
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports

A modular technique of Booth
encoding and Vedic multiplier
for low‑area and high‑speed
applications
C. M. Kalaiselvi 1* & R. S. Sabeenian 2

A technique for efficiently multiplying two signed numbers using limited area and high speed is
presented in this paper. This work uses both the Booth and Vedic multiplication sutra methodologies
to enhance the speed and reduction in the area by using two VLSI architectures of radix encoding
techniques—Radix‑4 and Radix‑8—with the Vedic multiplier. The functionality of the proposed
methods is tested using an Artix‑7 Field Programmable Gate Array (FPGA‑XC7A100T‑CSG324) in Xilinx
Vivado 2019.1 and ASIC 45 nm technology. Two methods of Booth encoding using Vedic multiplier
(Urdhva‑Tiryakbhyam sutra) were used to develop, and examine the benefits of rapid computational
multiplier. The results of the proposed multiplier for Booth‑Vedic‑Radix‑4 encoding (BVR‑4) decrease
area by 89% and improve Area‑Delay Product (ADP) by 72% for a 16‑bit multiplier when subjected to
other existing multipliers. The Booth‑Vedic‑Radix‑8 (BVR‑8) method shows that there will be an 89%
reduction in area and an improvement in ADP by 72% for the 16‑bit multiplier. The performance is
evaluated regarding area occupancy (i.e., LUTs number) and propagation delay (output time). In terms
of resource utilization, the proposed BVR‑4 and BVR‑8 multipliers outperform all the current designs
with a marginal effect on speed and area for narrower bit‑width ranges.

Everyone nowadays wants portable technology that is quick, takes little power, and packs as many components
as possible into a small space. To achieve all of these goals, it is critical to develop an algorithm that solves all of
these challenges. Although these methods are fast, the actual calculation time is determined by the processor’s
system clock1. In processors, Multiplication is now an essential component of binary computers. Therefore,
building multipliers is critical for computer scientists and engineers on both theoretical and practical levels2.
Multipliers can generally be built in parallel or serial fashion. Serial multipliers are crucial when contemplating
low-cost designs. Parallel multipliers are the preferred solution if a high-speed architecture is required. Further-
more, multipliers can be both signed and unsigned3.

Related work
The prevalent multiplication procedure consists of three major phases:

1. Partial product generation (PPG)—Reduction of bitlength.
2. Partial product reduction (PPR)—Vertical processing.
3. Partial product accumulation (PPA)—Addition.

The second phase is critical for power consumption, cost, and overall performance. As a result, the power
consumption and performance constraints of the multiplier are essential4. The add-and-shift operation of the
array multiplier produces more partial products (PP) than the tree multiplier, boosting Power and Delay5. Despite
having fewer components than an array multiplier, the PPs are organized in rows or columns and have extensive
 interconnections6. Dadda Multiplier has a higher carry propagation adder since it just makes the necessary reduc-
tion. Dadda Multiplier outperforms Wallace Multiplier in terms of speed7. The Karatsuba algorithm performs
quick multiplication. It employs a smaller number of little multipliers than the Wallace tree multiplier8. To do the
multiplication, a fast Carry-Save Add-shift (CSAs) multiplier is employed, which results in one-third the speed

OPEN

1Sona College of Technology, Salem, India. 2Department of ECE, Sona College of Technology, Salem, India. *email:
kalai17cm@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49913-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

of an unsigned multiplier9. A fast multiplication in 2’s complement format is described to create fewer PP rows
from n/2 + 1 to n/2 before applying the PPR approach to prevent the occurrence of the additional row, which
increases multiplication speed for 8-bit and 16-bit multipliers10.

Using one of the several multiplication algorithms available, the speed of operation can be boosted over the
classic shift and add approach. Booth’s method, a uniform shift approach, examines two multiplier bits at a time
to identify the correct multiplicand multiple to add the PP11. Carry-free addition is accomplished by the use of
redundant binary systems. The propagation delay problem is solved by the Redundant Binary adder12. For some
signed numbers-based applications, it may still be viable to develop the requisite hardware accelerators utilizing
unsigned multiplier designs13.

The number of PPs is proportional to the Radix-k of Booth encoding by a factor of log2 (k), implying that
the number of PPs reduces by half while Radix-k multiplies by four14. The Radix-k Booth encoding system is
identified by the equation

where r is the number of encoding bits to be considered15. For example, Radix-4 Modified Booth Encoding
(MBE) requires multiples of the multiplicand (X) of 0, 1, and 2 to generate PPs, lowering the height of the PP
matrix from N to N/2. All of these multiples are easily obtained by using shift and negation operations on X.
Similarly, Radix-8 MBE requires X multiples of 0, 1, 2, 3, and 4, while lowering the height of the PP matrix from
N to N/316. The redundant binary PPG achieves the largest reduction in the number of PPs, around 75%, for a
Radix-4 multiplier17.

A modified Radix-4 Booth multiplier that only adds non-zero Booth encodings and disregards zero
 operations18. To do the hard multiple 3X operations, use 3X = 2X + X19. Radix-8 Booth multiplier uses the
approximation approach by employing an approximate 2-bit adder20. There are two types of modular hybrid
adder architectures employed. It is created by combining carry-skip, carry look-ahead, and Ripple Carry Adder
(RCA)21. The high-performance Redundant binary multiplier’s appeal has been largely attributed to two key
features: high modularity and carry-free addition22. Table 1 summarizes all of the multipliers and displays their
properties in terms of Area, Power, Complexity, Delay, and Implementation.

A multi-precision binary multiplier architecture was created to reduce hardware and space consumption as
well as latency and delay23. The beginning of the twentieth century saw the deciphering of the incredible Vedic
calculation method. The functionality of Vedic mathematics is its most astounding feature24. Table 2 illustrates the
strategies and procedures that Tirthaji created to reinforce the rules found in 16 sutras and 13 up-sutras, which
were called Vedic Mathematics. The Nikhilam and Urdhva sutras were the focus of most investigations for the
development of multipliers25. Researchers have also employed Nikhilam and UT multiplication methods. Due to
the simultaneous creation and addition of the PPs, the former approach is quick5. Beneficial takeaways from both
sutras have been made, and a novel architecture for quick and effective multiplication has been constructed26.

A multiplier architecture is designed for low-cost power and high-performance applications based on
ancient Vedic Mathematics27. Vedic methods were used to square, and the results were evaluated using Virtex-
4vlx15sf363-1228. The 8 × 8 Nikhilam sutra is actualized for three different sets of bases using the idea of UT29.
For a 16-bit multiplier, a novel Vedic Mathematics architecture built on UT was introduced. To lower the vertical
critical route delay, compressors are utilized with full and half adders30. The Vedic multiplier is a combination
of two compressor types: 4:2 and 7:2. After calculating the area and latency, it was shown to be 1.12 times faster
than the other multiplier31.

