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Transformer fault diagnosis 
method based on TLR‑ADASYN 
balanced dataset
Shan Guan , Haiqi Yang * & Tongyu Wu 

As the cornerstone of transmission and distribution equipment, power transformer plays a very 
important role in ensuring the safe operation of power system. At present, the technology of 
dissolved gas analysis (DGA) has been widely used in fault diagnosis of oil‑immersed transformer. 
However, in the actual scene, the limited number of transformer fault samples and the uneven 
distribution of different fault types often lead to low overall fault detection accuracy or a few types 
of fault misjudgment. Therefore, a transformer fault diagnosis method based on TLR‑ADASYN 
balanced data set is presented. This method effectively addresses the issue of samples imbalance, 
reducing the impact on misjudgment caused by a few samples. It delves deeply into the correlation 
between the ratio of dissolved gas content in oil and fault type, eliminating redundant informations 
and reducing characteristic dimensions. The diagnostic model SO‑RF (Snake Optimization‑Random 
Forest) is established, achieving a diagnostic accuracy rate of 97.06%. This enables online diagnosis 
of transformers. Comparative analyses using different sampling methods, various features, and 
diverse diagnostic models were conducted to validate the effectiveness of the proposed method. In 
conclusion, validation was conducted using a public dataset, and the results demonstrate that the 
proposed method in this paper exhibits strong generalization capabilities.

As a hub in electrical power systems, transformers directly influence the stability and reliability of power system 
operations. Therefore, accurately understanding the health status of transformers is of paramount importance 
for ensuring the safe and stable operation of the power system. When transformers experience insulation aging, 
gases such as  H2,  CH4,  C2H6,  C2H4,  C2H2, CO, and  CO2 dissolve in the insulating oil. The composition and con-
centration of dissolved gases can reflect the current operational status of the  transformer1. Common analysis 
methods include the IEC three-ratio  method2, Rogers’ ratio  method3, and the Duval  method4. Recent studies 
have optimized the coding of the three-ratio diagnosis using dissolved gases, further exploring transformer 
 diagnostics5. Additionally, a method based on fuzzy three-ratio and case matching for transformer fault diagnosis 
has been proposed, using the Euclidean distance method to calculate the similarity between target cases and 
cases in the selected subspace, with the method being validated through practical  examples6. However, these 
methods, while operationally straightforward, lack depth in characterizing fault features and have limitations, 
with fuzzy and unclear coding boundaries, leading to lower fault recognition  accuracy7. Scholars have proposed 
the use of non-coded ratio  methods8,9 after conducting extensive comparative experiments and literature reviews. 
These methods only require gas concentration ratios and utilize coding methods based on the percentage of 
key gases in total gases or total hydrocarbon concentrations to reflect the relationship between features and 
fault types. In Ref.10, by combining the non-coded ratio method with deep dense neural networks, a model’s 
judgment and generalization capabilities have been improved. In Ref.11, causing the non-coded ratio method, 
nine-dimensional fault features were extracted and directly input into the XGBoost diagnostic model, achiev-
ing a diagnostic accuracy of 92.7%. However, during the diagnosis process, as the dimensionality of features 
increases, redundant information also increases, leading to an increase in the computational complexity of the 
model. Thus, eliminating redundant information, reducing model computation time, and enhancing diagnostic 
accuracy are among the key focuses of this research.

With the development of machine learning theory, models such as Support Vector  Machines12,13 (SVM), 
Convolutional Neural  Networks14–16 (CNN), Extreme Learning  Machines17 (ELM), Long Short-Term Memory 
 Networks18,19 (LSTM) and U-Net20 have been effectively applied in classification and recognition. Yet, these 
methods require a large number of training samples, and in practical transformer operation, the fault rate is low, 
with varying frequencies of different fault types. It is challenging to meet the training requirements for artificial 
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intelligence diagnostics with imbalanced small samples. Currently, experts and scholars have conducted extensive 
research to address the imbalance in datasets, proposing solutions from both the sample and algorithm per-
spectives. Sample-based solutions include oversampling and undersampling methods. Undersampling achieves 
sample balance by removing some majority class samples but is prone to eliminating valuable information and 
is not widely  adopted21. Oversampling, on the other hand, balances the dataset by generating minority class 
 samples22–24. Algorithm-based solutions primarily include ensemble  learning25 and cost-sensitive  methods26. 
The ADASYN algorithm was used to augment minority class samples in a study, further enhancing equipment 
fault classification  performance27. Another study proposed enhancing sample intra-class feature aggregation by 
increasing the number of clusters based on imbalance degree and K-means  clustering28. This improved sam-
ple identifiability. Although these methods have reduced the occurrence of misclassification and omission of 
minority class samples to some extent, they do not consider boundary samples and noise when synthesizing new 
samples, resulting in the problem of fuzzy classification boundaries.

