a uniform shift approach, examines two multiplier bits at a time 
to identify the correct multiplicand multiple to add the  PP11. Carry-free addition is accomplished by the use of 
redundant binary systems. The propagation delay problem is solved by the Redundant Binary  adder12. For some 
signed numbers-based applications, it may still be viable to develop the requisite hardware accelerators utilizing 
unsigned multiplier  designs13.

The number of PPs is proportional to the Radix-k of Booth encoding by a factor of  log2 (k), implying that 
the number of PPs reduces by half while Radix-k multiplies by  four14. The Radix-k Booth encoding system is 
identified by the equation

where r is the number of encoding bits to be  considered15. For example, Radix-4 Modified Booth Encoding 
(MBE) requires multiples of the multiplicand (X) of 0, 1, and 2 to generate PPs, lowering the height of the PP 
matrix from N to N/2. All of these multiples are easily obtained by using shift and negation operations on X. 
Similarly, Radix-8 MBE requires X multiples of 0, 1, 2, 3, and 4, while lowering the height of the PP matrix from 
N to N/316. The redundant binary PPG achieves the largest reduction in the number of PPs, around 75%, for a 
Radix-4  multiplier17.

A modified Radix-4 Booth multiplier that only adds non-zero Booth encodings and disregards zero 
 operations18. To do the hard multiple 3X operations, use 3X = 2X +  X19. Radix-8 Booth multiplier uses the 
approximation approach by employing an approximate 2-bit  adder20. There are two types of modular hybrid 
adder architectures employed. It is created by combining carry-skip, carry look-ahead, and Ripple Carry Adder 
(RCA)21. The high-performance Redundant binary multiplier’s appeal has been largely attributed to two key 
features: high modularity and carry-free  addition22. Table 1 summarizes all of the multipliers and displays their 
properties in terms of Area, Power, Complexity, Delay, and Implementation.

A multi-precision binary multiplier architecture was created to reduce hardware and space consumption as 
well as latency and  delay23. The beginning of the twentieth century saw the deciphering of the incredible Vedic 
calculation method. The functionality of Vedic mathematics is its most astounding  feature24. Table 2 illustrates the 
strategies and procedures that Tirthaji created to reinforce the rules found in 16 sutras and 13 up-sutras, which 
were called Vedic Mathematics. The Nikhilam and Urdhva sutras were the focus of most investigations for the 
development of  multipliers25. Researchers have also employed Nikhilam and UT multiplication methods. Due to 
the simultaneous creation and addition of the PPs, the former approach is  quick5. Beneficial takeaways from both 
sutras have been made, and a novel architecture for quick and effective multiplication has been  constructed26.

A multiplier architecture is designed for low-cost power and high-performance applications based on 
ancient Vedic  Mathematics27. Vedic methods were used to square, and the results were evaluated using Virtex-
4vlx15sf363-1228. The 8 × 8 Nikhilam sutra is actualized for three different sets of bases using the idea of  UT29. 
For a 16-bit multiplier, a novel Vedic Mathematics architecture built on UT was introduced. To lower the vertical 
critical route delay, compressors are utilized with full and half  adders30. The Vedic multiplier is a combination 
of two compressor types: 4:2 and 7:2. After calculating the area and latency, it was shown to be 1.12 times faster 
than the other  multiplier31.

The redundant binary representation of the Signed Vedic multiplier (SVM) architecture was used in the UT 
sutra. It is possible to achieve carry-free addition in redundant binary  representation33. The proposed method 
performs multiplication using a combination of the UT algorithm and Booth encoding. The multiplier is small 
and requires less space based on Booth encoding, but the UT sutra increases  speed34. Based on the anurupyena 
sutra of Vedic arithmetic, it uses a high-performance and area-efficient square architecture for variable bit 
 operands35. The Spartan 6 FPGA implementation models the hybrid parallel adder-based multiplier, which is 
utilized to improve multiplier  performance36.

One drawback of the current technique is that it takes up more space and has a bigger delay in the PPR 
(second stage of the multiplication phase)25,33,34. All previously substantiated Vedic systems can handle only 
unsigned integers, which summarises the complexity of the proposed technique. By using the Booth encoding 
process and the UT technique of the Vedic multiplier in the second step, we have expanded the applicability of 
Vedic Mathematics to signed integers in this work. The signed Vedic multiplier and Booth encoding both resolve 

(1)Radix-k = 1+ log2r,

Table 1.  Multipliers circuit  comparison14.