The redundant binary representation of the Signed Vedic multiplier (SVM) architecture was used in the UT
sutra. It is possible to achieve carry-free addition in redundant binary representation33. The proposed method
performs multiplication using a combination of the UT algorithm and Booth encoding. The multiplier is small
and requires less space based on Booth encoding, but the UT sutra increases speed34. Based on the anurupyena
sutra of Vedic arithmetic, it uses a high-performance and area-efficient square architecture for variable bit
 operands35. The Spartan 6 FPGA implementation models the hybrid parallel adder-based multiplier, which is
utilized to improve multiplier performance36.

One drawback of the current technique is that it takes up more space and has a bigger delay in the PPR
(second stage of the multiplication phase)25,33,34. All previously substantiated Vedic systems can handle only
unsigned integers, which summarises the complexity of the proposed technique. By using the Booth encoding
process and the UT technique of the Vedic multiplier in the second step, we have expanded the applicability of
Vedic Mathematics to signed integers in this work. The signed Vedic multiplier and Booth encoding both resolve

(1)Radix-k = 1+ log2r,

Table 1. Multipliers circuit comparison14.

S. no. Parameters Shift and add Array multiplier Modified booth multiplier
Modified booth wallace
multiplier Vedic multiplier

1. Serial/parallel Serial Parallel Parallel Parallel Parallel

2. Area Small Large Medium Medium Medium

3. Power consumption Small Large Medium Medium Medium

4. Delay Large Medium Small Smallest Smallest

5. Complexity Simple Simple Complex Complex Simple

6. Implementation Easy Easy Medium Difficult Medium

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

the carry-free propagation issue, which is the motivating factor behind the suggested work. The distinctions
between the Vedic multiplier and the Booth multiplier have been examined in several survey articles. However,
in this paper, a novel efficient architecture for quick multiplication computation is developed by combining the
Booth encoding and Vedic multiplier techniques due to the advantages of parallel processing at the PPR stage
and by taking into account the key advantages of all the sutras33,37–42. Removal of noise in digital images is done
through the filter43. Less heat dissipation with reversible logic gates was designed44.

The contributions of this paper are as follows:

1. This work mainly focuses on the second stage of PPR since it consumes more area with less speed. Recent
research focuses on PPR to reduce the area and improve the speed performance. This research focuses on
PPR and how Booth encoding methods and Vedic sutras reduce area while improving speed. In the proposed
study, both techniques combine the benefits of high speed with the method of Vedic sutras and low area with
Booth encoding.

2. The reduction of propagation delay in the PPR using a novel encoder is proposed. The proposed method
extends the Vedic architecture to signed integers.

3. Fewer resources were used when the Booth multiplier and Vedic multiplier (UT) sutra were combined.

The section of the paper is structured as follows: The proposed method for the BVR-4 and BVR-8 systems is
covered in “Proposed method” section. The findings and a discussion of the suggested BVR-4 and BVR-8 design
are given in “Results and discussion” section. In “Conclusion” section, the paper concludes.

Proposed method
Effective computing units are provided by the Vedic design in the review of existing methods, but only for
unsigned values. When thoroughly examined, signed numbers are generally the most appropriate for a variety
of purposes. The proposed method expands the applicability of Vedic architecture to signed integers and offers
a reduction in area and time-efficient architecture at the PPR level. The recommended method is divided into
three stages overall.

First, Booth encoding (multiplier trits are encoded) is performed.

 (i) PPG-reduction of Bit length
 (ii) PPR-vertical processing
 (iii) PPA- addition

Stage‑I: PPG‑booth encoding
Radix‑4 booth algorithm
The first section discusses how the Radix-4 encoding rule works. A normal multiplication procedure must be used
to multiply the multiplicand and multiplier of n bits, which results in n-rows of partial products and an increase
in time complexity and area. Comparing the modified Booth multiplier-Radix-4 to other types of serial-parallel
multipliers, it is smaller, quicker, and uses less power. An n-bit multiplication operation requires less space when
using the Radix-4 Booth encoding approach since only half of the PP rows are required.

As seen in Fig. 1, the contiguous multiplier trits are clustered together with the overlapping of the last bit in
the past cluster to generate new encoding groups. For instance, a multiplier bit-width of 4 results in the creation
of two new Yn0 and Yn1 encoding groups, which lowers the total PP row to half of its original rows. In the same

Table 2. Sixteen Vedic sutras32.

S. no. Name Meaning

1. Anurupyeshunyamanyat If one is in ratio, the other is zero

2. ChalanaKalanabyham Similarities and differences

3. Ekadikena Purvena Compared to the previous one, it is one more

4. Ekayunene Purvena Compared to the previous one, it is one less

5. Gunakasamuchyah The sum of the factors = factor of the sum

6. Gunitasmuchyah The sum of the product = product of the sum

7. Nikhil Navatashcaramam Dashtah All from 9 and the last from 10

8. Paraavartya Yojayet Adjust and transpose

9. Puranapuranabhyam By non-completion or completion

10. Sankalana Vyavakalanabhyam By subtraction and addition

11. Shesanyankena Charamena The remainder by the last digit

12. Sopaantyadvayamantyam The ultimate and twice the penultimate

13. ShunyamSaamyasamuccaye If the sum same and that sum is zero

14. Urdhva Tiryakbhyam Cross-wise and vertically

15. Vyashtisamanstih Whole and part

16. Yaavadunam Whatever the extent of its deficiency

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

way, Fig. 2 bit-width of 8 results in the formation of four new encoding groups for Yn0, Yn1, Yn2, and Yn3, and
Fig. 3 bit-width of 16 results in the formation of eight new encoding groups for Yn0, Yn1, Yn2, Yn3, Yn4, Yn5,
Yn6, and Yn7. However, when compared to the conventional multiplication procedure, the number of PP rows
will be greater when compared with the Booth encoding procedure. This is the main benefit of the proposed
method in the initial PPG step. The PP rows were reduced to half the number of varying operand sizes.

To calculate the PP rows for the operand size of

1. 4—The number of rows required is 2.
2. 8—The number of rows required is 4.
3. 16—The number of rows required is 8.

For the proposed method of BVR-4, the pseudo-code is explained below. The given data is first encoded
according to Table 3, and then the multiplication operation is carried out.

Figure 1. Contiguous trits of multiplier-4-bit width. Mlr multiplier bits, Yn0, Yn1 new encoding groups of 1
and 2.

Figure 2. Contiguous trits of multiplier—8-bit width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3 new encoding
groups of 1, 2, 3 and 4.

