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Temporal segmentation of EEG 
based on functional connectivity 
network structure
Zhongming Xu 1,2,3, Shaohua Tang 2,3, Chuancai Liu 4, Qiankun Zhang 4, Heng Gu 4, Xiaoli Li 4, 
Zengru Di 1 & Zheng Li 2*

In the study of brain functional connectivity networks, it is assumed that a network is built from a 
data window in which activity is stationary. However, brain activity is non-stationary over sufficiently 
large time periods. Addressing the analysis electroencephalograph (EEG) data, we propose a data 
segmentation method based on functional connectivity network structure. The goal of segmentation 
is to ensure that within a window of analysis, there is similar network structure. We designed an 
intuitive and flexible graph distance measure to quantify the difference in network structure between 
two analysis windows. This measure is modular: a variety of node importance indices can be plugged 
into it. We use a reference window versus sliding window comparison approach to detect changes, as 
indicated by outliers in the distribution of graph distance values. Performance of our segmentation 
method was tested in simulated EEG data and real EEG data from a drone piloting experiment (using 
correlation or phase-locking value as the functional connectivity strength metric). We compared our 
method under various node importance measures and against matrix-based dissimilarity metrics that 
use singular value decomposition on the connectivity matrix. The results show the graph distance 
approach worked better than matrix-based approaches; graph distance based on partial node 
centrality was most sensitive to network structural changes, especially when connectivity matrix 
values change little. The proposed method provides EEG data segmentation tailored for detecting 
changes in terms of functional connectivity networks. Our study provides a new perspective on EEG 
segmentation, one that is based on functional connectivity network structure differences.

Neural activity involves information exchanges via connections at the cellular scale to the cortical scale. A power-
ful approach to understanding neural activity is analyzing the information exchanges, quantified via metrics on 
relatedness of neural data time series called functional connectivity measures. Particularly, analyzing the graphs 
(functional connectivity networks) built from neural data using complex network theory offers new methods 
for understanding and decoding brain activity.

Electroencephalograph (EEG) is a widely used neural activity recording method, and there are many EEG-
based studies on functional connectivity  networks1–8. The typical abstraction assumes a recording electrode or 
channel (corresponding roughly to a brain region) is a network node. Synchronized oscillations (coherence or 
correlation) between channels indicate the strength of edges (functional connections between brain regions). 
In these studies, functional connectivity networks are constructed and then analyzed to examine the relation-
ship between different mental states, actions, or sensations and functional connectivity network structure. For 
example, by assessing network statistics at the global (network topology) and local (interregional connectivity) 
levels, Parkinson’s patients have been shown to have decreased functional connectivity and loss of frontotempo-
ral connectivity with cognitive  deterioration6. Mean cluster coefficients of both theta (4–7 Hz) and alpha (8–13 
Hz) bands are lower when eyes are open during resting state versus when eyes are closed, and local efficiency is 
 lower7. Music perception shows higher functional connectivity and enhanced small-world network organization 
compared to listening to noisy and silent  backgrounds8.

In functional connectivity network analysis, a key assumption is the stationarity of the signal within the 
analysis  scope9. Due to switching among inherent metastable states of neural assemblies during brain function 
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and different time scales involved in the dynamical processes of cognition, EEG signals are non-stationary10. 
Here, non-stationarity means that the signal’s statistical characteristics change over time. Detecting the times 
at which changes occur is a critical issue to functional connectivity analysis: we must carefully set the window 
start and stop times to ensure stationarity within a connectivity analysis window so that connectivity metrics do 
not “blend” patterns from two or more qualitatively different functional networks. Thus, careful segmentation 
of EEG signals is a necessary step before analyses. Segmentation methods for EEG data have been proposed, 
which divide recorded data into time segments wherein statistics of data (thus hopefully brain function) are 
quasi-quiescent to a certain degree.

There currently exist many methods for EEG segmentation. Generally, they can be divided into two categories: 
single-channel and multi-channel. Many methods exist for single-channel segmentation. For example, when we 
assume that data belonging to the same segment is subject to a time-invariant model, the statistical properties 
of the model fitting error can be used as the criterion for  segmenting11. There are other methods that segment 
based on statistical  metrics12,13: boundaries are declared when test metrics significantly change. Multi-channel 
methods are needed to examine stationarity in terms of connectivity and interacting brain regions.

Existing methods based on multiple channels target different problems and statistical properties. One 
approach segments EEG based on structure as captured by the tensor  decomposition14. A microstate analysis 
method based on functional connectivity graphs has been  proposed15. Some studies have proposed features 
of functional connectivity for segmentation of electrophysiological data. They use analytical methods such as 
hidden Markov model (HMM), stochastic variational inference, and multi-dynamic adversarial generator-
encoder (MAGE) to determine recurring brain  states16–22. Another  method23 detects time points at which there 
are changes in the spatial distribution of EEG voltage. Although there are several multi-channel segmentation 
methods and derivative methods, there are currently few segmentation methods specifically designed to detect 
functional connectivity network structure changes. In the analysis of brain functional connectivity networks, 
network structure reflects brain states mainly through indices that quantify node centrality, community structure, 
and connection density. As a precursor to these analyses, it is more straight-forward to segment EEG based on 
network structure directly via tests on these indices. To this end, we propose a method for segmenting based 
on these network structure features. Our network-based temporal segmentation approach has some similarities 
with the EEG microstate approach. Both segment EEG based on brain activity patterns; the EEG microstate 
approach segments based on matching to the predefined limited number of repeating brain states, and can be 
seen as an example of a multi-channel segmentation approach. We here segment based on functional connectiv-
ity network structural changes.

We here aim to build an EEG segmentation method which detects changes in functional connectivity on 
the graph structure level, using measures (indices) on graph structure as the basis of change detection. We 
aim to be agnostic to the functional connectivity metric used to build the graph, and we aim to allow different 
graph structure measures to be plugged into our framework, providing flexibility for different applications. Our 
contribution is an EEG segmentation method that looks for statistically significant changes in graph structure 
measures computed at each node (node importance indices, see Table 1). We evaluate our method on simulated 
data and real EEG data.