S. no. Parameters Shift and add Array multiplier Modified booth multiplier
Modified booth wallace 
multiplier Vedic multiplier

1. Serial/parallel Serial Parallel Parallel Parallel Parallel

2. Area Small Large Medium Medium Medium

3. Power consumption Small Large Medium Medium Medium

4. Delay Large Medium Small Smallest Smallest

5. Complexity Simple Simple Complex Complex Simple

6. Implementation Easy Easy Medium Difficult Medium
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the carry-free propagation issue, which is the motivating factor behind the suggested work. The distinctions 
between the Vedic multiplier and the Booth multiplier have been examined in several survey articles. However, 
in this paper, a novel efficient architecture for quick multiplication computation is developed by combining the 
Booth encoding and Vedic multiplier techniques due to the advantages of parallel processing at the PPR stage 
and by taking into account the key advantages of all the  sutras33,37–42. Removal of noise in digital images is done 
through the  filter43. Less heat dissipation with reversible logic gates was  designed44.

The contributions of this paper are as follows:

1. This work mainly focuses on the second stage of PPR since it consumes more area with less speed. Recent 
research focuses on PPR to reduce the area and improve the speed performance. This research focuses on 
PPR and how Booth encoding methods and Vedic sutras reduce area while improving speed. In the proposed 
study, both techniques combine the benefits of high speed with the method of Vedic sutras and low area with 
Booth encoding.

2. The reduction of propagation delay in the PPR using a novel encoder is proposed. The proposed method 
extends the Vedic architecture to signed integers.

3. Fewer resources were used when the Booth multiplier and Vedic multiplier (UT) sutra were combined.

The section of the paper is structured as follows: The proposed method for the BVR-4 and BVR-8 systems is 
covered in “Proposed method” section. The findings and a discussion of the suggested BVR-4 and BVR-8 design 
are given in “Results and discussion” section. In “Conclusion” section, the paper concludes.

Proposed method
Effective computing units are provided by the Vedic design in the review of existing methods, but only for 
unsigned values. When thoroughly examined, signed numbers are generally the most appropriate for a variety 
of purposes. The proposed method expands the applicability of Vedic architecture to signed integers and offers 
a reduction in area and time-efficient architecture at the PPR level. The recommended method is divided into 
three stages overall.

First, Booth encoding (multiplier trits are encoded) is performed.

 (i) PPG-reduction of Bit length
 (ii) PPR-vertical processing
 (iii) PPA- addition

Stage‑I: PPG‑booth encoding
Radix‑4 booth algorithm
The first section discusses how the Radix-4 encoding rule works. A normal multiplication procedure must be used 
to multiply the multiplicand and multiplier of n bits, which results in n-rows of partial products and an increase 
in time complexity and area. Comparing the modified Booth multiplier-Radix-4 to other types of serial-parallel 
multipliers, it is smaller, quicker, and uses less power. An n-bit multiplication operation requires less space when 
using the Radix-4 Booth encoding approach since only half of the PP rows are required.

As seen in Fig. 1, the contiguous multiplier trits are clustered together with the overlapping of the last bit in 
the past cluster to generate new encoding groups. For instance, a multiplier bit-width of 4 results in the creation 
of two new Yn0 and Yn1 encoding groups, which lowers the total PP row to half of its original rows. In the same 

Table 2.  Sixteen Vedic  sutras32.

S. no. Name Meaning

1. Anurupyeshunyamanyat If one is in ratio, the other is zero

2. ChalanaKalanabyham Similarities and differences

3. Ekadikena Purvena Compared to the previous one, it is one more

4. Ekayunene Purvena Compared to the previous one, it is one less

5. Gunakasamuchyah The sum of the factors = factor of the sum

6. Gunitasmuchyah The sum of the product = product of the sum

7. Nikhil Navatashcaramam Dashtah All from 9 and the last from 10

8. Paraavartya Yojayet Adjust and transpose

9. Puranapuranabhyam By non-completion or completion

10. Sankalana Vyavakalanabhyam By subtraction and addition

11. Shesanyankena Charamena The remainder by the last digit

12. Sopaantyadvayamantyam The ultimate and twice the penultimate

13. ShunyamSaamyasamuccaye If the sum same and that sum is zero

14. Urdhva Tiryakbhyam Cross-wise and vertically

15. Vyashtisamanstih Whole and part

16. Yaavadunam Whatever the extent of its deficiency
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way, Fig. 2 bit-width of 8 results in the formation of four new encoding groups for Yn0, Yn1, Yn2, and Yn3, and 
Fig. 3 bit-width of 16 results in the formation of eight new encoding groups for Yn0, Yn1, Yn2, Yn3, Yn4, Yn5, 
Yn6, and Yn7. However, when compared to the conventional multiplication procedure, the number of PP rows 
will be greater when compared with the Booth encoding procedure. This is the main benefit of the proposed 
method in the initial PPG step. The PP rows were reduced to half the number of varying operand sizes.