Figure 3. Contiguous trits of multiplier—16-bit width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3, Yn4, Yn5, Yn6
and Yn7 new encoding groups of 1, 2, 3, 4, 5, 6, 7 and 8.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Rule for combining adjacent trits.

Pseudo code of BVR-4 method:
BEGIN
GET Mld,Mlr BITS *Input-Data given-Mld-Multiplicand, Mlr-Multiplier
INSERT “0” at LSB of Mlr
FOR i= 1 to N
Mlr-GROUP 3 BITS
END
MULTIPLY Yn0,Yn1,Mld
FOR i= 1 to N * Intermediate product-Partial Product
PP[i]<<2 *Arithmetic left shift twice
END
FOR i=1 to N
ADD PP[i]
END *Result-Final Product

1. To check whether the given bit-width is odd or even if it is odd perform a sign extension of 1 bit and if it is
even no need to perform a sign extension.

2. The foremost step is to add “0” at the LSB of the multiplier bits.
3. Further, the successive clustering of trits is carried out.
4. New encoding groups are created to perform the multiplication operation.

In Table 3, the multiplier trits are encoded using the Radix-4 encoding rule to build a new encoding group in
the form of a two’s complement representation of the multiplier trits spanning from 0, + 1, + 2, − 2, − 1. The mul-
tiplier bits are multiplied with the multiplicand to accomplish the PPG operation, which results in the PP rows,
according to the new encoded rule. The following stage of the operation was carried out after the production of
incomplete product rows. Following the encoding procedure, the encoded bits create new groups of trits, each
of which is represented in non-redundant radix-4 format.

Radix‑8 Booth algorithm
A higher representation radix results in fewer digits when representing a given range of integers. As a result,
as we advance to higher radices, a digit-at-a-time multiplication method uses fewer cycles. The Radix-8 Booth
method decreases the PP rows even more to [(N/3) + 1], resulting in a substantially smaller area utilized when
compared to the Radix-4 approach. The multiple hard problems are solved in this approach by expressing the
2’s complement of multiplier bits and multiplying it with the multiplicand bits.

In Fig. 4, multiplier bits are grouped in terms of the quad to form a new encoding group, for example, a
multiplier bit-width of 4 creates 2 new encoding groups with the sign extension of multiplier bits for lack of
contiguous quads, thereby reducing the overall PP row into half of their original rows. Similarly, in Fig. 5, for a
bit-width of 8, it forms a 3 new encoding group, and similarly, in Fig. 6, for a bit width of 16, it forms a six new
encoding group. So, when compared with the Radix-4 encoding rule it produces fewer PP rows. To calculate the
PP rows for the operand size of

Table 3. Radix-4 encoding rule.

S.no.

Multiplier bits

Encoding rule

Resultant
encoded bits

Mlr2 Mlr1 Mlr0 R2 R1 R0

1. 0 0 0 0 0 0 0

2. 0 0 1 + 1 0 0 1

3. 0 1 0 + 1 0 0 1

4. 0 1 1 + 2 0 1 0

5. 1 0 0 − 2 1 1 0

6. 1 0 1 − 1 1 1 1

7. 1 1 0 − 1 1 1 1

8. 1 1 1 0 0 0 0

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

1. 4—The number of rows required is 2.
2. 8—The number of rows required is 3.
3. 16—The number of rows required is 6.

Figure 4. Contiguous quads of multiplier-4 bit-width. Mlr multiplier bits, Yn0, Yn1 new encoding groups of 1
and 2.

Figure 5. Contiguous quads of multiplier—8 bit-width. Mlr multiplier bits, Yn0, Yn1, Yn2 new encoding groups
of 1, 2 and 3.

Figure 6. Contiguous quads of multiplier—16 bit-width. Mlr multiplier bits, Yn0, Yn1, Yn2, Yn3, Yn4 and Yn5
new encoding groups of 1, 2, 3, 4, 5 and 6.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Rule for combining adjacent quads.

Pseudo code of BVR-8 method:
BEGIN
GET Mld,Mlr BITS *Input-Data given-Mld-Multiplicand, Mlr-Multiplier
INSERT “0” at LSB of Mlr
FOR i=1 to N
GROUP 4-BITS-Mlr
END
MULTIPLY Yn0,Yn1,Mld
FOR i= 1 to N * Intermediate product-Partial Product
PP[i]<<3 * Arithmetic left shift thrice
END
FOR i=1 to N
ADD PP[i]
END *Result-Final Product

1. To check whether the given bit-width is odd or even if it is odd perform a sign extension of a sufficient bit
and if it is even no need to perform a sign extension.

2. The foremost step is to add “0” at the LSB of the multiplier bits.
3. After adding, the successive grouping of the quad is carried out.
4. New encoding groups are created to perform the multiplication operation.

For the proposed method of BVR-8, the pseudo-code is explained below. The given data is first encoded accord-
ing to Table 4, and then the multiplication operation is carried out.

In Table 4, the multiplier quads are encoded using the Radix-8 encoding rule to build a new encoding group
in the form of a two’s complement representation of the multiplier. The multiplier bits are multiplied with the
multiplicand to accomplish the PPG operation, which results in the PP rows, according to the new encoded
rule. The following stage of the operation was carried out after the production of incomplete product rows. Fol-
lowing the encoding procedure, the encoded bits create new groups of quads, each of which is represented in
non-redundant Radix-8 format.

Table 4. Radix-8 encoding rule.

S.no.

Multiplier bits

Encoding rule

Resultant encoded
bits

Mlr3 Mlr2 Mlr1 Mlr0 R3 R2 R1 R0

1. 0 0 0 0 0 0 0 0 0

2. 0 0 0 1 + 1 0 0 0 1

3. 0 0 1 0 + 1 0 0 0 1

4. 0 0 1 1 + 2 0 0 1 0

5. 0 1 0 0 + 2 0 0 1 0

6. 0 1 0 1 + 3 0 0 1 1

7. 0 1 1 0 + 3 0 0 1 1

8. 0 1 1 1 + 4 0 1 0 0

9. 1 0 0 0 − 4 1 1 0 0

10. 1 0 0 1 − 3 1 1 0 1

11. 1 0 1 0 − 3 1 1 0 1

12. 1 0 1 1 − 2 1 1 1 0

13. 1 1 0 0 − 2 1 1 1 0

14. 1 1 0 1 − 1 1 1 1 1

15. 1 1 1 0 − 1 1 1 1 1

16. 1 1 1 1 0 0 0 0 0

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Stage‑II: PPR (Vedic multiplication)
Because PPG and PPR occur serially in a typical Booth multiplier, the vertical critical path latency increases. As
a result, as a unique feature introduced in this research, the produced PPs are achieved by parallel processing in
the second stage of PPR. This is one of the benefits of the unique work that was carried out. Because the second
stage consumes the majority of the space, power, and delay in all assessed papers, an innovation was added in the
second stage to carry out the PPR approach by employing the notion of Vedic Mathematics. Among the sixteen
sutras in Vedic Mathematics, the UT and Nikhilam sutras are ideally suited for multiplication. The former sutra is
usable for both binary and decimal multiplication and is best suited for lesser bit widths, whereas the latter sutra
is best suited for greater bit widths multiplication. The PPR stage in the proposed work was carried out utilizing
the Vedic multiplier idea employing the UT sutra (criss-cross multiplication), which involves its operation by
simply conducting the AND gate operation in all bit multiplication procedures.