To quantify the difference in network structure between two windows of data, we propose an intuitive and 
flexible graph distance framework and use a sliding window comparison procedure to test if distance changes 
are significant (see “Sliding window change detection”). One of six node importance indices can be plugged into 
this graph distance framework. Different node importance indices examine different properties of networks. We 
compare our method to methods which segment based on distances computed not from graph structure, but 
from functional connectivity matrices directly (see “Comparison algorithms”).

To test our segmentation method, we simulated data wherein known network structure changes occur (see 
“Simulation results”). We also apply our method on real EEG data (see “Real EEG Data Results”), where con-
nectivity was calculated by Pearson correlation or phase-locking value (PLV), though our method can be used 
with other connectivity metrics. Since we do not know the ground truth boundaries in the real data, we design 
an index to measure the segmentation quality and compare our method with alternatives. In the simulations 
and analysis on real data, we assume nodes in the network are EEG electrodes, but our segmentation method is 
equally applicable to source connectivity networks where nodes are voxels or regions of interest. The results show 
that, at least for correlation and PLV functional connectivity, our method produces better segmentation results 
than segmenting based on connectivity matrices directly, but the best performing node importance index has a 
high computational cost. We discuss our work, including parameter settings, similarities with other work, and 
limitations, in the “Discussion” and conclude in the “Conclusion”.

Methods
Goal of segmentation
The goal of segmentation is to divide a time series into many intervals. Within each interval, the signals have 
similar statistical characteristics and can be deemed quasi-stationary. In this work, we design a segmentation 
method to detect time points at which there are changes in the network structure calculated from EEG, so that 
different time segments have different brain functional connectivity networks, while the network is stable within 
a time segment. Figure 1 is an example segmentation on real 8-channel data with three clearly different networks. 
The example in Fig. 1 comes from data used in our real EEG experiment. As described in more detail in “Real 
EEG Data Results”, this data comes from a mental workload experiment where participants controlled a virtual 
drone in a flying task with two mental workload levels. The original intent of the experiment was to collect data 
for developing a mental workload (high-low) classifier, and our research group is interested in applying functional 
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connectivity network analysis on that data to generate better classification features. As a necessary step, we here 
develop a method for segmenting EEG data based on functional connectivity changes.

Proposed algorithm
Functional connectivity network construction
Given a segment of EEG data, the network connectivity matrix first needs to be calculated (Fig. 2A). Many 
connectivity metrics have been proposed, and among them commonly-used ones include: Pearson correlation 
coefficient (PC)24, mutual  information25,26, phase-locking value (PLV)27,28, and phase lag index (PLI)28. We here 
use PC and PLV, though our segmentation method is agnostic to the particular choice of connectivity metric, and 
the merits of choices are not the focus of our study. A functional connectivity network is then constructed based 
on the connectivity matrix. The nodes represent brain regions surrounding corresponding EEG electrodes and 
edges represent the strength of communication between brain regions. When using a threshold on connection 
strength, the connectivity matrix becomes an adjacency matrix and the network becomes an unweighted network. 
A weighted network can be constructed if not using a threshold and keeping the original connection strengths. 
We work with undirected weighted networks in this study, so as to retain more information.

Computing distance between graphs
Graph distance measures (or graph similarity) describe the dissimilarity (similarity) between networks, 
quantifying topological differences between networks. Graph distance measures have long been a focus in 
network science and are widely used in many fields, such as pattern  recognition29, model  selection30, network 
classification and  clustering31, anomaly, and discontinuity  detection32. Previously proposed measures  include33–37. 
We here build an intuitive and modular framework for graph distance by calculating a vector to summarize each 
graph and then computing distances between vectors representing different graphs. The vectors contain a value 
per node, where the value is an index of the node’s importance. This framework allows different node importance 
indices to be plugged in, resulting in different graph distance measures (abbreviations with the DM prefix).

Given two time periods T1 and T2 and EEG data with n channels, connectivity matrices W(T1) and W(T2) are 
calculated from the time periods, respectively. Weighted networks G(T1) and G(T2) are constructed from the 
connectivity matrices. The indices of node importance in networks G(T1) and G(T2) are represented by n-length 
vectors c(T1) = (c1(T1), c2(T1), . . . , cn(T1)) and c(T2) = (c1(T2), c2(T2), . . . , cn(T2)) . We calculate graph distance 
d(c(T1), c(T2)) using the Euclidean distance between two node importance vectors, as follows:

Figure 1.  Example segmentation detected via our method (DMDC feature, edges from correlation). 8-channel 
EEG data (lower panel) and functional connections of three segments (upper panels). Only edges above 0.2 are 
shown to improve visualization. Size and color of the nodes indicate nodes’ degree centrality measure. Color of 
edges represents Pearson correlation coefficient(absolute value), which is unitless.
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We here consider six indices of node importance for weighted  networks38, summarized in Table 1. DC, 
CC, EC, BC, CCO, and NNC denote degree centrality, closeness centrality, eigenvector centrality, betweenness 
centrality, clustering coefficient, and nearest neighbor centrality, respectively. Applying Eq. (1) to each node 
importance index gives each of the six corresponding graph distance measures: DMDC, DMCC, DMEC, DMBC, 
DMCCO, and DMNNC, respectively. These six indices are briefly compared in the “Discussion”. A schematic of 
the procedure for calculating graph distance is shown in Figure 2C.

