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Randomized phase II 
study of preoperative 
afatinib in untreated head 
and neck cancers: predictive 
and pharmacodynamic biomarkers 
of activity
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Caroline Hoffmann 5, Gilles Dolivet 6, Olivier Malard 7, Jérôme Fayette 8, Olivier Capitain 9, 
Sébastien Vergez 10, Lionel Geoffrois 11, Frédéric Rolland 12, Philippe Zrounba 13, 
Laurent Laccourreye 14, Esma Saada‑Bouzid 15, Nicolas Aide 16, Valérie Bénavent 17, 
Jerzy Klijianenko 18, Constance Lamy 1, Elodie Girard 19, Sophie Vacher 20, 
Julien Masliah‑Planchon 20, Leanne de Koning 21, Vincent Puard 21, Edith Borcoman 1, 
Marta Jimenez 17, Ivan Bièche 20, Jocelyn Gal 22 & Christophe Le Tourneau 1,23*

There is no strong and reliable predictive biomarker in head and neck squamous cell carcinoma 
(HNSCC) for EGFR inhibitors. We aimed to identify predictive and pharmacodynamic biomarkers 
of efficacy of afatinib, a pan‑HER tyrosine kinase inhibitor, in a window‑of‑opportunity trial 
(NCT01415674). Multi‑omics analyses were carried out on pre‑treatment biopsy and surgical 
specimen for biological assessment of afatinib activity. Sixty‑one treatment‑naïve and operable 
HNSCC patients were randomised to afatinib 40 mg/day for 21–28 days versus no treatment. Afatinib 
produced a high rate of metabolic response. Responders had a higher expression of pERK1/2 (P = 0.02) 
and lower expressions of pHER4 (P = 0.03) and pRB1 (P = 0.002) in pre‑treatment biopsy compared 
to non‑responders. At the cellular level, responders displayed an enrichment of tumor‑infiltrating 
B cells under afatinib (P = 0.02). At the molecular level, NF‑kappa B signaling was over‑represented 
among upregulated genes in non‑responders (P < 0.001; FDR = 0.01). Although exploratory, 
phosphoproteomics‑based biomarkers deserve further investigations as predictors of afatinib efficacy.
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Abbreviations
AE  Adverse event
CI  Confidence interval
CTCAE  National Cancer Institute Common Terminology Criteria for Adverse Events
DNAseq  DNA sequencing
DRAGON  Detection of relevant alterations in genes involved in oncogenetics
FFPE  Frozen and formalin fixed and paraffin embedded
HER  Human epidermal growth factor receptor
HR  Hazard ratio
HNSCC  Head and neck squamous cell carcinoma
EGFR  Epidermal growth factor receptor
FDG-PET  FDG-positron emission tomography
FDR  False discovery rate
GSEA  Gene set enrichment analysis
IQR  Interquartile range
mAb  Monoclonal antibody
NSCL  Non-small cell lung cancer
NGS  Next generation sequencing
ORA  Over representation analysis
OS  Overall survival
PERCIST  Positron emission tomography response criteria in solid tumours
PFS  Progression-free survival
RECIST1.1  Response evaluation criteria in solid tumors version 1.1
RNAseq  RNA sequencing
RPPA  Reverse phase protein arrays
TKI  Tyrosine kinase inhibitor
TME  Tumor micro environment
TSG  Tumor suppressor gene
TMB  Tumor mutational burden

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer  worldwide1. Early-stage 
disease can be successfully treated with a single-modality treatment (surgery or radiotherapy), whereas locally 
advanced disease usually uses multimodality treatments that involve surgery and (chemo)radiotherapy. Around 
50% of locally advanced HNSCC recur after primary treatment, at locoregional and/or distant metastatic  levels2. 
Patients who are not amenable to local treatments have a dismal prognosis (i.e., 6 to 9 months in the absence 
of treatment)3.

Increased or sustained activation of the epidermal growth factor receptor’s (EGFR) signaling can promote 
genesis and progression of tumors by providing sustained signals for cell proliferation, anti-apoptotic signaling, 
angiogenesis, and  metastasis4–6. Overexpression of EGFR is a common characteristic of HNSCC and is associ-
ated with poor  outcomes7,8.

Cetuximab, a monoclonal antibody (mAb) targeting EGFR, is to date the only targeted therapy that demon-
strated an overall survival (OS) benefit in HNSCC patients, both in the recurrent and in the locally advanced 
settings, yet without molecular  selection9,10. Lack of durable efficacy due to drug resistance remains a major 
 challenge11. Unlike lung cancers, in which sensitizing EGFR mutations predict sensitivity to tyrosine kinase 
inhibitors (TKIs)12,13, no robust predictive biomarker for cetuximab efficacy has been identified in  HNSCC14,15. 
Various innate and/or acquired resistance mechanisms have been  reported16–18, including activation of other 
human epidermal growth factor receptors (HERs).