The newly encoded groups conduct vertical and cross-wise multiplication using the UT sutra. The resulting
PPs are formed after conducting the criss-cross procedure. Similarly, the same method is used for operand sizes
with varying bit widths.

Furthermore, by employing the UT sutra, there is no need to wait for all PP generations to mature before
obtaining the final output. Among the 16 sutras, the UT sutra was chosen specifically because it is suitable for
both decimal and binary multiplication. It has a basic construction since it just uses AND gates, half adders, and
full adders. Following the multiplication through the AND gate, each PP element is received in parallel, and the
final result is achieved.

Figure 7 deliberates about the bit-width of 4 × 4 UT sutra, the multiplication operation is accomplished as
follows: calculation of the operand was done using a vertical and cross-wise manner with the completion of 6
steps. Similarly, for a bit-width of 8 × 8, the same method is followed by conducting 14 steps, and is shown in
Fig. 8. Due to the larger size, of the 16 × 16 multiplier, the criss-cross method was not specified in the paper, but
the procedure is the same as the previous method.

After performing the multiplication using UT sutra, the PP rows are generated according to the bit-width of
varying operand sizes. By completing the final addition result, it is eventually sent on to the encoder, where the
final addition is performed to achieve the 2N-bit product result.

Table 5 shows the encoding rule to be followed after the first and second stages of PPG and PPR are over.
These values are to be referred to with the above encoding table after the application of both the algorithms of
the Booth and Vedic sutras, and these values are finally fed to the adder to perform the final PPA result.

Stage‑III‑PPA‑addition
BVR‑4‑PPA
As the multiplier bits are sent to the Booth encoding, which executes the Radix-4 encoding procedure in Fig. 9,
the PP rows are cut in half when compared to the usual technique. Following the Radix-4 Booth encoding
process, the multiplicand bits conduct Vedic multiplication of UT (criss-cross multiplication) with the new
encoded groups and then passed onto the encoder to obtain the final 2N-bit-width result which is achieved by
the parallel adder.

One of the examples of the BVR-4 algorithm is mentioned below. The example shown in Fig. 10 is for operand
size 4 × 4. The multiplicand values are assigned as X0, X1, X2, X3, and the multiplier values are assigned as Y-1,
Y0, Y1, Y2, Y3. After assigning the values for both the multiplicand and the multiplier, a “0” is added at the LSB
of the multiplier bits, then the multiplier bits are grouped into trits and the process is followed for contiguous
trits of successive bits. The newly encoded groups are formed as Yn0, and Yn1, and then, by following the values
in Table 3, the multiplication operation is carried out to form the PP rows of 1 and 2. After the generation of the
first PP row, the successive row is shifted by 2-bit values. Those rows are added and form an intermediate result
as P0, P1, P2, P3, P4, P5. The relevant encoded values for the obtained partial values in Fig. 10 are to be referred
to in Table 5. The final product is obtained using a sign-magnitude representation of encoded values. The fol-
lowing procedure is carried out for varying operand sizes of 8, 16, etc., and shown in Fig. 11.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to
the encoder and each intermediate resultant is sign extended up to 8 bits and added to acquire the final product
shown in Table 6.

Figure 7. Vedic multiplication of 4-bit-width using criss-cross sutra.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to
the encoder and each intermediate resultant is sign extended up to 16 bits and added to acquire the final product
shown in Table 7.

BVR‑8‑PPA
When the multiplier bits are assigned to the booth encoding, which conducts the Radix-8 encoding process, the
PP rows are reduced from N to (N/3) + 1 when compared to the usual technique. When compared to the Radix-4

Figure 8. Vedic multiplication of 8-bit-width using criss-cross sutra.

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Booth approach, the PP rows are reduced even further in this encoding process. After completing the Radix-8
Booth encoding procedure, the multiplicand bits conduct Vedic multiplication of UT (criss-cross multiplication)
with the newly encoded groups and then passed onto the encoder to obtain the final 2N-bit-width result, which
is achieved by the parallel adder and it is shown in Fig. 12.

One of the examples of the BVR-8 algorithm is mentioned below. The example shown in Fig. 13 is for oper-
and size 4 × 4. The multiplicand values are assigned as X0, X1, X2, X3, and the multiplier values are assigned
as Y-1, Y0, Y1, Y2, Y3, Y4 and Y5. After assigning the values for both the multiplicand and the multiplier, a
“0” is added at the LSB of the multiplier bits, then the multiplier bits are grouped into quads and the process is
followed for contiguous quads of successive bits. The newly encoded groups are formed as Yn0, and Yn1, and
then, by following the values in Table 4, the multiplication operation is carried out to form the PP rows of 1 and
2. After the generation of the first PP row, the successive row is shifted by 3-bit values. Those rows are added
and form an intermediate result as P0, P1, P2, P3, P4, P5 and P6. The relevant encoded values for the obtained
partial values in Fig. 13 are to be referred to in Table 5. The final product is obtained employing a sign-magnitude
representation of encoded values. The following procedure is carried out for varying operand sizes of 8, 16, etc.,
and shown in Fig. 14.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to
the encoder and each intermediate resultant is sign extended up to 8 bits and added to acquire the final product
shown in Table 8.

By the completion of both the stages of PPG and PPR, the encoded bits obtained in the PPR stage are fed to
the encoder and each intermediate resultant is sign extended up to 16 bits and added to acquire the final product
shown in Table 9.

Table 5. Encoded values.

S.no. PPs Encoded values

1. 0 0000

2. 1 0001

3. 2 0010

4. 3 0011

5. 4 0100

6. − 4 1100

7. − 3 1101

8. − 2 1110

9. − 1 1111

Figure 9. Proposed architecture for BVR-4.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Results and discussion
The design of the proposed BVR-4 and BVR-8 methods consists of design entry, synthesis, simulation, and
implementation in various FPGA devices and ASIC tools. The proposed architecture has been coded in Verilog
language. When there is no error, then the code is synthesized using the Xilinx tool. The suggested methods
mathematical model and algorithm are run and verified using the Xilinx Vivado tool. The simulation results
demonstrate that the mathematical model can multiply two signed integers. The suggested architectures of
Proposed BVR-4 and BVR-8 functional verification are carried out by creating the architecture in Verilog HDL
and simulating it in ISIM RTL Simulator. The HDL code is generated in two platforms, Vivado 2019.1 Xilinx
Synthesis Technology of FPGA platform and ASIC TSMC 45 nm standard cell typical libraries.