Sliding window change detection
To perform temporal segmentation of multi-channel EEG data, we designed a sliding window change detection 
method based on a previously published  method23 that compares a sliding window (representing new data) with 
a growing reference window (Fig. 3, for differences from their algorithm, see the “Discussion”). The parameters 
of the algorithm are listed in Table 2 (for how these are set, see “Method parameters and evaluation”, a brief 
discussion of the two most important parameters is in the “Discussion”). In brief, the algorithm calculates 
the distance between the network in the reference window and that in the sliding window; if this distance is 
abnormally large (an outlier among samples of distance values), a boundary is declared. The algorithm steps 
are as follows: 

(1)d(c(T1), c(T2)) =

√
∑n

i=1
(ci(T1)− ci(T2))

2,

Figure 2.  Flowchart of procedure for calculating graph distance measures (proposed method) and matrix 
measures (comparison method). (A) Generating connectivity matrices from two windows of EEG data. (B) 
Comparing connectivity matrices directly (comparison method). (C) Comparing networks using Euclidean 
distance on node importance index values (proposed method).

Table 1.  Definitions of node importance indices. Abbreviations in parentheses are names given to distance 
measures based on these node importance indices. W is the connectivity matrix of the network with elements 
wij . n is the number of nodes. Ni is the set of all nodes connected to node i. N is the set of all nodes in the 
network. ki is the number of the set Ni . dij is the length of the shortest path between node i and j. gkj is the 
number of shortest paths from node k to node j, and gkij is the number of shortest paths that pass through 
node i from node k to node j. xi is the eigenvector of the max eigenvalue � of matrix W.

Index Definition

Degree centrality (DMDC) DCi =
1

n−1

∑

j∈Ni

wij .

Closeness centrality (DMCC) CCi = ( 1
n−1

n∑

j∈N ,j �=i

dij)
−1.

Eigenvector centrality (DMEC) ECi = �
−1

n∑

j=1

wijxj .

Betweenness centrality (DMBC) BCi =
2

(n−1)(n−2)

∑

k �=i �=j

gkij
gkj

.

Clustering coefficient (DMCCO) CCOi =

∑

k �=i

∑

j �=i,j �=k

wijwikwjk

∑

k �=i

∑

j �=i,j �=k

wijwik

.

Nearest neighbor centrality (DMNNC) NNCi =
1

ki−1

∑

j∈Ni

(n− 1)DCj.
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Figure 3.  Flowchart of the segmentation algorithm.

Table 2.  Segmentation algorithm parameters.

Parameter Description

Wr Initial length of the reference window

Wd Minimum number of comparisons before possibly declaring a boundary

WKDE
d Number of comparisons before starting outlier calculation ( WKDE

d ≤ Wd)

Ws Length of the sliding window

Wp Increment of the sliding and reference windows

Wv Overlap between sliding window and reference window
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(i) Initialize: length of the reference window W = Wr . Number of possible boundaries k = 0 . List of distance 
values L = {} . Start of reference window ti is set to the boundary detected previously (or start of data). 
The reference window starts from time ti and goes to time ti +Wr . The sliding window starts from time 
ti +Wr −Wv and goes to time ti +Wr −Wv +Ws . The time periods of the reference window and the 
sliding window are denoted as Tr and Ts , respectively.

(ii) EEG data in the reference window is placed in Xr . EEG data in the sliding window is placed in Xs.
(iii) Functional connectivity matrices of Xr and Xs are calculated (with the chosen connectivity measure, e.g. 

correlation) and stored in Ar and As , respectively.
(iv) Undirected weighted networks Gr and Gs are constructed from Ar and As , respectively.
(v) Node importance values for each node in Gr and Gs are calculated with the chosen node importance index 

(e.g. closeness centrality), giving c(Tr) and c(Ts) , respectively.
(vi) Graph distance measure d(k) is calculated by equation (1) with d(c(Tr), c(Ts)) , i.e. the L2 distance between 

the node importance value vectors.
(vii) Since we detect change by detecting outliers, a sufficient sample size is necessary to obtain reliable 

distributions for outlier detection. Hence, we set this criterion: If k is less than WKDE
d  , then (not enough 

data): k is increased by 1 and d(k) is appended to list L; ti +W −Wv is the time corresponding to this d(k) 
entry in L; the reference window grows by Wp , i.e. its length becomes W = W +Wp , while its starting time 
does not change; the sliding window slides forward in time by Wp ; go to step ii.

(viii) Outliers of list L are calculated (see “Outlier detection”).
(ix) To declare a boundary, an outlier must have been found. k must also be at least the required number of 

comparisons Wd . Lastly, the distance d(k) to the current sliding window should be no greater than the 
detected outlier in L. Hence, we check for these three criteria: (1) outliers in L exist; (2) k ≥ Wd ; (3) 
d(k) ≤ max(L) . If they are all true, we detect a boundary (the largest outlier’s corresponding time is the 
detected boundary time) and go to step i.

(x) d(k) is appended to list L; the ti +W −Wv is the time corresponding to this d(k) entry in L; k is increased 
by 1; the reference window grows by Wp ; the sliding window slides forward in time by Wp ; go to step ii.

Outlier detection
Outlier detection is a key step in the segmentation algorithm: it finds time points with larger than expected 
graph distances between windows. Considering that the values in list L may not be from a normal distribution, 
we use a non-parametric method for testing outliers. First, we use kernel density estimation (KDE) to obtain a 
density function. Then a cumulative distribution function P(d) is estimated. Let P(d < dthreshold) = PKDE , and the 
threshold dthreshold can then be obtained. PKDE is a parameter that specifies the percentile threshold for outliers. 
All elements of list L greater than dthreshold are outliers.

To verify the necessity of using a non-parametric method to detect outliers, we performed normal distribu-
tion tests for L (computed using GD) on real EEG data from 28 participants. Every time outlier detection was 
required, a normal distribution test was performed. The null hypothesis of normal distribution (significance 
level 0.05) was rejected on average (across participants) 35.3% of the time.

Comparison algorithms
To compare against our proposed framework, we plug in (dis)similarity measures proposed in previous  work14,23. 
While their original algorithms work on raw data matrices, we modify them to work on functional connectivity 
matrices in the interest of fairness, as our simulations focus on functional connectivity changes. Below we 
present the connectivity-matrix-based (dis)similarity measures used for comparison. In contrast to our proposed 
method, these approaches focus more on the difference in connection values, rather than graph structure. The 
EEG data matrix based methods for  segmentation14,23 use the Kolmogorov–Smirnov (KS) test and the Grassmann 
distance. The KS test and Grassmann distance are used here on two functional connectivity matrices, instead 
of two data matrices.