To calculate the PP rows for the operand size of

1. 4—The number of rows required is 2.
2. 8—The number of rows required is 4.
3. 16—The number of rows required is 8.

For the proposed method of BVR-4, the pseudo-code is explained below. The given data is first encoded 
according to Table 3, and then the multiplication operation is carried out.

Figure 1.  Contiguous trits of multiplier-4-bit width. Mlr multiplier bits, Yn0, Yn1 new encoding groups of 1 
and 2.

Figure 2.  Contiguous trits of multiplier—8-bit width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3 new encoding 
groups of 1, 2, 3 and 4.

Figure 3.  Contiguous trits of multiplier—16-bit width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3, Yn4, Yn5, Yn6 
and Yn7 new encoding groups of 1, 2, 3, 4, 5, 6, 7 and 8.
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Rule for combining adjacent trits. 

Pseudo code of BVR-4 method:
BEGIN
GET Mld,Mlr BITS                  *Input-Data given-Mld-Multiplicand, Mlr-Multiplier
INSERT “0” at LSB of Mlr
FOR i= 1 to N
Mlr-GROUP 3 BITS
END
MULTIPLY Yn0,Yn1,Mld 
FOR  i=  1 to N                   * Intermediate product-Partial Product
PP[i]<<2 *Arithmetic left shift twice
END
FOR i=1 to N
ADD PP[i]
END                                                               *Result-Final Product

1. To check whether the given bit-width is odd or even if it is odd perform a sign extension of 1 bit and if it is 
even no need to perform a sign extension.

2. The foremost step is to add “0” at the LSB of the multiplier bits.
3. Further, the successive clustering of trits is carried out.
4. New encoding groups are created to perform the multiplication operation.

In Table 3, the multiplier trits are encoded using the Radix-4 encoding rule to build a new encoding group in 
the form of a two’s complement representation of the multiplier trits spanning from 0, + 1, + 2, − 2, − 1. The mul-
tiplier bits are multiplied with the multiplicand to accomplish the PPG operation, which results in the PP rows, 
according to the new encoded rule. The following stage of the operation was carried out after the production of 
incomplete product rows. Following the encoding procedure, the encoded bits create new groups of trits, each 
of which is represented in non-redundant radix-4 format.

Radix‑8 Booth algorithm
A higher representation radix results in fewer digits when representing a given range of integers. As a result, 
as we advance to higher radices, a digit-at-a-time multiplication method uses fewer cycles. The Radix-8 Booth 
method decreases the PP rows even more to [(N/3) + 1], resulting in a substantially smaller area utilized when 
compared to the Radix-4 approach. The multiple hard problems are solved in this approach by expressing the 
2’s complement of multiplier bits and multiplying it with the multiplicand bits.

In Fig. 4, multiplier bits are grouped in terms of the quad to form a new encoding group, for example, a 
multiplier bit-width of 4 creates 2 new encoding groups with the sign extension of multiplier bits for lack of 
contiguous quads, thereby reducing the overall PP row into half of their original rows. Similarly, in Fig. 5, for a 
bit-width of 8, it forms a 3 new encoding group, and similarly, in Fig. 6, for a bit width of 16, it forms a six new 
encoding group. So, when compared with the Radix-4 encoding rule it produces fewer PP rows. To calculate the 
PP rows for the operand size of

Table 3.  Radix-4 encoding rule.

S.no.

Multiplier bits

Encoding rule

Resultant 
encoded bits

Mlr2 Mlr1 Mlr0 R2 R1 R0

1. 0 0 0 0 0 0 0

2. 0 0 1  + 1 0 0 1

3. 0 1 0  + 1 0 0 1

4. 0 1 1  + 2 0 1 0

5. 1 0 0  − 2 1 1 0

6. 1 0 1  − 1 1 1 1

7. 1 1 0  − 1 1 1 1

8. 1 1 1 0 0 0 0
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1. 4—The number of rows required is 2.
2. 8—The number of rows required is 3.
3. 16—The number of rows required is 6.

Figure 4.  Contiguous quads of multiplier-4 bit-width. Mlr multiplier bits, Yn0, Yn1 new encoding groups of 1 
and 2.