FPGA implementation
In FPGAs, a look-up-table (LUT) is a small asynchronous SRAMs that is used to implement combinational logic
circuits, while flip-flops are single-bit memory cells that are used to hold state. Table 10 shows the comparison of
Floating Point, Booth, and Vedic multiplier with the proposed methods, and it is implemented with the Xilinx
Vivado Artix-7 XC7A100T-CSG324 device specification. The proposed architecture of BVR-4 is compared with
the various multiplier techniques and shows a LUT (Look-up-table) and ADP improvement of 42%, 20% for a
bit-width of 4, for a bit-width of 8 it is 94% and 84%, and for 16-bit width range it is 96% and 90%. The proposed
architecture of BVR-8 is compared with the various multiplier techniques and shows a LUT (Look-up-table) and
ADP improvement of 89%, 83% for a bit-width of 4, for a bit-width of 8 it is 94% and 90%, and for 16-bit width
range it is 89% and 72% respectively. The area is calculated in terms of LUTs, Flip-flops, and configurable logic
blocks. This table shows a clear view that the proposed method of BVR-4 and BVR-8 is very efficient when we
combine the techniques of both Booth and Vedic multiplier concepts.

Figure 15 shows the graphical representation of the performance ratings of the LUTs with the existing mul-
tiplier. However, when all the parameters are considered together, it is evident from the graph that proposed
BVR-4 improves for higher bit-widths and BVR-8 shows a better improvement for smaller bit-widths. It has a
significant reduction in LUTs compared to existing multiplier architecture.

Figure 16 shows that the delay was decreased when compared with the prior state-of-the-art multipliers. It
shows the comparison of the delay for the proposed BVR-4 and BVR-8 with the existing multipliers.

All the architectures, exploiting the different number of bits for the operands and three different architectures,
are compared with the proposed method of BVR-4 and BVR-8 described for the techniques used and analyzed
the Area-Delay product it is shown in Fig. 17.

Figure 10. Worked out an example for BVR-4 of bit-width 4. P0 = X0Yn0, P1 = X1Yn0, P2 = X2Yn0 + X0Yn1,
P3 = X3Yn0 + X1Yn1, P4 = X2Yn1, P5 = X3Yn1, Final Product = P0 + P1 + P2 + P3 + P4 + P5.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Figure 11. Worked out an example for BVR-4 of bit-width 8. P0 = x0yn0, P1 = x1yn0,
P2 = x2yn0 + x0yn1, P3 = x3yn0 + x1yn1, P4 = x4yn0 + x2yn1 + x0yn2, P5 = x5yn0 + x3yn1 + x1yn2,
P6 = x6yn0 + x4yn1 + x2yn2 + x0yn3, P7 = x7yn0 + x5yn1 + x3yn2 + x1yn3, P8 = x6yn1 + x4yn2 + x2yn3,
P9 = x7yn1 + x5yn2 + x3yn3, P10 = x6yn2 + x4yn3, P11 = x7yn2 + x5yn3, P12 = x6yn3, P13 = x7yn3.

Table 6. Sign extension of 8-bits of Radix-4. Significant values are in bold.

8 7 6 5 4 3 2 1 0 PP

1 1 1 1 1 1 1 1 1 P0

1 1 1 1 1 1 1 1 – P1

0 0 0 0 0 0 1 – – P2

0 0 0 0 1 0 – – – P3

0 0 0 1 0 – – – – P4

0 0 0 0 – – – – – P5

0 0 0 1 1 0 0 0 1 Final product

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

ASIC implementation
The proposed architectures are realized in the ASIC environment to evaluate the efficiency of the design in terms
of the VLSI parameters like area, power, delay, Area Delay Product (ADP), and power delay-product (PDP). A
tool Command Language (TCL) script is written to automate the synthesis process of the Verilog HDL code in
Mentor Graphics. The design is synthesized for different operand sizes 4, 8, and 16 with TSMC 45 nm standard
cell typical libraries. The same process is repeated for the state-of-the-art multipliers considered for the com-
parison, and the results are given in Table 11.

Table 11 shows that the Proposed BVR-4 and BVR-8 multiplier architecture outperforms in all three aspects
followed by traditionally signed CSA and parallel prefix architecture because of less area, increased speed with
reduced power. If the number of transistors is optimized, it offers a better output of the proposed methods
of BVR-4 and BVR-8. So, 45 nm technology is significantly preferable to reduce area, power, and delay. In
45 nm BVR-4 architecture contains area improvement of 22%, power improvement of 7%, and speed improve-
ment of 50% for the bit-width of 4. While for the bit-width of 8, it shows an area improvement of 28%, power

Table 7. Sign extension of 16-bits of Radix-4. Significant values are in bold. The colored (highlighted) digits
represent the encoded value according to the Radix-4 and Radix-8 rules.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - P1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 - - P2
1 1 1 1 1 1 1 1 1 1 1 1 1 - - - P3
1 1 1 1 1 1 1 1 1 1 1 1 - - - - P4
1 1 1 1 1 1 1 1 1 1 1 - - - - - P5
1 1 1 1 1 1 1 1 1 1 - - - - - - P6
0 0 0 0 0 0 0 0 0 - - - - - - - P7
0 0 0 0 0 0 0 0 - - - - - - - - P8
0 0 0 0 0 0 0 - - - - - - - - - P9
0 0 0 0 0 0 - - - - - - - - - - P10
0 0 0 0 0 - - - - - - - - - - - P11
0 0 0 0 - - - - - - - - - - - - P12
0 0 0 - - - - - - - - - - - - - P13
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 Final product

Figure 12. Proposed architecture for BVR-8.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

improvement of 8%, and speed improvement of 61% and for the operand size of 16 it shows an area improvement
of 42%, power improvement of 1% and speed improvement of 84% when compared with the CSA architecture.
The proposed BVR-8 architecture contains an area improvement of 49%, power improvement of 13%, and speed
improvement of 62% for the bit-width of 4, while for the bit-width of 8, it shows an area improvement of 35%,
power improvement of 13% and speed improvement of 64%, for the operand size of 16 it shows an area improve-
ment of 44%, power improvement of 3% and speed improvement of 85%.