Pan-HER TKIs target all the dimers formed by HER  family19–22 and have the potential to overcome cetuxi-
mab resistance caused by cross-talk between the EGFR and other  HERs23. Afatinib, a second-generation pan-
HER TKI, is a highly selective, potent, and irreversible inhibitor of EGFR, HER2, and HER4 kinases. It also 
prevents the trans-phosphorylation of  HER320,22. First-line afatinib demonstrated significant improvements in 
progression-free survival (PFS) and OS for patients with EGFR-mutated non-small cell lung cancers (NSCLC)24,25. 
In unselected HNSCC patients, afatinib modestly improved PFS as compared to methotrexate in second-line 
recurrent and/or metastatic  setting26. Biomarkers analyses showed that PFS was improved in p16-negative, 
EGFR-amplified, HER3-low, and PTEN-high in this latter patient  population27. In a preoperative trial led by the 
EORTC, afatinib given for two weeks to treatment-naïve, operable HNSCC patients was safe and produced a 
70% rate of metabolic  response28. None of the aforementioned biomarkers was predictive of response to treat-
ment in this study.

The GEP11 PREDICTOR randomized trial aimed at identifying predictive and pharmacodynamic biomark-
ers of efficacy of afatinib. The trial also investigated the efficacy and safety of preoperative afatinib in untreated, 
non-metastatic HNSCC patients.

Results
Patients and treatment
Sixty-one patients were included between January 2012 and July 2015 at seven French cancer centers or university 
hospitals and were randomized to either afatinib (N = 41; Arm A) or no treatment (N = 20; Arm B; Fig. 1). All 
patients in Arm A were included in the intention-to-treat population, whereas in Arm B, two out of 20 patients 
(10%) were excluded (one consent withdrawal and one early death before the scheduled surgery). In Arm A, 
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one patient deemed inoperable following 14 days of afatinib received chemoradiation instead of surgery. Patient 
characteristics are described in Table 1.

Safety and tolerability
The median duration of afatinib treatment was 16 days (range, 3–30 days). Afatinib-related adverse events 
(AEs) are summarized in the Supplementary Table 1. Five patients discontinued afatinib within 14 days due to 
afatinib-related AEs, including one grade 4 diarrhea, one grade 4 folliculitis, one grade 3 oral mucositis, one 
grade 3 diarrhea, and one grade 2 oral mucositis. Three patients were still experiencing afatinib-related AEs 
three months after surgery, including one grade 2 anorexia, one grade 2 folliculitis, one grade 2 diarrhea, and 
one grade 1 folliculitis. Mean time between enrolment and surgery was similar in Arm A and Arm B (23.4 versus 
20.5 days, P = 0.2).

Efficacy outcomes
Median follow-up was 82.7 months (interquartile range [IQR], 69.8–90.6 months) in Arm A, and 76.6 months 
(IQR, 70.8–91.5 months) in Arm B. In Arm A, three out of the 41 patients (7.3%; 95% CI, 1.5–19.9) achieved a 
partial response according to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1) versus no 
patients in Arm B (P = 0.03; Table 2). A median reduction of the sum of the target lesions of 4.8 mm was observed 
between baseline and preoperative imaging in Arm A (95% CI, 2.9–6.8; P < 0.001), and a median of 1.9 mm 
increase in Arm B (95% CI, 0–3.8; P = 0.05). In Arm A, 24 out of the 41 patients (58.5%; 95% CI, 42.1–73.7) 
achieved a partial metabolic response versus no patients in Arm B (P < 0.01).

Positive lymph nodes were diagnosed on resected tumors in 21 out of 41 patients (51%) in Arm A and in 11 
out of 18 patients (61%) in Arm B. Among patients with positive lymph nodes, 12 (29%) displayed an extraca-
psular spread in Arm A versus four (22%) in Arm B. Statistical significance was not reached for a difference in 
the number of patients with positive lymph nodes or extracapsular spreads between the two arms (P = 0.5 and 
P = 0.8, respectively). In addition, microscopic residual disease assessed in the primary tumor was similar in Arm 
A and Arm B (mean [standard deviation] size, 3.3 [1.5] versus 4.3 [2.2] cm; P = 0.09).

Exploratory DNA sequencing (DNAseq) analyses
DNAseq was performed on baseline tumor biopsies from 56 patients, including 37 patients in Arm A and 19 
patients in Arm B. Among the 37 patients in Arm A, 35 were evaluable for FDG-positron emission tomography 
(FDG-PET) response (22 responders and 13 non-responders; Supplementary Fig. 1).