Figure 5.  Contiguous quads of multiplier—8 bit-width. Mlr multiplier bits, Yn0, Yn1, Yn2 new encoding groups 
of 1, 2 and 3.

Figure 6.  Contiguous quads of multiplier—16 bit-width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3, Yn4 and Yn5 
new encoding groups of 1, 2, 3, 4, 5 and 6.
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Rule for combining adjacent quads. 

Pseudo code of BVR-8 method: 
BEGIN
GET Mld,Mlr BITS                     *Input-Data given-Mld-Multiplicand, Mlr-Multiplier
INSERT “0” at LSB of Mlr
FOR i=1 to N
GROUP 4-BITS-Mlr
END
MULTIPLY Yn0,Yn1,Mld 
FOR i= 1 to N                               * Intermediate product-Partial Product
PP[i]<<3 * Arithmetic left shift thrice
END
FOR i=1 to N
ADD PP[i]
END                                                *Result-Final Product

1. To check whether the given bit-width is odd or even if it is odd perform a sign extension of a sufficient bit 
and if it is even no need to perform a sign extension.

2. The foremost step is to add “0” at the LSB of the multiplier bits.
3. After adding, the successive grouping of the quad is carried out.
4. New encoding groups are created to perform the multiplication operation.

For the proposed method of BVR-8, the pseudo-code is explained below. The given data is first encoded accord-
ing to Table 4, and then the multiplication operation is carried out.

In Table 4, the multiplier quads are encoded using the Radix-8 encoding rule to build a new encoding group 
in the form of a two’s complement representation of the multiplier. The multiplier bits are multiplied with the 
multiplicand to accomplish the PPG operation, which results in the PP rows, according to the new encoded 
rule. The following stage of the operation was carried out after the production of incomplete product rows. Fol-
lowing the encoding procedure, the encoded bits create new groups of quads, each of which is represented in 
non-redundant Radix-8 format.

Table 4.  Radix-8 encoding rule.

S.no.

Multiplier bits

Encoding rule

Resultant encoded 
bits

Mlr3 Mlr2 Mlr1 Mlr0 R3 R2 R1 R0

1. 0 0 0 0 0 0 0 0 0

2. 0 0 0 1  + 1 0 0 0 1

3. 0 0 1 0  + 1 0 0 0 1

4. 0 0 1 1  + 2 0 0 1 0

5. 0 1 0 0  + 2 0 0 1 0

6. 0 1 0 1  + 3 0 0 1 1

7. 0 1 1 0  + 3 0 0 1 1

8. 0 1 1 1  + 4 0 1 0 0

9. 1 0 0 0  − 4 1 1 0 0

10. 1 0 0 1  − 3 1 1 0 1

11. 1 0 1 0  − 3 1 1 0 1

12. 1 0 1 1  − 2 1 1 1 0

13. 1 1 0 0  − 2 1 1 1 0

14. 1 1 0 1  − 1 1 1 1 1

15. 1 1 1 0  − 1 1 1 1 1

16. 1 1 1 1 0 0 0 0 0
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Stage‑II: PPR (Vedic multiplication)
Because PPG and PPR occur serially in a typical Booth multiplier, the vertical critical path latency increases. As 
a result, as a unique feature introduced in this research, the produced PPs are achieved by parallel processing in 
the second stage of PPR. This is one of the benefits of the unique work that was carried out. Because the second 
stage consumes the majority of the space, power, and delay in all assessed papers, an innovation was added in the 
second stage to carry out the PPR approach by employing the notion of Vedic Mathematics. Among the sixteen 
sutras in Vedic Mathematics, the UT and Nikhilam sutras are ideally suited for multiplication. The former sutra is 
usable for both binary and decimal multiplication and is best suited for lesser bit widths, whereas the latter sutra 
is best suited for greater bit widths multiplication. The PPR stage in the proposed work was carried out utilizing 
the Vedic multiplier idea employing the UT sutra (criss-cross multiplication), which involves its operation by 
simply conducting the AND gate operation in all bit multiplication procedures.

The newly encoded groups conduct vertical and cross-wise multiplication using the UT sutra. The resulting 
PPs are formed after conducting the criss-cross procedure. Similarly, the same method is used for operand sizes 
with varying bit widths.

Furthermore, by employing the UT sutra, there is no need to wait for all PP generations to mature before 
obtaining the final output. Among the 16 sutras, the UT sutra was chosen specifically because it is suitable for 
both decimal and binary multiplication. It has a basic construction since it just uses AND gates, half adders, and 
full adders. Following the multiplication through the AND gate, each PP element is received in parallel, and the 
final result is achieved.