Figure 18 shows the BVR-4 architecture contains 0.035, 0.25 and 1.76 of Area-Delay Product for the Bit-width
range of 4, 8 and 16 when compared with the previous CSA and parallel prefix architecture in 45 nm ASIC stand-
ard cell libraries. For BVR-8 architecture it contains 0.001, 0.21, and 1.577 for the operand size of 4, 8 and 16.

Figure 19 shows the power-delay product comparison of BVR-4 and BVR-8 with the existing CSA and parallel
prefix architecture. It shows a PDP of 0.04, 0.02, and 0.03 for the BVR-4 method, and for BVR-8 it shows 0.002,
0.026, and 0.02 respectively.

Conclusion
In this paper, a new method of signed digit multiplication is presented. The proposed design is based on both
the techniques of Booth and the Vedic multiplier concept using the sutra of Urdhva-tiryakbhyam (criss-cross)
multiplication technique. First, the scope of the booth multiplier is extended to the Vedic multiplication to per-
form parallel processing at the stage of partial product reduction stage, which leads to a decreased propagation
delay. The propagation delay issue is resolved using an adder and in sign-magnitude representation. The proposed
design is found to have a high speed with minimal area consumption with various state-of-the-art architectures.
For Booth-Vedic-Radix-4 encoding (BVR-4) decreases area by 89% and improves area-delay product (ADP) by
72% for a 16-bit multiplier when subjected to the Conventional Radix-4 booth multiplier of different operand
sizes. The Booth-Vedic-Radix-8 (BVR-8) method shows that there will be an 89% reduction in area and improves

Figure 13. Worked out an example for BVR-8 of bit-width 4. P0 = X0Yn0, P1 = X1Yn0, P2 = X2Yn0,
P3 = X3Yn0 + X0Yn1, P4 = X1Yn1, P5 = X2Yn1, P6 = X3Yn1, Final Product = P0 + P1 + P2 + P3 + P4 + P5 + P6.

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Fi
gu

re
 1

4.
 W

or
ke

d
ou

t a
n

ex
am

pl
e f

or
 B

V
R-

8
of

 b
it-

w
id

th
 8

. P
0 =

 x0
yn

0,
 P

1 =
 x1

yn
0,

 P
2 =

 x2
yn

0,
 P

3 =
 x3

yn
0 +

 x0
yn

1,
 P

4 =
 x4

yn
0 +

 x1
yn

1,
 P

5 =
 x5

yn
0 +

 x2
yn

1,
 P

6 =
 x6

yn
0 +

 x3
yn

1 +
 x0

yn
2,

P7

 =
 x7

yn
0 +

 x4
yn

1 +
 x1

yn
2,

 P
8 =

 x5
yn

1 +
 x2

yn
2,

 P
9 =

 x6
yn

1 +
 x3

yn
2,

 P
10

 =
 x7

yn
1 +

 x4
yn

2,
 P

11
 =

 x5
yn

2,
 P

12
 =

 x6
yn

2,
 P

13
 =

 x7
yn

2.

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

ADP by 72% for the 16-bit multiplier. This work can be further incorporated into the image compression tech-
nique to achieve the rapid result.

Table 8. Sign extension of 8-bits of Radix-8. Significant values are in bold.

8 7 6 5 4 3 2 1 0 PP

1 1 1 1 1 1 1 1 1 P0

1 1 1 1 1 1 1 1 P1

1 1 1 1 1 1 1 P2

0 0 0 0 0 1 P3

0 0 0 0 1 P4

0 0 0 1 P5

0 0 0 P6

0 0 0 1 1 0 0 0 1 Final product

Table 9. Sign extension of 16-bits. Significant values are in bold. The colored (highlighted) digits represent the
encoded value according to the Radix-4 and Radix-8 rules.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - P1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 - - P2
1 1 1 1 1 1 1 1 1 1 1 1 1 - - - P3
1 1 1 1 1 1 1 1 1 1 1 1 - - - - P4
1 1 1 1 1 1 1 1 1 1 1 - - - - - P5
1 1 1 1 1 1 1 0 0 1 - - - - - - P6
0 0 0 0 0 0 0 1 0 - - - - - - - P7
0 0 0 0 0 0 1 0 - - - - - - - - P8
0 0 0 0 0 1 0 - - - - - - - - - P9
0 0 0 0 1 0 - - - - - - - - - - P10
0 0 0 1 0 - - - - - - - - - - - P11
0 0 1 0 - - - - - - - - - - - - P12
0 0 0 - - - - - - - - - - - - - P13
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 Final product

Table 10. FPGA synthesis results. Significant values are in bold.

Number of bit-width Multipliers LUTs Delay ADP

4

Floating point multiplier45 19 4.1 77.9

Booth multiplier46 16 4.1 65.6

Vedic multiplier47 16 4.6 73.6

Proposed method (Booth Vedic Radix-4) 11 5.363 61.996

Proposed method (Booth Vedic Radix-8) 2 6.461 12.922

8

Floating point multiplier45 118 4.7 554.6

Booth multiplier46 101 4.7 474.4

Vedic multiplier47 71 4.7 333.7

Proposed method (Booth Vedic Radix-4) 7 12.59 88.172

Proposed method (Booth Vedic Radix-8) 5 10.554 52.77

16

Floating point multiplier45 548 6.3 3452.4

Booth multiplier46 455 6.3 2866.5

Vedic multiplier47 294 7.6 2234.4

Proposed method (Booth Vedic Radix-4) 18 18.57 334.314

Proposed method (Booth Vedic Radix-8) 59 15.83 934.383

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

19

118

548

16

101

455

16

71

294

11

7

18

2

5

59

0 100 200 300 400 500 600

4

8

16

Number of LUTs

Bi
t R

an
ge

s

Comparison of LUTs

Proposed method
 (BVR-8)

Proposed method (BVR-4) [41] [43] [42]

Figure 15. Performance of LUTs for BVR-4 and BVR-8.

4.
1 4.
7 6.

3

4.
1 4.
7 6.

3

4.
6

4.
7

7.
6

5.
63

6

12
.5

96

18
.5

73

6.
46

1

10
.5

54

15
.8

37

0
2
4
6
8

10
12
14
16
18
20

6184

D
el

ay
(n

s)

Number of Bit-width

Comparison of Delay

[42] [43] [41] Proposed
method (BVR-4)

Proposed method
 (BVR-8)

Figure 16. Analysis of delay for BVR-4 and BVR-8.

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

77
.9

55
4.

6

34
52

.4

65
.6

47
4.

7

28
66

.5

73
.6 33

3.
7

22
34

.4

61
.9

96

88
.1

72 33
4.

31
4

12
.9

22

52
.7

7

93
4.