To address these issues, this paper tackles the problem of recognizing and classifying imbalanced small sample 
data from both the sample and algorithm levels, proposing a transformer fault diagnosis method based on a TLR-
ADASYN balanced dataset. Firstly, the influence of noise and boundary samples is eliminated before balancing 
the data. Secondly, to address the limitations of traditional diagnostic methods in characterizing complex internal 
fault features of transformers, multi-dimensional ratio features are constructed. These features delve deeper into 
the correlation between the ratios of dissolved gas contents in the oil and the state types, eliminating the impact 
of redundant information and improving operational efficiency. Finally, a transformer fault diagnosis model is 
established, and the effectiveness of the proposed method is validated through real-world data.

Synthetic oversampling of boundary samples based on Tomek link
ADASYN minority‑class sample synthesis technique
ADASYN is an adaptive data synthesis method proposed by He et al.29. The method adaptively synthesizes dif-
ferent numbers of new samples according to the distribution of minority samples. The specific algorithm steps 
are as follows.

Suppose the training set is D , which contains m samples, 
{

xi , yi
}

, i = 1, 2, . . . ,m , xi is represented as a sam-
ple of the feature space X , yi ∈ Y = {−1, 1} . ms and ml represent the number of minority samples and majority 
samples, respectively. Hence, ms ≤ ml and ms +ml = m exist.

Calculate class unbalance degree:

where d ∈ (0, 1].
Calculate the total number of samples of a few classes that need to be synthesized G:

where β ∈ [0, 1] is the random number of the interval, representing the unbalance degree after the generation 
of new data. β = 1 indicates that the positive/negative ratio after sampling is 1:1.

Calculate the proportion of majority classes in K-nearest neighbors:

According to the sample weight, calculate the number of new samples that need to be generated for each 
minority sample.

To calculate the number of samples generated for each minority sample according to g:

where Si is the synthesized new sample, Xi is the i-th sample in the minority sample, (xiz − xi) is the m-dimen-
sional vector representing the difference between the two minority samples, and � is the random number in the 
[0, 1] interval.

TLR‑ADASYN equilibrium dataset
Tomek30 improved the convolutional neural network in 1976 and proposed a new framework, which under-
sampled the boundary samples without destroying the potential information. Two adjacent samples of different 
classes can be connected into a Tomek Link. Its formation process is as follows:

Suppose there are two types of sample sets C1 and C2 , and the corresponding samples are ui(i ∈ {l, . . . , n}) 
and vi(i ∈ {l, . . . ,m}) respectively. Define distance dist(ui , vi) = �ui − vi� , If there are no other samples vp or 
uq that satisfy the conditions of dist

(

uq, vj
)

< dist
(

ui , vj
)

 or dist
(

uq, vj
)

< dist
(

ui , vj
)

 . Thus, 
(

ui , vj
)

 can form a 
pair of Tomek chain.

For each ui ∈ C1 , find the nearest vp ∈ C2 , form a chain l12 set and save it.

For each vj ∈ C2 , find the nearest C2 , form a chain l12 set and save it.

(1)d =
ms

ml
,

(2)G = (ml −ms)× β ,

(3)ri =
�i

K
.

(4)g = G × r̂i .

(5)Si = (xiz − xi)× �,

(6)l12 =
{(

µi − vp
)

|µi ∈ C1

}

.
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l12 and l21 constitute Tomek link �:

Tomek Link reduces noise and boundary data by eliminating problematic pairs. To prevent the classifier 
from favoring the majority class too much, ADASYN expands the minority class data, addressing the bias issue.