Genomic alterations and signaling pathways
Among the 56 patients with contributive DNAseq, 49 (88%) had at least one molecular alteration. Thirty-five 
patients (62%) had an alteration in TP53, 21 (38%) in CDKN2A, 19 (34%) in CCND1, eight (14%) in PIK3CA 
and FAT1, and three (5%) in EGFR. Pathogenic promoter mutations in TERT were found in 13 patients (23%). 

Figure 1.  Consort diagram.
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Table 1.  Patient characteristics. a American Joint Committee on Cancer, 7th edition staging.

Arm A (N = 41) Arm B (N = 18) Total (N = 59)

Age, years

 Median 58.5 60.2 59.5

 Range 44–74 46–76 44–76

Sex, n (%)

 Male 32 (78%) 15 (83%) 47 (80%)

 Female 9 (22%) 3 (17%) 12 (20%)

ECOG status, n (%)

 Unknown 1 (2%) 0 1 (2%)

 0 27 (66%) 13 (75%) 40 (68%)

 1 13 (32%) 5 (25%) 18 (31%)

Smoker, n (%)

 Current 24 (59%) 7 (39%) 31 (53%)

 Former 12 (29%) 8 (44%) 20 (34%)

 Never 5 (12%) 3 (17%) 8 (14%)

Alcohol consumption, n (%)

 Current 22 (54%) 10 (56%) 32 (54%)

 Former 13 (32%) 4 (22%) 17 (29%)

 Never 6 (15%) 4 (22%) 10 (17%)

Primary tumor site, n (%)

 Oral cavity 26 (63%) 12 (67%) 38 (64%)

 Larynx 0 1 (6%) 1 (2%)

 Oropharynx 11 (27%) 3 (17%) 14 (24%)

 Hypopharynx 4 (10%) 2 (11%) 6 (10%)

Histologic grade, n (%)

 Unknown 1 (2%) 0 1 (2%)

 Well differentiated 21 (51%) 11 (61%) 32 (54%)

 Moderately differentiated 12 (29%) 5 (28%) 17 (29%)

 Poorly differentiated 7 (17%) 2 (11%) 9 (15%)

HPV status, n (%)

 Unknown 6 (15%) 0 6 (10%)

 HPV negative 30 (73%) 16 (89%) 46 (78%)

 HPV positive 5 (12%) 2 (11%) 7 (12%)

Pretreatment T-stagea, n (%)

 T1 1 (2%) 0 1 (2%)

 T2 15 (37%) 4 (22%) 19 (32%)

 T3 5 (12%) 4 (22%) 9 (15%)

 T4 20 (49%) 10 (56%) 30 (51%)

Pretreatment N-stagea, n (%)

 N0 17 (41%) 12 (67%) 29 (49%)

 N1 5 (12%) 2 (11%) 7 (12%)

 N2 19 (46%) 4 (22%) 23 (39%)

Table 2.  Efficacy of preoperative afatinib versus no treatment on CT scan/MRI according to RECIST1.1 
and FDG-PET scan according to PERCIST. SD stable disease, PD progressive disease, PR partial response. 
Significant values are in bold.

n (%)

CT scan/MRI FDG-PET scan

Arm A (N = 41) Arm B (N = 18) Arm A (N = 41) Arm B (N = 18)

PR 3 (7.3%) 0 24 (58.5%) 0

SD 34 (82.9%) 14 (77.7%) 14 (34.1%) 13 (72.2%)

PD 0 3 (16.6%) 1 (2.4%) 3 (16.7%)

Non-evaluable 4 (9.8%) 1 (5.7%) 2 (5.0%) 2 (11.1%)

P-value 0.03  < 0.01
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Inactivating mutations in CDKN2A were found in 12 patients (22%) while CDKN2A and CDKN2B were co-
deleted in nine patients (16%; Fig. 2A).

Genomic alterations were observed in the genome integrity signaling pathway in 35 patients (62%). Thirty-
three patients (59%) had an alteration in the cell cycle pathway, 15 (27%) in the chromatin organization pathway, 
13 (23%) in the senescence pathway, 12 (21%) in the apoptosis and the hippo signaling pathways, nine (16%) 
in the RTK/RAS and the Wnt signaling pathways, and seven (12%) in the PI3K and transcription factor regula-
tor pathways (Supplementary Fig. 2). Proportions of genomic alterations and altered molecular pathways were 
similar in both treatment arms (Supplementary Fig. 3A, B).

Predictive biomarkers of metabolic response to afatinib
Among the 35 patients evaluable for FDG-PET response in Arm A, none of the genomic alterations nor altered 
molecular pathways were associated with the metabolic response (Supplementary Table 2).