38
3

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 16

Ar
ea

-D
el

ay
 P

ro
du

ct

Input Number of bits width

Comparison of Area-Delay product

Rahnamaei, Ali, and
Gholamreza Zare Fatin ADP

Gowreesrinivas, K. V., and P.
Samundiswary ADP
Bianchi, Valentina, and Ilaria
De Munari
Proposed method(Radix-4)
ADP
Proposed method(Radix-8)
ADP

Figure 17. Comparison of Area-Delay Product for the proposed method of BVR-4 and BVR-8.

Table 11. Performance comparison of BVR-4 and BVR-8.

N Multipliers Area (µm2) Power (µW) Delay (ns) Area-delay product (ADP)-pm2*s
Power-delay product
(PDP)-pJ

4

CSA architecture48 114 11 0.8 0.09 0.008

Parallel-prefix architecture48 140 12 0.8 0.1 0.009

Proposed BVR-4 88 10.2 0.4 0.035 0.004

Proposed BVR-8 58 9.5 0.3 0.001 0.002

8

CSA architecture48 452 35 2.1 0.97 0.07

Parallel-prefix architecture48 587 40 0.8 0.46 0.03

Proposed BVR-4 322 32 0.8 0.25 0.02

Proposed BVR-8 291 30.23 0.75 0.21 0.026

16

CSA architecture48 2030 208 9.5 19.18 1.976

Parallel-prefix architecture48 2679 260 6.0 16.07 1.56

Proposed BVR-4 1176 205 1.5 1.76 0.03

Proposed BVR-8 1123 200 1.4 1.577 0.02

19

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

0.09 0.07

1.976

0.1 0.03

1.56

0.035 0.02 0.030.001 0.026 0.02
0.001

0.701

1.401

6184

Ar
ea

-D
el

ay
 P

ro
du

ct

Number of Bit-width

Comparison of Area-Delay product

CSA Architecture Parallel-prefix architecture Proposed BVR-4 Proposed BVR-8

Figure 18. Comparison of Area-Delay Product with existing multipliers.

0.
00

1

0.
50

1

1.
00

1

1.
50

1

4

8

16

0.008

0.07

1.976

0.009

0.03

1.56

0.004

0.02

0.03

0.002

0.026

0.02

Power-Delay Product

N
um

be
r o

f B
it-

w
id

th
s

Comparison of Power-Delay Product

Proposed BVR-8 Proposed BVR-4 Parallel-prefix architecture CSA Architecture

Figure 19. Comparison of power-delay product of proposed BVR-4 and BVR-8.

20

Vol:.(1234567890)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

Data availability
The data analyzed during the current study available from the corresponding author on reasonable request.

Received: 25 August 2023; Accepted: 13 December 2023

References
 1. Thakur, G., Sohal, H. & Jain, S. A novel parallel prefix adder for optimized Radix-2 FFT processor. Multidimens. Syst. Signal Process.

32(3), 1041–1063 (2021).
 2. Vassiliadis, S., Schwarz, E. M. & Hanrahan, D. J. A general proof for overlapped multiple-bit scanning multiplications. IEEE Trans.

Comput. 38(2), 172–183 (1989).
 3. Pour Ali Akbar, E. & Mosleh, M. An efficient design for reversible Wallace unsigned multiplier. Theor. Comput. Sci. 773, 43–52

(2019).
 4. Chang, Y.-J., Cheng, Y.-C., Liao, S.-C. & Hsiao, C.-H. A low power radix-4 booth multiplier with pre-encoded mechanism. IEEE

Access 8, 114842–114853 (2020).
 5. Abrar, M., Elahi, H., Ahmad, B. A., Ghayasudin, M. & Mughal, M. R. An area-optimized N-bit multiplication technique using

N/2-bit multiplication algorithm. SN Appl. Sci. 1(11), 1–6 (2019).
 6. Abed, S., Khalil, Y., Modhaffar, M. & Ahmad, I. High-performance low-power approximate Wallace tree multiplier. Int. J. Circuit

Theory Appl. 46(12), 2334–2348 (2018).
 7. Waters, R. S. & Swartzlander, E. E. A reduced complexity Wallace multiplier reduction. IEEE Trans. Comput. 59(8), 1134–1137

(2010).
 8. Jain, R. & Pandey, N. Approximate Karatsuba multiplier for error-resilient applications. AEU‑Int. J. Electron. Commun. 130, 153579

(2021).
 9. Gnanasekaran, R. A fast serial-parallel binary multiplier. IEEE Trans. Comput. 34(08), 741–744 (1985).
 10. Kang, J.-Y. & Gaudiot, J.-L. A simple high-speed multiplier design. IEEE Trans. Comput. 55(10), 1253–1258 (2006).
 11. Rubinfeld, L. P. A proof of the modified Booth’s algorithm for multiplication. IEEE Trans. Comput. 100(10), 1014–1015 (1975).
 12. Lo, H.-Y. High-speed signed digital multipliers for VLSI. Microprocess. Microprogramm. 29(4), 205–215 (1990).
 13. Ullah, S., Nguyen, T. D. A. & Kumar, A. Energy-efficient low-latency signed multiplier for FPGA-based hardware accelerators.

IEEE Embed. Syst. Lett. 13(2), 41–44 (2020).
 14. Fu, C., Zhu, X., Huang, K. & Gu, Z. An 8-bit Radix-4 non-volatile parallel multiplier. Electronics 10(19), 2358 (2021).
 15. Monica, Y., Naresh Kumar, K. & Veeramachaneni, S. Energy efficient signed and unsigned radix 16 booth multiplier design. Comput.

Electr. Eng. 90, 106892 (2021).
 16. Boro, B., Manikantta Reddy, K., Nithin Kumar, Y. B. & Vasantha, M. H. Approximate Radix-8 booth multiplier for low power and

high-speed applications. Microelectron. J. 101, 104816 (2020).
 17. Jose, B. A. & Radhakrishnan, D. Redundant binary partial product generators for compact accumulation in Booth multipliers.

Microelectron. J. 40(11), 1606–1612 (2009).
 18. Moss, D. J. M., Boland, D. & Leong, P. H. W. A two-speed, radix-4, serial-parallel multiplier. IEEE Trans. Very Large‑Scale Integr.

Syst. 27(4), 769–777 (2018).
 19. Ruiz, G. A. & Granda, M. Efficient implementation of 3X for radix-8 encoding. Microelectron. J. 39(1), 152–159 (2008).
 20. Jiang, H., Han, J., Qiao, F. & Lombardi, F. Approximate radix-8 booth multipliers for low-power and high-performance operation.

IEEE Trans. Comput. 65(8), 2638–2644 (2015).
 21. Patali, P. & Kassim, S. T. Efficient modular hybrid adders and Radix-4 booth multipliers for DSP applications. Microelectron. J. 96,

104701 (2020).
 22. Cui, X., Liu, W., Chen, X., Swartzlander, E. E. & Lombardi, F. A modified partial product generator for redundant binary multipli-

ers. IEEE Trans. Comput. 65(4), 1165–1171 (2015).
 23. Tomar, G. S. & George, M. L. Modified binary multiplier architecture to achieve reduced latency and hardware utilization. Wirel.