Transformer fault diagnosis model based on SO‑RF
Random forest
RF31 belongs to one of the integrated algorithms and it is a set {h(X, θk), k = 1, 2, . . . , n} composed of k decision 
tree classification models, the set is extracted by Booststrap sampling method, and the final classification result 
is obtained by subtree voting. The steps to build an RF classification model are as follows.

Step 1 Using Booststrap sampling, samples with the same capacity are drawn from the training set N to 
generate the training subset.

Step 2 It is assumed that the training subset has S features, and s samples selected at random are taken as the 
split feature subset and split by CART algorithm.

Step 3 Repeat Step1 to Step2 for n times to generate subtree and build RF model.
Step 4 Test sets are used to verify the reliability of RF models, and the final classification results are decided 

by voting.

Snake optimization algorithm
Snake Optimization  algorithm32 is a new meta-heuristic algorithm proposed in 2022, which mainly simulates the 
foraging and reproduction behavior of snakes. The algorithm has the advantages of simple principle and good 
optimization performance. The specific principle is as follows.

Initialize
Snake population initialization is shown in Eq. (9):

where Xi is the position of the i-th snake; r is a random number in the range [0,1]; Xmax and Xmin are the upper 
and lower boundaries.

The population was divided into two groups, male and female, and Temp and Q were defined
Suppose the number of males is 50% and the number of females is 50%. The population is divided into two 
groups: male and female. Define the temperature Temp and the amount of food Q, and find the best individual 
in each group. Temp and Q can be expressed by formulas (10) and (11):

where t represents the current number of iterations; T is the maximum number of iterations; c1 is a constant, 
usually 0.5.

Exploration phase
If Q < Threschold(0.25) , the snake randomly selects a location to search for food and updates the location. The 
exploration phase is shown in Eq. (12):

where Xi,m is the male position; Xrand,m is the location of the randomly selected male; rand is the random number 
of [0,1]; c2 is a constant, usually 0.05; Am The ability to find food for males.

Development phase
Under conditions Q > Threschold is satisfied, if Q > Threschold(0.6) , the snakes are in a hot state and looking 
for food, the position is updated as shown in Eq. (13):

where Xi,f  is the position of the snake individual; Xfood is the optimal position of individual snake. rand is the 
random number of [0,1]; c3 is a constant, usually 2.

If Q < Threschold(0.6) , the temperature is cold, the snake will be in fight mode or mating mode.
① Combat pattern

(7)l21 =
{(

µq − vj
)∣

∣vj ∈ C2

}

.

(8)
∏

= l12 ∩ l21.

(9)Xi = Xmin + r × (Xmax − Xmin),

(10)Temp = exp

(

−t

T

)

,

(11)Q = c1 × exp

(

t − T

T

)

,

(12)Xi,m(t + 1) = Xrand,m(t)± c2 × Am × ((Xmax − Xmin)× rand + Xmin),

(13)Xi,j(t + 1) = Xfood(t)± c3 × Temp× rand ×
(

Xfood − Xi,j(t)
)

,
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where Xi,m is the position of the i-th male; Xbest,f  is the best position in female snake group. rand is a random 
number [0,1]; FM is the male fighting force.

② Mating pattern

where Xi,m is the position of the i-th male; Xi,f  is the position of the i-th female; rand is a random number [0,1]. 
Mm and Mf  represent the mating ability of males and females, respectively.

The specific implementation flow of SO algorithm is shown in Fig. 1.