For both the KS and Grassmann approaches, the connectivity matrices W(T1) and W(T2) and their eigen-
decomposition are calculated to determine their column space and weights of corresponding eigenvectors. 
The significant eigenvectors are selected by the elbow method to construct feature subspaces F(T1) and F(T2) , 
respectively. The Grassmann distance between subspaces is calculated as follows:

where k = min(dim(F(T1)), dim(F(T2))) , dim(·) is the dimension of a subspace. θi(F(T1), F(T2)) denotes the 
ith principal angle between subspaces. For the KS  test23, each column of W(T1) and W(T2) is projected onto 
the feature subspace F(T1) of the reference window, and the residual of the projections are gathered into two 
error matrices denoted e(T1) and e(T2) , respectively. Then, the Kolmogorov–Smirnov test is used to test the 
difference between e(T1) and e(T2) , and the final similarity measure is the test’s p-value. A flowchart of the matrix 
comparison process is shown in Fig. 2B.

In the sliding-window change-detection algorithm, the changes needed for KS and Grassmann approaches 
are as follows. Grassmann distance: In steps iv–vi, feature subspaces of the matrices Ar and As are obtained and 
Grassmann distance d(k) is calculated by Eq. (2). Kolmogorov–Smirnov (KS) test: In steps iv–vi, matrices Ar 
and As are projected onto the feature subspace of Ar . The residuals after projection are denoted e(Tr) and e(Ts) , 
respectively. The p-value of the KS test between er and es is stored in d(k). In outlier detection for the KS test, the 
smaller the p-value, the greater the difference between two matrices. Thus, in step ix: the condition is reversed, 

(2)d(F(T1), F(T2)) =
1

k

√
∑k

i=1
θ2i (F(T1), F(T2)),
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i.e. d(k) of window k is greater than the minimum value of the list L. The minimum value in the list L is used 
as the detection boundary. The threshold dthreshold is obtained using the cumulative distribution probability 
P(d < dthreshold) = 1− PKDE.

Ethics statement
The studies involving human participants were reviewed and approved by the institutional human research ethics 
review committee of the State Key Laboratory of Neuroscience and Learning at Beijing Normal University (ID 
number: CNL_A_0010_002, approval date November, 2019). The participants provided their written informed 
consent to participate in this study.

Simulation results
We first test our segmentation method on simulated EEG data where ground truth of the dynamics of functional 
connectivity is known. The purpose of this test is to verify that the segmentation method finds the time points 
where connectivity structure changed. We also vary the difficulty (i.e. magnitude of changes) and examine the 
effects on accuracy of finding change points. We compare our proposed method with that based on connectivity 
matrix (edge weight) differences.

Simulation design
In this section, our segmentation method is evaluated on simulated EEG data. We simulated EEG data with 
N = 32 channels, T = 60 s time length, fs = 100 Hz sampling frequency, and a total of S = 200 repetitions. The 
EEG simulation process consisted of first generating several different functional connectivity networks (so that 
switching among them gives dynamic network structure) , i.e. specifying target connectivity matrices and then 
generating time-varying EEG data with the target connectivity matrices. We simulated two kinds of changes in 
network structure, as follows:

Simulation 1: dynamic network with changing communities
In this simulation, the number of communities changed from 2 to 3 and back. In the interval [1, 20] seconds, 
the functional connectivity network had two community structures. Community 1 consisted of nodes 1–10 and 
Community 2 consisted of nodes 15-32. The strength of the connections within the communities was higher 
(drawn from a normal distribution N(0.2, 0.1)) than that between the communities (drawn from N(0, 0.05)). To 
add random diversity, 22 edges and 76 edges were selected from Community 1 and Community 2, respectively, 
and random weights (N(0.2, 0.1)) were added to the original edge weights (the R-MAT  algorithm39, one of the 
most commonly-used network generation models; it models graph structure by a degree distribution that follows 
a power-law distribution, approximating the properties of real-world networks; R-MAT has been previously 
applied in simulating dynamic brain  networks14.). The network in the interval [40, 60] s is the same as that in 
the interval [1, 20] s.

In the interval [20, 40] s, the functional connectivity network had three community structures. Community 
1 and Community 2 were the same as in the interval [1, 20] s. Community 3 consisted of nodes 11–14. Weights 
of the edges within Community 3 were drawn from N(0.2, 0.1), and the edges connecting to other communities 
were drawn from N(0, 0.05). According to the R-MAT algorithm, 4 edges in Community 3 were selected to add 
random weights ( N(0.2ks , 0.1) ), where the signal strength parameter ks ranged from [0, 1]. There is a proportional 
relationship between the ks value and the signal-to-noise ratio (SNR), as shown in Table 3. The calculation of the 
SNR is based on the connectivity matrix using a previously published  method14. The larger ks , the greater the 
change of the connectivity matrix, and the greater the SNR. The configuration of the connectivity matrix and its 
corresponding network are illustrated in Fig. 4A.

Simulation 2: dynamic network with central hub
Central hubs are a key feature of human brain structural organization, play an important role in  function40, 
are involved in changes in brain  networks41,42, may be useful in decoding brain  activity43, and may dynamically 
 alternate44. Considering their importance, we simulated EEG data where a central hub connecting communities 
appeared and disappeared.

In the interval [1, 20] s, the connectivity network was the same as that in the interval [1, 20] s of the previous 
simulation. The difference from Simulation 1 is that Community 2 is set to nodes 13–32. The number of 
additional weighted edges within Community 2 was changed from 76 to 95. Between [20, 40] s, the network 
had three communities: Community 1 consisted of nodes 1–10, Community 2 consisted of nodes 13–32, and 
Community 3 consisted of nodes 10–13. Note that the overlapping nodes make Community 3 a central hub 
connecting Community 1 and Community 2. The weights of Community 1 and Community 2 were the same as 
in the interval [1, 20] s. The weights within Community 3 were drawn from N(0.2, 0.1), and the edges connected 
to other communities were drawn from N(0, 0.05). Four edges within Community 3 were selected and random 
weights were added using the R-MAT algorithm. The randomly added weights were drawn from N(0.2ks , 0.1) , 
where the range of the signal strength parameter ks was [0, 1]. The configuration of the connectivity matrix and 
its corresponding network are illustrated in Fig. 4B.