Figure 7 deliberates about the bit-width of 4 × 4 UT sutra, the multiplication operation is accomplished as 
follows: calculation of the operand was done using a vertical and cross-wise manner with the completion of 6 
steps. Similarly, for a bit-width of 8 × 8, the same method is followed by conducting 14 steps, and is shown in 
Fig. 8. Due to the larger size, of the 16 × 16 multiplier, the criss-cross method was not specified in the paper, but 
the procedure is the same as the previous method.

After performing the multiplication using UT sutra, the PP rows are generated according to the bit-width of 
varying operand sizes. By completing the final addition result, it is eventually sent on to the encoder, where the 
final addition is performed to achieve the 2N-bit product result.

Table 5 shows the encoding rule to be followed after the first and second stages of PPG and PPR are over. 
These values are to be referred to with the above encoding table after the application of both the algorithms of 
the Booth and Vedic sutras, and these values are finally fed to the adder to perform the final PPA result.

Stage‑III‑PPA‑addition
BVR‑4‑PPA
As the multiplier bits are sent to the Booth encoding, which executes the Radix-4 encoding procedure in Fig. 9, 
the PP rows are cut in half when compared to the usual technique. Following the Radix-4 Booth encoding 
process, the multiplicand bits conduct Vedic multiplication of UT (criss-cross multiplication) with the new 
encoded groups and then passed onto the encoder to obtain the final 2N-bit-width result which is achieved by 
the parallel adder.

One of the examples of the BVR-4 algorithm is mentioned below. The example shown in Fig. 10 is for operand 
size 4 × 4. The multiplicand values are assigned as X0, X1, X2, X3, and the multiplier values are assigned as Y-1, 
Y0, Y1, Y2, Y3. After assigning the values for both the multiplicand and the multiplier, a “0” is added at the LSB 
of the multiplier bits, then the multiplier bits are grouped into trits and the process is followed for contiguous 
trits of successive bits. The newly encoded groups are formed as Yn0, and Yn1, and then, by following the values 
in Table 3, the multiplication operation is carried out to form the PP rows of 1 and 2. After the generation of the 
first PP row, the successive row is shifted by 2-bit values. Those rows are added and form an intermediate result 
as P0, P1, P2, P3, P4, P5. The relevant encoded values for the obtained partial values in Fig. 10 are to be referred 
to in Table 5. The final product is obtained using a sign-magnitude representation of encoded values. The fol-
lowing procedure is carried out for varying operand sizes of 8, 16, etc., and shown in Fig. 11.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to 
the encoder and each intermediate resultant is sign extended up to 8 bits and added to acquire the final product 
shown in Table 6.

Figure 7.  Vedic multiplication of 4-bit-width using criss-cross sutra.
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By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to 
the encoder and each intermediate resultant is sign extended up to 16 bits and added to acquire the final product 
shown in Table 7.

BVR‑8‑PPA
When the multiplier bits are assigned to the booth encoding, which conducts the Radix-8 encoding process, the 
PP rows are reduced from N to (N/3) + 1 when compared to the usual technique. When compared to the Radix-4 

Figure 8.  Vedic multiplication of 8-bit-width using criss-cross sutra.
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Booth approach, the PP rows are reduced even further in this encoding process. After completing the Radix-8 
Booth encoding procedure, the multiplicand bits conduct Vedic multiplication of UT (criss-cross multiplication) 
with the newly encoded groups and then passed onto the encoder to obtain the final 2N-bit-width result, which 
is achieved by the parallel adder and it is shown in Fig. 12.

One of the examples of the BVR-8 algorithm is mentioned below. The example shown in Fig. 13 is for oper-
and size 4 × 4. The multiplicand values are assigned as X0, X1, X2, X3, and the multiplier values are assigned 
as Y-1, Y0, Y1, Y2, Y3, Y4 and Y5. After assigning the values for both the multiplicand and the multiplier, a 
“0” is added at the LSB of the multiplier bits, then the multiplier bits are grouped into quads and the process is 
followed for contiguous quads of successive bits. The newly encoded groups are formed as Yn0, and Yn1, and 
then, by following the values in Table 4, the multiplication operation is carried out to form the PP rows of 1 and 
2. After the generation of the first PP row, the successive row is shifted by 3-bit values. Those rows are added 
and form an intermediate result as P0, P1, P2, P3, P4, P5 and P6. The relevant encoded values for the obtained 
partial values in Fig. 13 are to be referred to in Table 5. The final product is obtained employing a sign-magnitude 
representation of encoded values. The following procedure is carried out for varying operand sizes of 8, 16, etc., 
and shown in Fig. 14.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to 
the encoder and each intermediate resultant is sign extended up to 8 bits and added to acquire the final product 
shown in Table 8.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to 
the encoder and each intermediate resultant is sign extended up to 16 bits and added to acquire the final product 
shown in Table 9.