Kernel principle component analysis
KPCA33 is a method that transforms defective sample data into a high-dimensional space using a kernel function, 
then acquires essential low-dimensional data features within a linear subspace. This approach both maximizes 
the preservation of critical fault information and removes correlations among fault features. The specific steps 
can be described as follows:

Mapping the faulty dataset to a high-dimensional space � ,  forming a new dataset 
�(ei) = {�(e1),�(e2), . . . ,�(en)}, i = 1, 2, . . . , n . Assuming the samples in the high-dimensional space are 
already centered, the covariance matrix is as shown in Eq. (17):

Introducing the kernel function K∗η = �T� , perform feature decomposition on the data in C, as shown 
in Eq. (18):

where � represents the eigenvalues, and η represents the eigenvectors.
Setting the cumulative contribution rate to 85%, arrange them in descending order and select the top c eigen-

values �j
(

j = 1, 2, . . . , c
)

 along with their corresponding eigenvectors ηj
(

j = 1, 2, . . . , c
)

 , as specified in Eq. (19):

(14)Xi,m(t + 1) = Xi,m(t)+ c3 × FM × rand ×
(

Q × Xbest,f − Xi,m(t)
)

,

(15)Xi,m(t + 1) = Xi,m(t)+ c3 ×Mm × rand ×
(

Q × Xi,f − Xi,m(t)
)

,

(16)Xi,f (t + 1) = Xi,f (t)+ c3 ×Mf × rand ×
(

Q × Xi,m − Xi,f (t)
)

,

(17)C =
1

n

n
∑

i=1

�(ei)�
(

ej
)T

=
1

n
��T .

(18)K∗η = �η,
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Figure 1.  SO algorithm flow chart.
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When the cumulative contribution rate reaches the specified requirement, calculate the nonlinear samples 
G after dimensionality reduction mapping, as specified in Eq. (20):

Fault diagnosis flow of transformer under unbalanced small sample condition
In this paper, an effective transformer fault diagnosis method is proposed from three perspectives: category 
unbalance processing, feature extraction and pattern recognition. The specific flow chart is shown in Fig. 2, 
which mainly includes two stages: offline model training and online recognition.

The off-line model training stage is mainly divided into the following four steps.
Step 1 Standardize the collected DGA sample data, use TLR to remove the boundary data and noise of the 

training set, and then use ADASYN to expand the data of a few classes of samples.
Step 2 The 18-dimensional feature is constructed by using the code-free ratio method, and the feature fusion 

is carried out by KPCA to remove the redundant information, and then divided into the training set, verification 
set and test set according to the proportion.

Step 3 Optimize the parameters of n_estimators and max_depth of decision tree in RF model by SO algorithm.
Step 4 Verify the accuracy of each iteration model with verification set. When the accuracy is improved less 

than 0.001 after two consecutive trainings, complete the model training and save the model parameters; other-
wise, re-train the model until the conditions are met. Then the test set is sent into the trained SO-RF model to 
check the diagnostic accuracy of the model.

The online identification stage is mainly divided into the following three steps.
Step 1 Normalize the transformer fault samples collected in real time.
Step 2 The 18-dimensional feature is constructed using the uncoded ratio method, and then the fusion feature 

is obtained by projecting to the best principal element.
Step 3 Feed the fusion features into the optimal classification model to identify the transformer state.

(19)

s
∑

j=1
�j

s
∑

i=1
�i

≥ 85%.

(20)G =





n
�

j=1

ηi�(ei)
T



 = ηT [�(e1, e),�(e2, e), . . . ,�(ei , e)]
T .
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Figure 2.  Fault diagnosis flow chart.
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Model evaluation index
In traditional transformer fault diagnosis, the commonly used diagnostic metric is the accuracy rate, which is a 
single measure and doesn’t effectively distinguish between misclassifications and missed detections. To address 
this limitation, this paper introduces several comprehensive accuracy metrics for transformer fault diagnosis, 
including the recall ratio (R), precision ratio (P), Kappa coefficient, and F1 index. The recall ratio (R) represents 
the rate of missed detections for a specific fault type, while the precision ratio (P) represents the rate of misclas-
sifications for a specific fault type. In practical scenarios, the recall rate may be high while the accuracy rate is 
low, or vice versa. To balance both aspects, the F1 index is introduced. The F1 index is a measure of the harmonic 
average between the recall rate and precision rate. A higher F1 value indicates better model performance. The 
specific formula is as follows:

where TP indicates that the fault sample is determined. And determine the correct number; FP represents the 
number of normal sample decisions made, but the decision is wrong; FN indicates the number of normal sample 
decisions made, but the decision is wrong.