Time‑varying EEG data generation
There are many methods to simulate time-varying EEG data. For example, the SEED-G  toolbox45 can simu-
late EEG data with preset phase-locking values (PLV), phase lag index (PLI), and directional phase lag index 
(dPLI). However, EEG data with correlation between more than 3 channels cannot be generated due to high 
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computational memory load. The SimMEEG  toolbox46 can set the number of network nodes (channels), con-
nection strength, network density, and other parameters, but it cannot simulate EEG data with community 
structure. Šverko47 proposed a simulation method that can generate EEG data with community structure, but 
the community structure is not stable enough over time and connections between communities cannot be 
preset.  Moiseev48 proposed a simulation method that allows specified Pearson correlation between channels. 
Considering computational load and stability of the resulting correlation matrices, we use this method. In this 
method of generating EEG signals, time courses are generated to have user-specified mutual correlations, and 
generated signals consist of a combination of evoked signals and (randomized) oscillatory signals. To meet the 
method’s requirement for positive definite connectivity matrices, we use an iterative spectral method to bend 
non-positive-definite symmetric matrices to be positive-definite49. The bending has little effect on the connectiv-
ity matrix weights (Supplementary Figure S1).

To make the properties of the Pearson correlation connectivity matrix closer to those of real EEG data, the 
connectivity matrices generated in the previous sections need to be adjusted. These adjustments do not change 
the network structure. First, we normalize: given a connectivity matrix W of size n× n , the connectivity matrix 
is normalized so all values are [0, 1]: w′

ij = (wij −min(wij))/(max(wij)−min(wij)), i, j = 1, 2, . . . , n . Second, 
we adjust the magnitude of weights, since in real data, Pearson correlation coefficients are not particularly large. 
We reduce the correlation coefficients in the simulations by multiplying by 0.650, resulting in values in [0, 0.6]. 
Third, the connectivity matrix is symmetrized: w′

ij = w′
ji , i, j = 1, 2, . . . , n . Fourth, the diagonals of the matrix 

are changed to 1: w′
ij = 1, i = j.

Method parameters and evaluation
The parameters of the segmentation algorithm need to be set to the same values across compared algorithms 
to ensure fair comparison. We first determined the sensitivity of parameters (i.e. which parameters have a 
large impact on segmentation results) and found that Wr and PKDE have a relatively large influence on 
segmentation performance. Thus, it was necessary to perform a grid search for the optimal values of these two 
parameters (Supplementary Figure S2). For the relatively insensitive parameters, we set Ws = 2 s, Wv = 1 s, and 
Wd = WKDE

d = 15.
To evaluate the performance of each distance measure when combined with the segmentation method, we 

use several  metrics23, as follows. Success rate ( psucc ): ratio of number of successfully detected boundaries to the 
total number of ground truth boundaries. As the length of the sliding window was 2 s, if the detection boundary 
was within 1 s of the real boundary distance, it was considered a successful detection. Failure rate ( pfail ): ratio 
of number of falsely detected boundaries to the total number of ground truth boundaries (s). Aggregate rate 
( paggr ): the difference between success rate and failure rate. Average estimated displacement ( µED ): mean of 
the absolute distance between the detected boundary and nearest ground truth boundary. Here we include all 
declared detections. The standard deviation of estimation displacement ( σED ): variability in the displacement 
around the average displacement µED.

Segmentation results
Eight measures (six choices of node importance indices describing graph structure for our proposed method, 
two choices of matrix difference measures representing previous work) were plugged into the segmentation 
framework and tested on the simulated EEG data. Among these, GD and KS are matrix-based measures which 
represent the traditional approach to segmentation. We also evaluated the Source-Informed Segmentation (SIS) 
 method23 in preliminary analysis, but performance on our simulated data was poor (results not shown).

The aggregate rate, the success rate, the failure rate, and the average and standard deviation of the boundary 
displacement at different ks values are shown in Figs. 5 and 6. From the overall trends we can see that, with 
an increase of signal strength ks (the “magnitude” of changes), the performance of distance measures other 
than KS gradually improved. In Simulation 1, DMCC and DMDC substantially outperformed GD and KS, the 
two traditional, matrix-based measures. This indicates that with these two node importance indices, network-
structure based segmentation (using indices related to graph structure) performs better than functional 
connectivity matrix based segmentation (directly comparing the edge weights).

When ks was low, KS and DMCCO also performed well, but segmentation performance did not increase much 
with ks . In Simulation 2, DMCC and DMBC were better than GD and KS, especially when signal strength ks 
was low. DMDC performed slightly better than GD. This again indicates network-structure based segmentation 
performs better than matrix based segmentation. KS performed poorly in this simulation. The curves for DMEC 
and GD were found to overlap for both simulations. This is because DMEC and GD are both calculated based 
on eigenvectors.

To give specific numbers to make the results more intuitive, in Simulation 1, at SNR of about 3dB (signal about 
twice as large as noise), the DMCC method had a success rate of finding change points of around 88%, with mean 

Table 3.  SNR corresponding to signal strength ks values.

Signal strength ks 0.2 0.4 0.6 0.8 1.0

Sim 1 SNR (dB) − 1.47 1.00 3.07 4.46 5.91

Sim 2 SNR (dB) − 1.55 0.36 2.35 3.98 5.26
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error about 0.8 seconds. This shows the segmentation was successful at this SNR level. When SNR was − 1.47 
dB (signal size about 0.71 that of noise), DMCC’s accuracy drops to about 64%, with mean error of about 2.8 s.