Person. Commun. 98(4), 3549–3561 (2018).
 24. Paramasivam, M. E. & Sabeenian, R. S. An efficient bit reduction binary multiplication algorithm using Vedic methods. In 2010

IEEE 2nd International Advance Computing Conference (IACC) 25–28 (IEEE, 2010).
 25. Deepa, A. & Marimuthu, C. N. Design of a high speed Vedic multiplier and square architecture based on Yavadunam Sutra. Sādhanā

44(9), 1–10 (2019).
 26. Biji, R. & Savani, V. Performance analysis of Vedic mathematics algorithms on reconfigurable hardware platform. Sādhanā 46(2),

1–5 (2021).
 27. Tiwari, H. D., Gankhuyag, G., Kim, C. M. & Cho, Y. B. Multiplier design based on ancient Indian Vedic mathematics. In 2008

International SoC Design Conference, Vol. 2, II-65 (IEEE, 2008).
 28. Kasliwal, P. S., Patil, B. P. & Gautam, D. K. Performance evaluation of squaring operation by Vedic mathematics. IETE J. Res. 57(1),

39–41 (2011).
 29. Prabhu, E., Mangalam, H. & Gokul, P. R. A delay efficient Vedic multiplier. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89, 257–268

(2019).
 30. Bansal, Y. & Madhu, C. A novel high-speed approach for 16 × 16 Vedic multiplication with compressor adders. Comput. Electr.

Eng. 49, 39–49 (2016).
 31. Huddar, S. R., Rupanagudi, S. R., Kalpana, M. & Mohan, S. Novel high speed Vedic mathematics multiplier using compressors.

In 2013 International Multi‑conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)
465–469 (IEEE, 2013).

 32. Padma, C., Jagadamba, P. & Ramana Reddy, P. Design of FFT processor using low power Vedic multiplier for wireless communica-
tion. Comput. Electr. Eng. 92, 107178 (2021).

 33. Barik, R. K., Pradhan, M. & Panda, R. Time efficient signed Vedic multiplier using redundant binary representation. J. Eng. 2017(3),
60–68 (2017).

 34. Srividya, B. V. & Kiran Kumar, T. A novel multiplier using vedic mathematics and booth encoding. J. Adv. Math. Comput. Sci. 26,
1–9 (2018).

 35. Reddy, B. N. K. Design and implementation of high performance and area efficient square architecture using Vedic Mathematics.
Analog Integr. Circuits Signal Process. 102(3), 501–506 (2020).

 36. Thamizharasan, V. & Kasthuri, N. High-speed hybrid multiplier design using a hybrid adder with FPGA implementation. IETE J.
Res. 1, 1–9 (2021).

 37. Barik, R. K., Pradhan, M. & Panda, R. Efficient conversion technique from redundant binary to non-redundant binary representa-
tion. J. Circuits Syst. Comput. 26(09), 1750135 (2017).

 38. Reddy, K. M., Vasantha, M. H., Nithin Kumar, Y. B. & Dwivedi, D. Design and analysis of multiplier using approximate 4-2 com-
pressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019).

21

Vol.:(0123456789)

Scientific Reports | (2023) 13:22379 | https://doi.org/10.1038/s41598-023-49913-5

www.nature.com/scientificreports/

 39. Shirzadeh, S. & Forouzandeh, B. High accurate multipliers using new set of approximate compressors. AEU Int. J. Electron. Com‑
mun. 138, 153778 (2021).

 40. Perumal, V. K., Jayabalan, R. & Krishnan, T. VLSI implementation of high speed multiplier architecture using VHBCSE algorithm
for DSP applications. Analog Integr. Circuit Signal Process. 113, 307–313 (2022).

 41. Sabeenian, D. R., Harirajkumar, J. & Akshaya, B. Review paper of multipliers-driven perturbation of coefficients for low power
operation in reconfigurable FIR filter. Turk. J. Physiother. Rehabil. 32, 2 (2017).

 42. Sabeenian, D., Paramasivam, D. & Versni, R. Implementation of speech command recognition for mathematical calculation using
fpga—A literature. Turk. J. Physiother. Rehabil. 32, 2 (2017).

 43. Paul, E. & Sabeenian, R. S. Modified convolutional neural network with pseudo-CNN for removing nonlinear noise in digital
images. Displays 74, 102258 (2022).

 44. Vijayashaarathi, S., Tamilselvam, V., Saranya, K., Harirajkumar, J. & Satheeskumar, L. Optimized arithmetic and logical unit design
using reversible logic gates. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem,
India, 2023 1597–1603 (2023).

 45. Gowreesrinivas, K. V. & Samundiswary, P. Comparative analysis of single precision floating point multiplication using compressor
techniques. In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) 2428–2433
(IEEE, 2017).

 46. Rahnamaei, A. & Fatin, G. Z. High speed 16× 16 bit booth multiplier based on novel 4-2 compressor structure. In 2018 1st Inter‑
national Conference on Advanced Research in Engineering Sciences (ARES) 1–5 (IEEE, 2018).

 47. Bianchi, V. & De Munari, I. A modular Vedic multiplier architecture for model-based design and deployment on FPGA platforms.
Microprocess. Microsyst. 76, 103106 (2020).

 48. Elango, S. & Sampath, P. Implementation of high-performance hierarchy-based parallel signed multiplier for cryptosystems. J.
Circuits Syst. Comput. 29(13), 2050214 (2020).

Acknowledgements
The authors are immensely grateful for the assistance and support provided by SONA SIPRO (Signal and Image
Processing Research centre)-Department of ECE, Sona College of Technology. The authors would like to thank
the HoD, Principal and Sona Management for the continuous support towards this research. We are thankful
for the resources, support and assistance that enabled us to complete this research.

Author contributions
C.M.K.: Data curation, Conceptualization, Methodology, Writing—original draft. R.S.S.: Supervision, Writ-
ing—review & editing.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.M.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A modular technique of Booth encoding and Vedic multiplier for low-area and high-speed applications
	Related work
	Proposed method
	Stage-I: PPG-booth encoding
	Radix-4 booth algorithm
	Rule for combining adjacent trits.

	Radix-8 Booth algorithm
	Rule for combining adjacent quads.

	Stage-II: PPR (Vedic multiplication)
	Stage-III-PPA-addition
	BVR-4-PPA
	BVR-8-PPA

	Results and discussion
	FPGA implementation
	ASIC implementation

	Conclusion
	References
	Acknowledgements