The Kappa coefficient formula is as follows:

where  P0 is the sum of the number of correctly classified samples of each class divided by the total number of sam-
ples; Pe is the sum of the product of the actual and predicted quantities for all categories, divided by the square 
of the total number of samples. Generally, the results of Kappa calculation fall between [0,1] and can be divided 
into five groups to represent different levels of consistency, namely: very low consistency, general consistency, 
medium consistency, high consistency and almost complete consistency. When used as an evaluation index of 
the model, the closer the calculated value is to 1, the better the diagnostic effect of the model is.

Example analysis
In this paper, 338 sets of monitoring data provided by a power supply company in Zhejiang, China, were selected 
as a sample set, including 7 different operating states of medium discharge and overheat, low temperature over-
heat, high temperature overheat, partial discharge, low energy discharge, high energy discharge and normal, 
which were respectively represented by labels 1–7. Each operating state includes five characteristic gases,  H2, 
 CH4,  C2H4,  C2H6 and  C2H2. The number of samples for each category is shown in Table 1.

Transformer fault data preprocessing and feature selection
When the transformer fails, the composition and concentration of dissolved gas in the insulation oil will change. 
Therefore, the content of dissolved  H2,  CH4,  C2H4,  C2H6 and  C2H2 in the transformer oil is used as the basis for 
transformer fault diagnosis. The content of each gas is normalized, as shown in formula (25):

where xi and x∗i  are the characteristics before and after normalization; ximax and ximin represents the original 
minimum and maximum values before normalization. In order to deeply explore the correlation between the 
ratio of dissolved gas content in oil and the fault type, the 18-dimensional joint feature is constructed by using 
the non-coding ratio method. Where, THC =  CH4 +  C2H4 +  C2H6 +  C2H2, ALL =  H2 +  CH4 +  C2H4 +  C2H6 +  C2H2, 
as shown in Table 2.

(21)R = TP/(TP + FN),

(22)P = TP/(TP + FP),

(23)F1 = 2PR/(P + R),

(24)k = (P0 − Pe)
/

(1− Pe),

(25)x∗i =
xi − xi min

xi max − xi min
,

Table 1.  Category label and sample distribution.

Transformer status type Sample size Class tag

Normal 151 1

High temperature superheating 64 2

Medium and low temperature superheating 36 3

High energy discharge 32 4

Low energy discharge 25 5

Partial discharge 20 6

Discharge and superheat 10 7
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Data balancing processing
As indicated in Table 1, normal samples constituted 45.07% of the total samples, while partial discharge, low-
energy discharge, and discharging-over-heat samples represented 7.40%, 5.92%, and 2.99% of the total samples, 
respectively. Such data imbalance could lead to the misclassification of a few samples as normal, resulting in 
diminished recognition accuracy. To address this issue, this paper employs the TLR algorithm to filter out noise 
and boundary data from the training set. Subsequently, the ADASYN algorithm is utilized to augment the num-
ber of fault samples. The distribution of sample quantities before and after this processing is presented in Table 3. 

Feature selection
To mitigate the inclusion of redundant information in fault features, Kernel Principal Component Analysis 
(KPCA) was utilized to integrate the constructed 18-dimensional joint features. The contribution rates and cumu-
lative contribution rates of each principal component are visualized in Fig. 3. Within this figure, it is evident that 

Table 2.  Characteristic coding and characteristic quantity of dissolved gas in oil.

Feature coding Characteristic quantity Feature coding Characteristic quantity

1 CH4/H2 10 C2H4/THC

2 C2H2/H2 11 C2H6/THC

3 C2H2/C2H4 12 C2H2/THC

4 C2H4/C2H6 13 (CH4 +  C2H4)/THC

5 C2H6/CH4 14 H2/ALL

6 C2H2/CH4 15 CH4/ALL

7 C2H4/CH4 16 C2H2/ALL

8 H2/THC 17 C2H4/ALL

9 CH4/THC 18 C2H6/ALL

Table 3.  Comparison before and after fault sample preprocessing.