Overall, these results show that segmentation based on graph distance measures DMCC and DMDC are better 
than the matrix-based GD and KS measures, in terms of success rate of finding change points and errors in the 
times of change points detected; these results, together with the relatively poor performance of the SIS method 
(a method for segmentation that works directly on the data matrices), give support to the proposed approach 
of segmentation based on functional connectivity structure. In addition, we have explored alternative simula-
tion scenarios, including channel noise, the durations of segments, number and size of network communities. 
Details of the simulations and results can be found in the Supplementary Materials, particularly Figure S3. In 
summary, the results indicate that our proposed method performed better than GD and KS over a wide range 
of simulation parameters.

Computational cost
Here we compare the computational costs (actual run times) of the six node importance indices and the two 
matrix-based difference measures. We implemented the segmentation algorithm in Python 3.8.8 on a desktop 
computer with a Windows 11 64-bit operating system, 16 GB DDR4 memory, and Intel Core i7-10700 2.90 GHz 
16-core processor. Segmentation run times were obtained by processing 10 one-minute portions of simulated 
data with parameter settings as above. The wall-clock execution times are shown in Fig. 7. The computational 
costs of GD, KS, DMDC, and DMNNC were similar and relatively low. The computational costs of DMCC, 
DMCCO, DMBC, and DMEC were relatively high, due to the complexity involved in calculating node centrality, 
particularly for DMCC, which requires computation of shortest paths (Dijkstra’s algorithm). These results show 
that while DMCC performs well in the simulations, it has relatively large computational cost. DMDC, which also 
performs well, but not quite as well as DMCC overall, has low computational cost, making it a priority candidate 
when computational resources are limited.

Real EEG data results
In this section, we use real EEG data to examine the performance of the proposed segmentation algorithm and 
compare the six node importance indices, as well as the matrix-based approach. The purpose of this portion 
of the study is to show that the method can work on real EEG data better than comparison methods. Our EEG 
data comes from a study geared towards real-world application, in which recordings were made with a small 
number of electrodes to mimic practical recording hardware; but this means source localization and source 
connectivity analysis is impractical, so we use electrodes as network nodes. The following describes the process 
of data acquisition, the evaluation procedure, and the segmentation results.

EEG data and pre-processing
EEG data was collected from thirty-one college students (15 females and 16 males; 22.4 ± 2.7 years age, right-
handed; three participants’ data were not included in the analysis due to data deficiency)51. An ethics statement 
regarding this experiment is described at the end of this article.

Each participant controlled a virtual drone to hit floating balloons in a flight simulator. The task had two 
difficulty levels: easy and difficult. The balloons were more densely distributed in the easy condition compared 
to the difficult condition. The duration of each condition was about 5 minutes. All participants completed the 
easy condition first, followed by the difficult condition, with a short break in between. To study event-related 
potentials and mental workload, the participants were stimulated with auditory beeps during the experiment, 
and the interval between stimuli was randomly chosen between 1.5 and 5 s.

The raw data were first down-sampled to 256 Hz and then notch filtered (48–52 Hz) to remove power-line 
noise. EEG signals were then band-pass filtered using a windowed-sinc finite impulse response filter (kernel order 
automatically chosen by the pop_EEGfiltnew function of EEGlab) into the gamma frequency band (30–80 Hz).

Figure 7.  Computational costs for the graph distance and matrix measures. DMDC, DMCC, DMEC, DMBC, 
DMCCO, and DMNNC denote the 6 types of graph distance measures (Table 1). GD and KS denote Grassmann 
distance and Kolmogorov–Smirnov test, respectively. Times shown are for analyzing 10 one-minute portions of 
32-channel EEG data on a Core i7-10700.
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Evaluation procedure
Considering that real EEG data do not come with ground truth boundaries, the measures of segmentation 
performance used in the previous section cannot be used here. Generally, segmentation of EEG data is to ensure 
that data in a segment have quasi-stationary statistical properties, and the data of different segments have large 
statistical differences. Therefore, we designed an index to measure the relative size of inter-segment differences 
compared to intra-segment differences:

Let the EEG data be stored in the matrix Xn×T , n is the number of channels, and T is the time. Data X are 
divided into N+1 intervals. The set Linter = {ti , i = 1, 2, . . . ,N + 2} is composed of detected boundary time 
points, and ti is a boundary time point. A connectivity matrix is constructed for the data in interval [ti−1, ti] . 
Here we consider the symmetric connectivity matrix and straighten the upper triangular elements of the matrix 
to obtain the vector vi−1 . Similarly, the connectivity matrix generated by the data in the interval [ti , ti+1] is 
straightened into vector vi . A Wilcoxon signed-rank  test52 is performed for vectors vi−1 and vi , yielding a p-value 
pti . The p-value gives the probability of falsely rejecting the null hypothesis that the two vectors come from the 
same distribution. The smaller the p-value, the more convincing the differences in the connectivity matrices. 
The interval [ti−1, ti] is then divided into nti−1,ti + 1 smaller time segments of fixed length Ls. The time points of 
these smaller segments form the set Linter,ti−1

= {ti−1,j , j = 1, 2, . . . , nti−1,ti + 2} . As, the data interval [ti−1, ti] is 
generally not divisible by Ls, there will be a remainder at the end, which we ignore, as this segment is relatively 
small compared to [ti−1, ti] . From adjacent small segments [ti−1,j−1, ti−1,j] and [ti−1,j , ti−1,j+1] we construct two 
symmetric connectivity matrices. The upper triangle of these two matrices are straightened into two vectors 
vti−1,j−1

 and vti−1,j , respectively. Then the p-value pti−1,j of the Wilcoxon signed-rank test between these vectors is 
calculated. Repeating this process for the other pairs of neighboring small segments, we obtain nti−1,ti p-values 
from the interval [ti−1, ti] . We also obtain nti ,ti+1

 p-values from the interval [ti , ti+1] . These p-values can be 
compared due to equal sample  sizes53. A diagram of this p-value calculation is shown in Fig. 8B.