Prognostic biomarkers
In post-hoc analyses, the prognostic value of genomic alterations and altered signaling pathways was assessed 
among the 56 patients with contributive DNAseq on baseline tumor (Supplementary Table 3). In univariate 
analysis, CDKN2A/B codeletion was associated with a shorter OS, with an HR of 3.6 (95% CI, 1.4–9.0; Fig. 2B). 
CDKN2A/B codeletion and CCND1 amplification were also associated with a shorter PFS (HR, 2.9; 95% CI, 
1.2–7.1; and HR, 2.2; 95% CI, 1.0–5.0, respectively; Fig. 2C, D). Among signaling pathways, alterations in the 
encompassing cell cycle pathway were associated with a shorter OS (HR, 3.8; 95% CI, 1.3–11.2) and PFS (HR, 
2.7; 95% CI, 1.1–6.8; Supplementary Fig. 4A, B). In contrast with CDKN2A/B codeletion, CDKN2A mutation 
had no prognostic value on OS (HR, 1.4; 95% CI, 0.4–5.0) and PFS (HR, 0.8; 95% CI, 0.3–2.2; Supplementary 
Fig. 5A, B). CCND1 amplification and CDKN2A/B codeletion had no prognostic value in multivariate analysis 
on OS and PFS (Supplementary Table 4).

We next focused on the top 10% of patients with the highest tumor mutational burden (TMB) scores corre-
sponding to a TMB > 15.5 mut/Mb. There was no difference in OS between patients with high TMB (> 15.5 mut/
Mb) and low TMB (≤ 15.5 mut/Mb), with an HR of 0.9 (95% CI, 0.22–4.0; Supplementary Fig. 6).

Exploratory RNA sequencing (RNAseq) analyses
RNAseq was performed on baseline tumor biopsies from 53 patients, including 35 patients in Arm A and 18 
patients in Arm B. Among the 35 patients in Arm A, 34 were evaluable for FDG-PET response (19 responders 
and 15 non-responders). Among them, 26 patients (15 responders and 11 non-responders) had both pre- and 
post-afatinib tumor samples with available gene expression data analysis (Supplementary Fig. 1).

Cellular level characterization of pharmacodynamic biomarkers
We quantified the numbers and the types of tumor microenvironment (TME) cells among the 26 patients evalu-
able for FDG-PET response in Arm A with contributive paired pre- and post-afatinib RNAseq. We applied a 
deconvolution method on bulk gene expression data, and reported the TME cell fraction changes between pre- 
and post-afatinib tumor biopsies according to afatinib metabolic response on FDG-PET scan (Fig. 3). We further 
computed ratios of post-afatinib/pre-afatinib fractions (or differences in case of null denominator) for each type 
of TME cells, in responders (N = 15) and non-responders (N = 11; Table 3). We showed higher ratios for B cells 
in responder than in non-responder patients [median (range) ratio, 1.8 (0.9–5.9) versus 0.8 (0.3–5.3); P = 0.02]. 
In contrast, macrophages enrichment was numerically higher in non-responders compared to responders, albeit 
not statistically significant [median (range) ratio, 1.6 (0.7–3.3) versus 1.1 (0.6–5.4); P = 0.2].

Molecular level characterization of pharmacodynamic biomarkers
Among the 26 aforementioned patients in Arm A, 600 genes were differentially expressed (267 and 333 upregu-
lated in non-responders and responders, respectively), including the immune markers ICAM1, MEF2C, P2RX5, 
HPGD, and ZBTB16 (Supplementary Table 5). We identified 16 gene sets (Fig. 4) over-represented among upregu-
lated genes in non-responders, including the NF-kappa B signaling [P < 0.001; false discovery rate (FDR) = 0.01; 
Supplementary Fig. 7]. There was no evidence of enrichment among upregulated genes in responder patients.

Prognostic biomarkers
Among the 53 patients with contributive RNAseq, post-hoc unsupervised analysis on bulk gene expression 
data (representing 13,232 transcripts) identified two clusters of patients (Cluster 1, N = 27; Cluster 2, N = 26). In 
univariate analysis, there was no difference in OS and PFS between these two clusters, with HRs of 0.5 (95% CI, 
0.2–1.3) and 0.5 (95% CI, 0.2–1.2), respectively (Supplementary Fig. 8A, B). Clinical and histological character-
istics of each cluster are presented in the Supplementary Table 6.