Transformer status type Number of raw training data Amount of data after balanced processing

Normal 151 151

High temperature superheating 64 151

Medium and low temperature superheating 36 151

High energy discharge 32 151

Low energy discharge 25 151

Partial discharge 20 151

Discharge and superheat 10 151

1 2 3 4 5 6 7 8 9 10
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Figure 3.  Cumulative contribution rate.
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the initial principal component encompasses the majority of feature information, and as the number of principal 
components increases, the volume of feature information decreases. The cumulative contribution rate associated 
with each principal component was calculated as per Formula (19) and is presented in Table 4.

As illustrated in Table 4, the cumulative variance contribution rate of the first seven principal components 
reaches 0.876. This signifies that these initial seven principal components capture over 85% of the explanatory 
power inherent in all principal components. Consequently, the first seven principal components are chosen as 
the inputs for the transformer fault diagnosis model. To further underscore the efficacy of KPCA feature fusion, 
two-dimensional scatter plots are generated for distinct principal components, as visualized in Fig. 4. The scatter 
plot in Fig. 4 reveals that the clustering effect is most pronounced in the first and second principal components, 
with the clustering effect diminishing progressively for subsequent principal components.

Fault diagnosis result
Fusion features extracted from KPCA were divided into training set, test set and verification set according to 
the ratio of 6:2:2, as shown in Table 5.

To obtain the optimal diagnostic model, the SO algorithm was employed to optimize the n_estimators and 
max_depth of decision trees within the RF model. A population size of 30 and a maximum iteration count of 100 
were set. The search range for the number of decision trees was (0, 100), and the search range for decision tree 
depth was (0, 20). The simulations in this study were conducted using MATLAB 2018b software, and the resulting 
confusion matrix is shown in Fig. 5. From Fig. 5, it can be observed that out of the 204 samples in the test set, 
198 were correctly diagnosed, resulting in an overall accuracy of 97.06%. Specifically, the accuracy of diagnosing 
medium and low-temperature overheating, partial discharge, and combined discharge and overheating faults was 
100%. Based on the data in the confusion matrix, the diagnostic model’s precision (P), recall (R), and F1-score 
were calculated as 0.9704, 0.9711, and 0.9707, respectively. Additionally, the Kappa coefficient of the diagnostic 
model was 0.9659, indicating almost perfect agreement, further confirming the high fault recognition accuracy 
and excellent stability of the model proposed in this study.

Results and discussion
Qualitative and quantitative analysis of TLR‑ADASYN data equalization
To validate the effectiveness of the TRL-ADASYN sampling method, this study conducts a comprehensive perfor-
mance comparison of various sampling methods, combining qualitative observations with quantitative analysis. 
Firstly, to visually demonstrate that the TRL-ADASYN sampling method successfully augments the sample size 
while preserving essential data characteristics, the study employs t-distributed Stochastic Neighbor Embedding 
(t-SNE)34 to map transformer dissolved gas data into a three-dimensional space for visualization, as depicted 
in Fig. 6. In Fig. 6, the blue dots represent samples after applying the sampling method, while the orange dots 
represent samples before sampling. Within this three-dimensional coordinate graph, it becomes evident that the 
data distribution patterns of different fault types remain consistent both before and after the implementation of 
the TRL-ADASYN sampling method. Furthermore, the statistical characteristics align, providing compelling 
evidence for the validity and reliability of the augmented data.

Secondly, we conducted a quantitative comparison of the performance of various sampling methods, evaluat-
ing five different treatment approaches, namely, non-equilibrium dataset, random oversampling, SMOTE over-
sampling, ADASYN oversampling, and ROS downsampling. The resulting diagnostic outcomes are presented in 
Table 6. As illustrated in Table 6, the diagnostic accuracy of the original dataset, without undergoing any balanc-
ing processing, stood at 88.24%, accompanied by a Kappa coefficient of 0.8654. The adoption of oversampling 
or downsampling algorithms led to varying degrees of improvement in diagnostic accuracy. However, when the 
downsampling algorithm was employed, valuable information was lost due to the removal of a portion of the 
majority class sample data. Comparatively, in contrast to ADASYN, SMOTE, and random oversampling, the 
diagnostic accuracy of the method proposed in this paper increased by 0.59%, 1.96%, and 4.41%, respectively. 
Furthermore, the Kappa coefficient also witnessed an increase of 0.0057, 0.0224, and 0.0505, respectively. The 
experimental results conclusively demonstrate that the approach introduced in this paper effectively addresses 
the issue of insufficient sample distribution in certain classes, mitigating the potential decline in diagnostic 
accuracy caused by a model’s inclination toward the majority class samples.