Let sti−1,ti be the number of pti−1,j larger than pti , i.e. the number of intra-interval differences smaller than the 
inter-interval difference. The formula for sti−1,ti is as follows:

where the function δ(·) is

(3)sti−1,ti =
∑nti−1+1,ti

j=2
δ(pti−1,j)

Figure 8.  Schematic diagram of the calculation of the difference ratio pdiff  . (A) the calculation process of the 
difference ratio, (B) the calculation of the p-value between two segments of EEG data.
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Similarly, let sti ,ti+1
 be the number of pti ,j larger than pti . We define a difference ratio as follows:

The higher the pdiff  value, the better the segmentation performance. The calculation process of pdiff  is shown 
in Fig. 8A.

Since the easy condition and difficult condition were performed in two blocks with a rest in between, we 
segmented data from the two conditions separately. In the experiment, there were sound stimuli (SS) at random 
times, which produced event-related potentials in the EEG data. Therefore, we also used the sound stimulation 
times as segment boundaries for comparison. We also added a naive segmentation method for comparison, where 
each segment was the same length (SL), 800 samples (for a similar total number of segments as SS).

We repeated segmentation with Pearson correlation (PC) and phase locking value (PLV) as two choices 
for the connectivity matrix calculation method. The parameters of the segmentation algorithm were set as: 
Wd = WKDE

d = 30 , Wr = Ws = 2 s, Wv = 1 s, Wp = 10 , pKDE = 0.985 . The parameters (Wr , pKDE) had a relatively 
large effect on pdiff  and the number of segments found. For these two parameters, we did a grid search, and the 
results for GD and DMDC are shown in Supplementary Figures S4 and S5 (PC was used here for connectivity 
calculation). Other segmentation methods had similar results for the grid search on (Wr , pKDE) . Since future 
application of our method involves studying dynamic changes in the functional connectivity networks and 
using network features as inputs for neural decoding, the number of segments should not be too small. We also 
chose parameters so that the number of detected segments is similar to the number of sound stimuli, to have 
comparable pdiff  values.

Segmentation results
The EEG data of 28 participants were segmented and the difference ratio pdiff  values are shown in Fig. 9. For both 
Pearson correlation (Fig. 9a) and phase-locking value (Fig. 9b) connectivity matrices, graph distance measures 
DMDC, DMCC, DMNNC, and DMCCO performed better than the other segmentation methods in terms of 
pdiff  , meaning that intra-segment differences were smaller than inter-segment differences. The segmentation 
based on sound stimulation (SS) performed poorly, suggesting that the sound stimulus onset times did not mark 
boundaries in network structure change. This concurred with previous decoding analysis results on this data, 
which found that windows around the sound stimulation times were not the best choice of epochs for mental 
workload  classification51. For the same length window segmentation, network structure between segments was 
not significantly different, showing that this naive approach is inappropriate. For GD, data from 4 participants’ 

δ(pti−1,j) =

{
1 pti−1,j > pti
0 pti−1,j ≤ pti

(4)pdiff =
1

N

∑

ti ,i=2,...,N+1

sti−1,ti + sti ,ti+1

nti−1,ti + nti ,ti+1

Figure 9.  Segmentation performance as measured with pdiff  on real EEG data (higher values are better). (a) 
connectivity calculated by Pearson correlation, (b) phase-locking value. SS denotes segments with boundaries at 
sound stimulation times. SL denotes segmentation into same-length time windows.
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easy condition were not segmented, and data from 2 participants’ difficult condition were not segmented (i.e. 
no boundaries were found). These unsegmented participants are not included in Fig. 9, but the numbers of 
segments are included in Supplementary Figure S6. For GD, the data from the participant with highest pdiff  
in the difficult condition (value near 1.0) were divided into only two segments. The number of segments for 
each method is detailed in Supplementary Figure S6. From Supplementary Figure S6a and b, we can see that 
the number of segments found by KS varies greatly among participants, and the number of segments for other 
methods had smaller variance.

Overall, DMDC, DMCC, DMNNC, and DMCCO outperformed (as in, inter-segment differences were larger 
than intra-segment differences) the methods based on matrix difference measures (GD and KS), as well as the 
two naïve methods for segmentation (SS and SL), on real data. These results support the higher effectiveness of 
the functional connectivity structure approach to segmentation when used on real EEG data.

In Figs. 10 and 11, we visualize the segmentation performance of the segmentation methods with graph dis-
tance measures. EEG data (28 × 2 data) and segmentation methods corresponding to the highest pdiff  are selected 
to visualize. The node importance over time is obtained using the sliding window method. We found that the 
fluctuations of EC and BC of each channel over time are relatively more disordered, which is not conducive to 
segmentation, the pdiff  value using DMEC and DMBC is low in Fig. 9. For other segmentation methods using 
graph distance measures, the boundary is close to the inflection point on the curve. 

Discussion
In this study, we proposed an EEG segmentation method based on graph distance measures to solve the problem 
of how to segment EEG data according to changes in the functional connectivity network structure so that within 
each segment, differences in network structure remain small while between segments, differences are large. We 
designed a graph distance framework to provide an intuitive scalar measure for differences in network structure. 
We combine graph distance with a segmentation procedure that looks for abnormally large distances between a 
sliding window and a reference window. We evaluated our segmentation method on simulated EEG data under 
two network structure changes. Finally, we segmented real EEG data and quantified the connectivity changes 
within segments versus between segments.

Figure 10.  Visualization of results of segmentation based on different node importance indices on networks 
constructed by Pearson correlation. EEG data and segmentation results of the highest pdiff  are shown. Curves in 
the graph show node importance of all nodes, obtained in sliding windows (length 2 s, overlap 1 s). The data of 
the first 100 s are displayed here. Vertical dashed lines are segment boundaries.
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Although the closeness centrality graph distance measure (DMCC) performed well on both simulated data 
and actual data, its computational cost was relatively high. The main reason is that the calculation of shortest 
paths for closeness centrality has high computational cost. We used Dijkstra’s  algorithm54 to calculate the shortest 
path between nodes. Considering that our graphs are dense, i.e. we need to traverse all edges, the time complexity 
of CC is O(n3) , where n is the number of EEG channels.