Exploratory reverse phase protein arrays (RPPA) analyses
Protein extracts from baseline tumor biopsies were retrieved from 42 patients (26 patients in Arm A and 16 
patients in Arm B) and were evaluated by RPPA methods by using a panel of 77 antibodies. Among the 26 patients 
in Arm A, 25 were evaluable for FDG-PET response (14 responders and 11 non-responders; Supplementary 
Fig. 1).
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Figure 3.  Tumor microenvironment cell fraction changes between pre- and post-afatinib tumor biopsies in 
responder (N = 14) and non-responder patients (N = 11) according to the metabolic response on FDG-PET scan 
by PERCIST. Tumor microenvironment cells included B cells (A), macrophages (B), monocytes (C), neutrophils 
(D), NK cells (E), T cells CD4+ (F) and T cells CD8+ (G). Uncharacterized cells, which were representative of 
cells outside immune subtypes (including tumor cells), were also reported (H).

Table 3.  Variation of fraction of tumor-infiltrating immune cells under afatinib according to metabolic 
response on FDG-PET scan by PERCIST. NS not significant. $ Uncharacterized cells are representative of cells 
outside immune subtypes, including tumor cells. ¶ Median post-afatinib/pre-afatinib fractions were computed 
in B cells, macrophages, NK cells, T cells CD4+ and CD8+, and uncharacterized cells; median immune 
cell fractions derived by subtracting the post-afatinib cell fraction from the pre-afatinib cell fraction were 
computed in monocytes, neutrophils, and T cells CD8+. Significant values are in bold.

Immune cells

Non-responders (N = 11) Responders (N = 15)

Ratio of median P-valueMedian¶ Min Max Median¶ Min Max

B cells 0.8 0.3 5.3 1.8 0.9 5.9 2.1 0.02

Macrophages 1.6 0.7 3.3 1.1 0.6 5.4 0.7 0.2 (NS)

Monocytes 0 −0.01 0.03 0 0 0.09 – 0.2 (NS)

Neutrophils −0.005 −0.03 0.1 −0.007 −0.05 0.02 1.4 0.6 (NS)

NK cells 1.4 0.3 2.5 1.3 0 3 0.9 0.9 (NS)

T cells CD4+ 1.4 0.2 5.8 1.4 0.4 9.5 1.1 0.6 (NS)

T cells CD8+ 0.003 −0.004 0.03 0 −0.05 0.2 0 0.4 (NS)

Uncharacterized  cells$ 0.9 0.7 1.3 0.9 0.5 1.2 1.1 0.6 (NS)
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Predictive biomarkers of metabolic response to afatinib
In the 25 patients evaluable for FDG-PET response in Arm A, we analyzed the relative expressions of phos-
phoproteins/proteins in pre-afatinib tumor biopsies according to metabolic response (Supplementary Fig. 9). 
We showed higher phosphorylation levels of p44/p42 MAPK (ERK1/2) in responders than in non-responders 
[median (range) ratio, 1.2 (−40.5 to 7.3) versus −1.4 (−4.0 to 5.7); P = 0.02] and lower phosphorylation levels of 
HER4 [median (range) ratio, 0.09 (−3.7 to 4.1) versus 1.0 (−0.002 to 122.0); P = 0.03] and RB1 [median (range) 
ratio, −1.0 (−14.7 to 0.5) versus 0.7 (−3.4 to 9.8); P = 0.002; Fig. 5].

Prognostic biomarkers
Among the 42 patients with contributive RPPA, post-hoc unsupervised clustering on protein expression data 
identified two clusters of patients that did not significantly correlate with OS (HR, 1.7; 95% CI 0.6–4.6) or PFS 
(HR, 1.3; 95% CI, 0.5–3.4) in univariate analysis (data not shown).

Discussion
Short course of afatinib in untreated, operable, non-metastatic HNSCC patients induced a high rate of partial 
metabolic responses and partial responses according to RECIST1.1 without delaying surgery. Baseline phospho-
rylation levels of RB1, ERK1/2, and HER4 correlated with metabolic responses to afatinib. At the cellular level, we 
showed a significant enrichment of tumor-infiltrating B cells under afatinib in responders, while at the molecular 
level, the NF-kappa B signaling was found to be enriched among upregulated genes in non-responders. In post-
hoc analyses, we reported the negative prognostic values of CCND1 amplification and CDKN2A/B codeletion 
although these results were not confirmed in multivariate analyses.

Seven percent of the patients achieved a partial response according to RECIST1.1, and 59% achieved a partial 
metabolic response as compared with 22% and 70% in a similar study run by the EORTC 28. The lower response 
rates observed in our trial might be explained (1) by the higher proportion of patients with advanced disease 
at diagnosis (51% versus 33% of T4 stage tumors) and (2) by a difference in metabolic tumor response assess-
ments, since in the EORTC study the last dose of afatinib was given strictly two hours before the FDG-PET scan 
before surgery.