Table 4.  Cumulative contribution rates of variance for each principal components.

The number of principal components 1 2 3 4 5 6

Variance values 27.2308 20.3735 16.8472 9.3583 5.6418 4.5176

Cumulative contribution rate (%) 27.2308 47.6043 64.4515 73.8098 79.4516 83.9692

The number of principal components 7 8 9 10 11 12

Variance values 3.6268 3.1760 2.4942 2.1714 1.8969 1.0946

Cumulative contribution rate (%) 87.596 90.7736 93.2678 95.4392 97.3361 98.4307

The number of principal components 13 14 15 16 17 18

Variance values 0.6905 0.4741 0.2336 0.1201 0.0440 0.0007

Cumulative contribution rate 99.1212 99.5953 99.8289 99.4940 99.9930 100
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Comparative analysis of diagnostic results under different characteristics
The use of KPCA feature extraction also has a significant impact on improving diagnostic accuracy. In this study, 
oversampled IEC three-ratio features, Rogers’ four-ratio features, 18-dimensional joint features, and the first 7 
dimensions of features extracted using principal component analysis were analyzed and compared, as shown 
in Fig. 7. In the figure, the red dots represent samples in the test set that were correctly classified, while the blue 
circles represent samples with their true classifications. The scattered points indicate samples misclassified as 
other categories, and a higher number of scattered sample points indicates lower diagnostic accuracy. From 

Figure 4.  Scatter plot of different principal elements.
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Fig. 7, it can be observed that the use of IEC three-ratio features and Rogers’ four-ratio features have more scat-
tered points compared to the 18-dimensional joint features, indicating that the 18-dimensional joint features 
are better at exploring the relationship between fault types and dissolved gases in the oil. Table 7 shows that the 
corresponding Kappa coefficients for the four different features are 0.9433, 0.9209, 0.8821, and 0.8543. Using 
KPCA fusion features reduced the feature dimensionality, significantly improving fault diagnosis accuracy, thus 
confirming the superiority of this method.

Comparative analysis of different fault diagnosis models
To illustrate the effectiveness of this diagnosis method, comparison and analysis were made with GA-XGBoost 
diagnosis model proposed in Ref.35, PSO-BiLSTM diagnosis model proposed in Ref.36 and WOA-SVM diagno-
sis model proposed in Ref.37, and the diagnostic results were shown in Table 8. It shows the superiority of the 
diagnostic model proposed in this paper.

The 7-dimensional fused and dimensionally reduced features were separately input into three different mod-
els, GA-XGBoost, PSO-BiLSTM, and WOA-SVM, for comparative analysis against the diagnostic model pro-
posed in this study. The diagnostic results are shown in Fig. 8, and the model evaluation metrics are compared 
in Table 9. From the information presented in the figure and the table, it can be observed that the SO-RF model 
had the fewest misclassified samples, resulting in an accuracy improvement of 1.47%, 2.45%, and 3.43% com-
pared to the GA-XGBoost, PSO-BiLSTM, and WOA-SVM diagnostic models, respectively. In comparison with 
the recognition accuracy in the original literature, the improvement was 1.91%, 1.13%, and 1.54%, respectively. 
Furthermore, in terms of evaluation metrics such as recall, precision, and F1 score, the method proposed in this 
study exhibits more stable performance compared to other models. From the perspective of the Kappa coefficient, 
the method presented in this study achieved a score of 0.9546, indicating almost perfect agreement. This further 
underscores the effectiveness of the feature extraction method and fault diagnostic model proposed in this study.

The generalization performance analysis of the model
Additional datasets were employed to assess the model’s ability to generalize. Specifically, the IEC TC  1038 public 
dataset was selected for this purpose. In accordance with the categorization provided in Ref. 39, transformer fault 

Table 5.  Distribution of sample data.