Graph distance measures DMDC and DMCC have relatively good segmentation performance, as seen in 
Figs. 5, 6, and 9. DMBC performed well on Simulation 2 but poorly on Simulation 1. DMNCC performed poorly 
on both simulations but performed well on the real data. The six graph distance measures use node indices that 
ascribe importance to nodes in different ways, which leads to varying sensitivity to different network structures. 
In real applications, which measure is best suited may be difficult to predict a priori; therefore, we recommend 
the use of multiple graph distance measures and performing model selection. Generally, there are many indices 
for importance of nodes, such as Katz’s  centrality55,  PageRank56,  LeaderRank57, and semilocal  centrality58. The 
choice of node importance index requires attention to interpretation and computational complexity. We can 
select the node importance index according to the network structure changes of interest. For example, closeness 
centrality describes the transmission efficiency of this node (brain region) to all other nodes. Using DMCC, at 
the time points of segmentation, there are large changes in the transmission efficiency of brain regions. There 
are some relationships between the six node importance indices. They characterize different aspects of network 
structure, and the relationship between them thus depends on the specific network characteristics or  structure59. 
If there is prior knowledge about the form of the graph of the functional connectivity network, then we can say 
something more specific, for example, in scale-free networks, DMDC and DMBC are strongly  correlated60. The 
flexibility of our approach allows different indices to be tested for an application. How indices relate to each other 
and the theory behind which index is best for segmentation in a given situation are important questions, which 
we do not try to answer here; but we have presented empirical comparisons in our simulations and analysis on 
real EEG data.

In our segmentation procedure, the length of the reference window Wr and the probability pKDE in the 
detection of outliers have large impacts on the number of segments. The reference window determines the 
minimum length of detected segments. A shorter reference window can be used if one believes changes in 
EEG data happen frequently. The larger the probability pKDE , the less sensitive the outlier detection, and the 

Figure 11.  Visualization of results of segmentation based on different node importance indices on networks 
constructed by PLV. EEG data and segmentation results of the highest pdiff  are shown. Curves in the graph show 
node importance of all nodes, obtained in sliding windows (length 2 s, overlap 1 s). The data of the first 100 s are 
displayed here. Vertical dashed lines are segment boundaries.



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22566  | https://doi.org/10.1038/s41598-023-49891-8

www.nature.com/scientificreports/

number of detected segments will be smaller. When one believes the network structure has slow changes, we 
recommended a smaller pKDE.

The KS matrix measure represents previous work, the Source-Informed Segmentation method (SIS)23. Many 
steps of the presented sliding-window change-detection mechanism are also based on SIS’s sliding-window 
algorithm. However, there are crucial differences in the overall framework. In the SIS method, the patterns of EEG 
voltage values of multiple channels (the EEG data matrix) are examined for changes, while in our framework, 
the differences in a chosen graph measure computed from functional connectivity networks (e.g. connectivity 
matrices) built from EEG data are examined. Our method also differs in the change detection mechanism: we 
identify a time window that has a distance value (or p-value) which is an outlier of the reference distribution of 
distances (p-values). In contrast,  SIS23 uses the p-values from K–S testing to directly decide significance. Our 
approach prevents situations where the largest distance (or smallest p-value) is not necessarily significantly higher 
(lower) than the other distances (p-values).

In Simulations 1 and 2, the GD method performed better than some graph distance measures. Especially 
in Simulation 2 at higher SNR, GD performed the best. Segmentation based on graph distance measures are 
relatively more sensitive to small network changes. In addition, the results of GD and DMEC were found to be 
coincident in the two simulations (Figs. 5, 6). Their results on real data are also similar (Fig. 9). This is likely 
because they both are calculated by eigenvectors, but we do not have an analytical proof of equality.

There are some limitations to our study. There exist other segmentation methods which we did not compare 
here. In this study, we only compare to GD and KS (as well as to stimulation-based segmentation and same-length 
window segmentation), because these also look at differences in functional connectivity, while other methods in 
the field optimize for other criteria. Each segmentation method has a different definition or goal and thus may 
be better suited for a particular analytical purpose. Another limitation is that our real data experiments were 
conducted using electrodes as network nodes, which means computed networks may include artifactual edges 
due to electrical conduction. However, this noiseness in the data is faced by all methods in our experiments.

We only consider single-layer undirected weighted networks. When there is a negative correlation, we 
use the absolute value for the weight. As a result, some information will be lost. In follow-up work, negative 
correlation can be considered and more complex networks can be constructed, such as directed networks or 
multi-layer networks. We only use one simulation method to make our simulated data, so performance under 
other simulation methods needs further verification.

We only tested our method with correlation and PLV as the functional connectivity metric, while many other 
metrics exist. Our framework is compatible with other metrics, but whether our method will work well with 
other metrics is an open question, and likely depends on the application and data characteristics.

Conclusion
In this work, we designed a graph distance framework and a segmentation procedure for the segmentation of EEG 
data. According to our results on simulated EEG data and real EEG data (with correlation or PLV as connectivity 
metric), the graph distance measures based on degree centrality and closeness centrality outperform matrix-
based measures (Grassman distance and Kolmogorov–Smirnov). When also considering computational cost, 
the degree centrality approach presents a good overall choice. Performance of various node importance indices 
vary per dataset, suggesting that selection of node importance index is dependent on characteristics of data.

We provide a new perspective for segmentation, one based on network structure changes, and demonstrate 
its effectiveness with correlation and PLV connectivity, which suggests more segmentation methods based on 
network structure properties can be investigated. Our results suggest that when using an appropriate graph 
distance measure for the data, segmentation can be more sensitive and effective than matrix-based segmentation.

Data availability
The measurement data supporting the conclusions of this article will be made available by the authors, without 
undue reservation.
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