Table 5.  Encoded values.

S.no. PPs Encoded values

1. 0 0000

2. 1 0001

3. 2 0010

4. 3 0011

5. 4 0100

6.  − 4 1100

7.  − 3 1101

8.  − 2 1110

9.  − 1 1111

Figure 9.  Proposed architecture for BVR-4.
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Results and discussion
The design of the proposed BVR-4 and BVR-8 methods consists of design entry, synthesis, simulation, and 
implementation in various FPGA devices and ASIC tools. The proposed architecture has been coded in Verilog 
language. When there is no error, then the code is synthesized using the Xilinx tool. The suggested methods 
mathematical model and algorithm are run and verified using the Xilinx Vivado tool. The simulation results 
demonstrate that the mathematical model can multiply two signed integers. The suggested architectures of 
Proposed BVR-4 and BVR-8 functional verification are carried out by creating the architecture in Verilog HDL 
and simulating it in ISIM RTL Simulator. The HDL code is generated in two platforms, Vivado 2019.1 Xilinx 
Synthesis Technology of FPGA platform and ASIC TSMC 45 nm standard cell typical libraries.

FPGA implementation
In FPGAs, a look-up-table (LUT) is a small asynchronous SRAMs that is used to implement combinational logic 
circuits, while flip-flops are single-bit memory cells that are used to hold state. Table 10 shows the comparison of 
Floating Point, Booth, and Vedic multiplier with the proposed methods, and it is implemented with the Xilinx 
Vivado Artix-7 XC7A100T-CSG324 device specification. The proposed architecture of BVR-4 is compared with 
the various multiplier techniques and shows a LUT (Look-up-table) and ADP improvement of 42%, 20% for a 
bit-width of 4, for a bit-width of 8 it is 94% and 84%, and for 16-bit width range it is 96% and 90%. The proposed 
architecture of BVR-8 is compared with the various multiplier techniques and shows a LUT (Look-up-table) and 
ADP improvement of 89%, 83% for a bit-width of 4, for a bit-width of 8 it is 94% and 90%, and for 16-bit width 
range it is 89% and 72% respectively. The area is calculated in terms of LUTs, Flip-flops, and configurable logic 
blocks. This table shows a clear view that the proposed method of BVR-4 and BVR-8 is very efficient when we 
combine the techniques of both Booth and Vedic multiplier concepts.

Figure 15 shows the graphical representation of the performance ratings of the LUTs with the existing mul-
tiplier. However, when all the parameters are considered together, it is evident from the graph that proposed 
BVR-4 improves for higher bit-widths and BVR-8 shows a better improvement for smaller bit-widths. It has a 
significant reduction in LUTs compared to existing multiplier architecture.

Figure 16 shows that the delay was decreased when compared with the prior state-of-the-art multipliers. It 
shows the comparison of the delay for the proposed BVR-4 and BVR-8 with the existing multipliers.

All the architectures, exploiting the different number of bits for the operands and three different architectures, 
are compared with the proposed method of BVR-4 and BVR-8 described for the techniques used and analyzed 
the Area-Delay product it is shown in Fig. 17.

Figure 10.  Worked out an example for BVR-4 of bit-width 4. P0 = X0Yn0, P1 = X1Yn0, P2 = X2Yn0 + X0Yn1, 
P3 = X3Yn0 + X1Yn1, P4 = X2Yn1, P5 = X3Yn1, Final Product = P0 + P1 + P2 + P3 + P4 + P5.
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Figure 11.  Worked out an example for BVR-4 of bit-width 8. P0 = x0yn0, P1 = x1yn0, 
P2 = x2yn0 + x0yn1, P3 = x3yn0 + x1yn1, P4 = x4yn0 + x2yn1 + x0yn2, P5 = x5yn0 + x3yn1 + x1yn2, 
P6 = x6yn0 + x4yn1 + x2yn2 + x0yn3, P7 = x7yn0 + x5yn1 + x3yn2 + x1yn3, P8 = x6yn1 + x4yn2 + x2yn3, 
P9 = x7yn1 + x5yn2 + x3yn3, P10 = x6yn2 + x4yn3, P11 = x7yn2 + x5yn3, P12 = x6yn3, P13 = x7yn3.