Safety and tolerability were as expected regarding the toxicity profile of afatinib. Up to 12% of patients in Arm 
A stopped afatinib early because of toxicity, which might impact the results of translational analyses because of 
the lack of sufficient drug exposure. Importantly, all reported AEs were manageable and did not delay the planned 
definitive surgery, the latter representing a major concern with window-of-opportunity  trials29.

In comparison with the TCGA  cohort30, cell cycle regulatory genes were less frequently altered in our study, 
with lower rates of CDKN2A alteration (38% versus 50%) and CDKN2A/B codeletion (16% versus 27%). This 
might be explained by the fact that we applied a more stringent variant selection algorithm when taking into 
account copy number deletions. The negative prognostic impact of CDKN2A (that encodes p15) alteration is 
well established in  HNSCC31,32, as opposed to CDKN2B (that encodes p16) homozygous deletion. We found that 

Figure 4.  Gene sets which were found to be over-represented among up-regulated genes (N = 267) in non-
responder patients, as determined by Over Representation Analysis (ORA). KEGG Kyoto Encyclopedia of Genes 
datasets, FDR false discovery rate.
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CDKN2A/B codeletion but not CDKN2A mutation alone correlated with poor survival outcomes, suggesting a 
key role of both p15 and p16 losses in determining the prognosis of CDKN2A/B co-deleted HNSCC.

We identified higher metabolic response to afatinib in patients with low pre-treatment HER4 activity. This 
result is not in line with what has been observed in preclinical model. A xenograft model of HNSCC identified a 
HER4-activating oncogenic mutation leading to increased HER4 phosphorylation, which suggested that it may 
activate other HERs as a heterodimer and predict sensitivity to  afatinib33. These results highlight the controver-
sial role of HER4 in cancers, which may act as a tumor suppressor protein or as an  oncoprotein34. Our findings 
also support the hypothesis that constitutive activation of ERK1/2 (based on assessments of functional T202 
and Y204 phosphosites) may serve as predictive biomarker of activity of afatinib. ERK1/2 induces the transcrip-
tion and the translation of cyclin D1, thus promoting G1/S progression through cyclin D1-CDK4/6-mediated 
phosphorylation of  RB135. Unexpectedly, we reported lower relative expressions of phosphoproteins/proteins for 
RB1 in responder patients than in non-responder patients, suggesting other mechanisms of cell cycle activation 
besides CDK4/6-mediated phosphorylation of RB1.

At the cellular level, pharmacodynamic analyses on the TME elucidated B cells changes in response to afatinib 
which may rely on the (re)activation of a tumor-targeting immune  response36. In contrast to B cells, macrophages 
enrichment upon afatinib was found to be higher in non-responders compared to responders, although the differ-
ence was not statistically significant (P = 0.2). A number of clinical studies in NSCLC have shown that the degree 
of infiltration of tumor-associated macrophages positively correlated with disease progression and resistance to 
EGFR-TKIs37,38. In addition, a syngeneic murine model of EGFR-mutant lung tumor recently highlighted the 
immunosuppressive effects of tumor-associated macrophages on T cells  CD8+, thus impairing the efficacy of 
osimertinib (a third-generation EGFR-TKI)39. At the molecular level, Over Representation Analysis findings sug-
gested mechanisms of resistance to afatinib associated with tumor invasion and metastasis through NF-kappa-B 
signaling  enrichment40,41, a molecular feature of the 42-gene Chung’s high-risk  signature42.

Our study has several limitations. First, mean tumor reduction was lower than anticipated and correlative 
biomarkers analyses were based instead on metabolic response, which was not a predefined primary endpoint. 
In addition, no adjustment for multi-test were carried out, thus rendering biomarkers analyses mainly explora-
tory. Second, the specificity of FDG-PET scan to predict afatinib efficacy is unknown. In some pre-clinical and 
clinical studies, however, metabolic responses to targeted therapies have been shown to correlate with residual 
tumor cellularity, tumor shrinkage, and improved time to  progression43–45. Third, we did not confirm the bio-
markers findings from the LUX-Head and Neck 1  trial27, which demonstrated a higher efficacy of afatinib in 
p16-negative, EGFR-amplified, HER3-low, and PTEN-high HNSCC patients. This can be due to the intrinsic 
nature of window-of-opportunity trial, in which patients are exposed to drugs during a short period of time, 
impairing the onset of potential acquired drug resistance. Fourth, recent data underscored the importance of 
tertiary lymphoid structure in TME and their interplay with B cells in eliciting antitumor  responses46,47. We did 
not implement spatial information and functional orientation of tumor-infiltrating immune cells and related B 
cell phenotypes and functions. In this regard, our understanding of the immune contexture is limited. Fifth, our 

Figure 5.  Correlation between phosphorylation levels of p44/p42 MAPK (ERK1/2), HER4, and RB1 and 
metabolic response on FDG-PET scan according to PERCIST (responders, N = 14; non-responders, N = 11). p/
np phosphoproteins/proteins.
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patient cohort was heterogeneous and encompassed various primary tumor sites, histologic grades, HPV status, 
and pre-treatment T- and N-stages, which may have impaired biomarkers discovery.