Transformer status type Training set Validation set Test set

Normal 93 29 29

High temperature superheating 93 29 29

Medium and low temperature superheating 93 29 29

High energy discharge 93 29 29

Low energy discharge 93 29 29

Partial discharge 93 29 29

Discharge and superheat 91 30 30
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Figure 5.  Confusion matrix of fault diagnosis classification.
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types were classified into six categories: medium and low-temperature overheating, high-temperature overheat-
ing, low energy discharge, high energy discharge, partial discharge, and normal operation, denoted as labels 
1 to 6, respectively. Leveraging the diagnostic techniques proposed in this study, the diagnostic outcomes are 
presented in Table 10.

As depicted in Table 10, the diagnostic accuracy for the IEC TC 10 dataset stands at 93.98%, accompanied by 
a Kappa coefficient of 0.9276. This underscores the robust generalization capabilities of the approach introduced 
in this paper when compared to the previously cited model.

Figure 6.  Data distribution trend of different types of faults before and after balanced processing.
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Table 6.  Diagnostic results under different sampling methods.

Data enhancement method Accuracy rate (%) Kappa coefficient

TRL-ADASYN 97.06 0.9659

ADASYN 95.59 0.9489

SMOTE 94.12 0.9322

Random oversampling 91.67 0.9041

ROS downsampling 88.24 0.8654

Unbalanced data sets 78.57 0.7164

(a) PCA Fusion features (b) 18 dimensional joint features

(c) Rogers four-ratio features (d) IEC three-ratio features
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Figure 7.  Comparison of diagnostic results of different feature inputs.

Table 7.  Comparison of Kappa coefficients of different characteristics.

Features name KPCA Fusion feature PCA Fusion features 18 dimensional joint features Rogers four ratio features IEC ratio features

Kappa coefficient 0.9659 0.9567 0.8587 0.8824 0.7592
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Table 8.  Comparison of diagnostic results of different models.

Model name GA-XGBoost PSO-BiLSTM WOA-SVM SO-RF

Diagnostic accuracy 92.70% 92.50 91.11% 96.08%

(a) SO-RF (b) GA-XGBoost

(c) PSO-BiLSTM (d) WOA-SVM
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Figure 8.  Comparison of results of different diagnostic models.

Table 9.  Comparison of model evaluation indexes.

Diagnostic model name GA-XGBoost PSO-BiLSTM WOA-SVM SO-RF

Recall ratio 0.9507 0.9460 0.9409 0.9704

Precision ratio 0.9515 0.9466 0.9431 0.9711

F1 value 0.9511 0.9463 0.9420 0.9707

Kappa coefficient 0.9620 0.9377 0.9321 0.9659

Diagnostic accuracy 95.10% 94.61% 94.12% 97.06%
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Conclusion
Aiming at the problem of misjudgment and missing judgment of a few types of samples caused by unbalanced 
transformer fault samples, a transformer fault diagnosis method under the condition of unbalanced small samples 
is proposed, and the following conclusions are drawn through practical data simulation:

(1) The TLR-ADASYN method adopted in this paper can effectively solve the problem of low diagnostic accu-
racy caused by insufficient and unbalanced transformer fault sample data. In addition, the use of KPCA 
for feature fusion can avoid the appearance of redundant information and further improve the accuracy 
of the model.

(2) Compared with GA-XGBoost, PSO-BiLSTM and WOA-SVM diagnostic models, the accuracy of SO-RF 
model proposed in this paper reached 96.08%, and the Kappa coefficient reached 0.9546, which were 
superior to other models. The results show that SO-RF model has better stability and generalization.

However, using dissolved gases in oil as an early diagnostic method for transformers, relying solely on these 
gases as input features is insufficient to reflect the overall condition of the transformer. Therefore, future work 
can collect vibration signal data as additional input for the model. Furthermore, the diagnostic model proposed 
in this paper did not take into account external factors and the influence of the transformer’s inherent charac-
teristics on fault diagnosis accuracy. Subsequent research should consider the impact of external factors on the 
fault diagnosis model.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due [The data set is a 
company secret] but are available from the corresponding author on reasonable request. E-mail: xhaiqi0526@163.
com.
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