Table 6.  Sign extension of 8-bits of Radix-4. Significant values are in bold.

8 7 6 5 4 3 2 1 0 PP

1 1 1 1 1 1 1 1 1 P0

1 1 1 1 1 1 1 1 – P1

0 0 0 0 0 0 1 – – P2

0 0 0 0 1 0 – – – P3

0 0 0 1 0 – – – – P4

0 0 0 0 – – – – – P5

0 0 0 1 1 0 0 0 1 Final product
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ASIC implementation
The proposed architectures are realized in the ASIC environment to evaluate the efficiency of the design in terms 
of the VLSI parameters like area, power, delay, Area Delay Product (ADP), and power delay-product (PDP). A 
tool Command Language (TCL) script is written to automate the synthesis process of the Verilog HDL code in 
Mentor Graphics. The design is synthesized for different operand sizes 4, 8, and 16 with TSMC 45 nm standard 
cell typical libraries. The same process is repeated for the state-of-the-art multipliers considered for the com-
parison, and the results are given in Table 11.

Table 11 shows that the Proposed BVR-4 and BVR-8 multiplier architecture outperforms in all three aspects 
followed by traditionally signed CSA and parallel prefix architecture because of less area, increased speed with 
reduced power. If the number of transistors is optimized, it offers a better output of the proposed methods 
of BVR-4 and BVR-8. So, 45 nm technology is significantly preferable to reduce area, power, and delay. In 
45 nm BVR-4 architecture contains area improvement of 22%, power improvement of 7%, and speed improve-
ment of 50% for the bit-width of 4. While for the bit-width of 8, it shows an area improvement of 28%, power 

Table 7.  Sign extension of 16-bits of Radix-4. Significant values are in bold. The colored (highlighted) digits 
represent the encoded value according to the Radix-4 and Radix-8 rules.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - P1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 - - P2
1 1 1 1 1 1 1 1 1 1 1 1 1 - - - P3
1 1 1 1 1 1 1 1 1 1 1 1 - - - - P4
1 1 1 1 1 1 1 1 1 1 1 - - - - - P5
1 1 1 1 1 1 1 1 1 1 - - - - - - P6
0 0 0 0 0 0 0 0 0 - - - - - - - P7
0 0 0 0 0 0 0 0 - - - - - - - - P8
0 0 0 0 0 0 0 - - - - - - - - - P9
0 0 0 0 0 0 - - - - - - - - - - P10
0 0 0 0 0 - - - - - - - - - - - P11
0 0 0 0 - - - - - - - - - - - - P12
0 0 0 - - - - - - - - - - - - - P13
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 Final product

Figure 12.  Proposed architecture for BVR-8.
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improvement of 8%, and speed improvement of 61% and for the operand size of 16 it shows an area improvement 
of 42%, power improvement of 1% and speed improvement of 84% when compared with the CSA architecture. 
The proposed BVR-8 architecture contains an area improvement of 49%, power improvement of 13%, and speed 
improvement of 62% for the bit-width of 4, while for the bit-width of 8, it shows an area improvement of 35%, 
power improvement of 13% and speed improvement of 64%, for the operand size of 16 it shows an area improve-
ment of 44%, power improvement of 3% and speed improvement of 85%.

Figure 18 shows the BVR-4 architecture contains 0.035, 0.25 and 1.76 of Area-Delay Product for the Bit-width 
range of 4, 8 and 16 when compared with the previous CSA and parallel prefix architecture in 45 nm ASIC stand-
ard cell libraries. For BVR-8 architecture it contains 0.001, 0.21, and 1.577 for the operand size of 4, 8 and 16.

Figure 19 shows the power-delay product comparison of BVR-4 and BVR-8 with the existing CSA and parallel 
prefix architecture. It shows a PDP of 0.04, 0.02, and 0.03 for the BVR-4 method, and for BVR-8 it shows 0.002, 
0.026, and 0.02 respectively.