Overall, we found that short course of preoperative afatinib induced a high rate of metabolic response without 
delaying the planned definitive surgery in treatment-naïve HNSCC patients selected for primary curative surgery. 
Baseline expression of pHER4, pERK1/2 and pRB1 together with B cells enrichment and NF-kappa B signaling 
activation correlated with metabolic response to afatinib. Although exploratory, these phosphoproteomics-based 
biomarkers deserve further investigations as predictors of afatinib efficacy. More mechanistic studies are needed 
to reliably establish the link between B cells enrichment, NF-kappa B signaling activation and sensitivity to HER 
family blockers in HNSCC.

Methods
Study objectives and endpoints
The main objective consisted in identifying predictive biomarkers of efficacy by exploring correlation between 
baseline potential biomarkers and radiological and metabolic responses to afatinib. Secondary objectives were 
to identify potential pharmacodynamic biomarkers, to evaluate the efficacy and safety of afatinib and to assess 
the metabolic and pathologic responses. We also did post-hoc analyses to evaluate the prognostic significance 
of recurrent genomic alterations and TMB in HNSCC.

The primary endpoint was the biological assessment of afatinib activity by performing translational researches 
in pre-treatment biopsy and surgical specimen. Translational researches included DNAseq, RNAseq and high 
throughput protein analysis using RPPA methods.

For secondary endpoints, efficacy was defined as the tumor size reduction between baseline and before 
surgery. The tumor size was the sum of two target lesions following measurement rules on CT scan/MRI of 
the head and neck according to RECIST1.148. Metabolic response was measured on FDG-PET scan according 
to Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST)49. Patients with a partial 
metabolic response were considered as responders, whereas patients with a stable or a progressive metabolic 
disease were considered as non-responders. The toxicity was assessed according to the Common Terminology 
Criteria for Adverse Events (CTCAE) version 4.0. Pathologic response was assessed on resected lymph nodes 
by the presence or not of invasive tumor.

For post-hoc analyses, OS was defined as the time from randomization until death from any cause or last 
follow-up. PFS was defined as the time from randomization to disease progression or death from any cause or 
last follow-up.

Study design and participants
The GEP11 PREDICTOR trial was an open-label, randomized, multicentric, controlled, phase II trial evaluat-
ing preoperative afatinib versus no treatment in patients with untreated, operable, non-metastatic T2-4 N0-2 
(American Joint Committee on Cancer, 7th edition) HNSCC of the oral cavity, pharynx, and larynx. Randomi-
zation was stratified by primary tumor site (oropharynx versus non-oropharynx). All patients provided written 
informed consent before enrollment. The trial was approved by a national ethics committee. All methods were 
carried out in accordance with relevant guidelines and regulations. All experimental protocols were approved 
by UNICANCER.

Treatment and procedures
Patients were randomized (2:1) to receive oral afatinib 40 mg/day for 21 to 28 days (Arm A) or no treatment 
(Arm B) before surgery. Surgery was not delayed as compared to standard of care. Tumor biopsies were collected 
during baseline endoscopy and surgery. FDG-PET scans were performed before the endoscopy, and at day 15 
after treatment initiation. FDG-PET scans examinations were performed on the same system at baseline and 
before surgery, and assessed by central imaging review (FDG-PET unit of the François Baclesse Cancer Center) 
as per the EANM  guidelines50. CT scan/MRI were performed before the endoscopy and after the end of treat-
ment within one week prior to surgery.

DNA sequencing
Samples were sequenced using a dedicated next-generation sequencing (NGS) panel targeting 571 genes (named 
“DRAGON”). Genes were classified regarding the literature and databases (cBioPortal and  OncoKB51,52) in 
tumor suppressor genes (TSG), oncogenes, and genes considered as both an oncogene and a TSG. Genes were 
categorized according to the cellular pathway in which they were involved (Supplementary Table 7).

DNAseq protocol
Indexed paired-end libraries of tumor DNA were performed using the Agilent Sureselect XT2 library prep kit. 
The kit supports sequencing targeted regions of the genome spanning 2.7 Mb. About 50 ng of input DNA were 
used to build the libraries according to manufacturer’s protocol. The pool was finally sequenced on a NovaSeq 
6000 (Illumina) S2 × 150 bp flow cell.