Conclusion
In this paper, a new method of signed digit multiplication is presented. The proposed design is based on both 
the techniques of Booth and the Vedic multiplier concept using the sutra of Urdhva-tiryakbhyam (criss-cross) 
multiplication technique. First, the scope of the booth multiplier is extended to the Vedic multiplication to per-
form parallel processing at the stage of partial product reduction stage, which leads to a decreased propagation 
delay. The propagation delay issue is resolved using an adder and in sign-magnitude representation. The proposed 
design is found to have a high speed with minimal area consumption with various state-of-the-art architectures. 
For Booth-Vedic-Radix-4 encoding (BVR-4) decreases area by 89% and improves area-delay product (ADP) by 
72% for a 16-bit multiplier when subjected to the Conventional Radix-4 booth multiplier of different operand 
sizes. The Booth-Vedic-Radix-8 (BVR-8) method shows that there will be an 89% reduction in area and improves 

Figure 13.  Worked out an example for BVR-8 of bit-width 4. P0 = X0Yn0, P1 = X1Yn0, P2 = X2Yn0, 
P3 = X3Yn0 + X0Yn1, P4 = X1Yn1, P5 = X2Yn1, P6 = X3Yn1, Final Product = P0 + P1 + P2 + P3 + P4 + P5 + P6.
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ADP by 72% for the 16-bit multiplier. This work can be further incorporated into the image compression tech-
nique to achieve the rapid result.

Table 8.  Sign extension of 8-bits of Radix-8. Significant values are in bold.

8 7 6 5 4 3 2 1 0 PP

1 1 1 1 1 1 1 1 1 P0

1 1 1 1 1 1 1 1 P1

1 1 1 1 1 1 1 P2

0 0 0 0 0 1 P3

0 0 0 0 1 P4

0 0 0 1 P5

0 0 0 P6

0 0 0 1 1 0 0 0 1 Final product

Table 9.  Sign extension of 16-bits. Significant values are in bold. The colored (highlighted) digits represent the 
encoded value according to the Radix-4 and Radix-8 rules.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - P1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 - - P2
1 1 1 1 1 1 1 1 1 1 1 1 1 - - - P3
1 1 1 1 1 1 1 1 1 1 1 1 - - - - P4
1 1 1 1 1 1 1 1 1 1 1 - - - - - P5
1 1 1 1 1 1 1 0 0 1 - - - - - - P6
0 0 0 0 0 0 0 1 0 - - - - - - - P7
0 0 0 0 0 0 1 0 - - - - - - - - P8
0 0 0 0 0 1 0 - - - - - - - - - P9
0 0 0 0 1 0 - - - - - - - - - - P10
0 0 0 1 0 - - - - - - - - - - - P11
0 0 1 0 - - - - - - - - - - - - P12
0 0 0 - - - - - - - - - - - - - P13
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 Final product

Table 10.  FPGA synthesis results. Significant values are in bold.

Number of bit-width Multipliers LUTs Delay ADP

4

Floating point  multiplier45 19 4.1 77.9

Booth  multiplier46 16 4.1 65.6

Vedic  multiplier47 16 4.6 73.6

Proposed method (Booth Vedic Radix-4) 11 5.363 61.996

Proposed method (Booth Vedic Radix-8) 2 6.461 12.922

8

Floating point  multiplier45 118 4.7 554.6

Booth  multiplier46 101 4.7 474.4

Vedic  multiplier47 71 4.7 333.7

Proposed method (Booth Vedic Radix-4) 7 12.59 88.172

Proposed method (Booth Vedic Radix-8) 5 10.554 52.77

16

Floating point  multiplier45 548 6.3 3452.4

Booth  multiplier46 455 6.3 2866.5

Vedic  multiplier47 294 7.6 2234.4

Proposed method (Booth Vedic Radix-4) 18 18.57 334.314

Proposed method (Booth Vedic Radix-8) 59 15.83 934.383
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Table 11.  Performance comparison of BVR-4 and BVR-8.

N Multipliers Area (µm2) Power (µW) Delay (ns) Area-delay product (ADP)-pm2*s
Power-delay product 
(PDP)-pJ

4

CSA  architecture48 114 11 0.8 0.09 0.008

Parallel-prefix  architecture48 140 12 0.8 0.1 0.009

Proposed BVR-4 88 10.2 0.4 0.035 0.004

Proposed BVR-8 58 9.5 0.3 0.001 0.002

8

CSA  architecture48 452 35 2.1 0.97 0.07

Parallel-prefix  architecture48 587 40 0.8 0.46 0.03

Proposed BVR-4 322 32 0.8 0.25 0.02

Proposed BVR-8 291 30.23 0.75 0.21 0.026

16

CSA  architecture48 2030 208 9.5 19.18 1.976

Parallel-prefix  architecture48 2679 260 6.0 16.07 1.56

Proposed BVR-4 1176 205 1.5 1.76 0.03

Proposed BVR-8 1123 200 1.4 1.577 0.02
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