Data processing
Reads mapping
In the first analysis part, reads were mapped using BWA mem software (v0.7.15, Li, 2013) on the Human refer-
ence genome (hg19 assembly) using default parameters. As a second quality control, statistics regarding the 
mapping (percentage of aligned reads total and falling into the capture, percentage of PCR duplicates) and the 
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capture coverage were produced using a combination of SAMtools, flagstat, BEDtools coverage and PicardTools 
MarkDuplicates.

Variant calling
Variant calling of both single nucleotide variations (SNVs) and small insertion/deletions (indels) was then 
performed on the processed alignment files using a combination of the SAMtools  mpileup52 and *VarScan2* 
*mpileup2cns* (v2.4.3)53.

Annotations
Annotations from several databases [RefSeq, dbsnp v150, COSMIC v86, 1000g project 08/2015 version, ESP6500, 
gnomAD (all and ethnies), ICGC v21, and dbnsfp v35 predictions] were provided by ANNOVAR to annotate 
small  variants54. Only the RefSeq database was used for intermediate-indel. During this step, all variants present 
in − 10/ + 10 bp of each exon junction were defined as splicing.

Coverage quality control
A more detailed notion of each gene percentage, per barcode, covered by at least 100×, in the processed align-
ments, was also provided using a combination of awk, SAMtools mpileup, BEDtools intersect, multiinter and 
merge. Bases covered by less than 100× were reported per barcode using the same strategy. Genes belonging to 
patient pathology were tagged in these two files to facilitate the search for genes of interest that might be badly 
covered.

Bioinformatics analyses
Variant selection algorithm
Stringent selection algorithm was applied to remove a maximum of irrelevant variants. We considered a minimal 
allelic ratio of 5% and a maximal frequency in the population of 0.1%. Only truncating mutations (frameshift 
deletion and insertion, stopgain, splicing alteration and hotspot mutations from Cancer Hotspot database) with 
a minimal coverage of 200 reads were retained for tumor suppressor gene variants. All missense variants known 
to be hotspot mutations from Cancer Hotspot database and no minimal coverage were retained for oncogenes 
 variants55. For genes classified as both oncogenes and TSG (such as NOTCH1) or with known missense hotspots 
(like TP53), truncating mutations with a minimal coverage of 200, and known hotspots mutations with no 
minimal coverage were selected.

Oncoprints
Oncoprints were drawn using the ComplexHeatmap package and were performed with the Maftools package 
for 4.00 version of R.

Tumor mutational burden
TMB was defined as the number of non-synonymous somatic mutations (SNVs and small indels) per mega-base 
in coding regions (mut/Mb). Coding variants (except for intronic splicing ones, therefore exons-only which 
represent 1.59 Mb), without synonymous nor polymorphisms (> 0.1% minor allele frequency [MAF]) and recur-
rent variants covered enough (not tagged as Low_Depth) were considered in all those calculations. Because the 
median and range of mutational load have been shown to vary across tumor types, we focused on the top 10% 
patients with the highest TMB scores and determined the log-rank p value for difference in survival among the 
10% top TMB and 90% bottom TMB subgroups of patients.

RNA sequencing
3′ Tag‑Seq protocol
High-throughput 3′ Tag RNAseq was performed on frozen and formalin fixed and paraffin embedded (FFPE) 
tumor RNA (100 ng). We used the QuantSeq 3’ mRNA-Seq Library Prep Kit (for Illumina) from Lexogen com-
pany. In contrast to traditional RNA-seq, which generates sequencing libraries for the whole transcript, 3′ Tag-Seq 
only generates a single initial library molecule per transcript, complementary to 3′ end sequences.

Data processing
RNAseq data was analyzed using the bioinformatics pipeline developed in Institut Curie and available at https:// 
github. com/ bioin fo- pf- curie/ RNAseq. Briefly, raw sequencing reads were checked for quality, trimmed for poten-
tial adapter sequences and aligned on the Human reference genome with the STAR software. State-of-the-art 
quality controls such as library complexity, alignment statistics, duplication level, reads annotation were per-
formed in order to ensure a high-quality of RNAseq samples. Gene expression quantification was performed 
with the featureCounts tool on the coding genes annotation extracted from the Gencode project.

Bioinformatics analyses
Unsupervised clustering k-sparse  methods56 with number of cluster (k) equal to two of bulk-tissue RNAseq data 
was used. A batch effect-correction algorithm (https:// github. com/ Jfort in1/ ComBa tHarm oniza tion) was then 
applied in an attempt to mitigate the dataset technical heterogeneity. The ComBat method, initially described in 
genomics, is a realignment method used to deal with the batch effect. In genomics, the batch effect represents 
individual variations due only to variations between technicians, laboratories, or the days of manipulations.

https://github.com/bioinfo-pf-curie/RNAseq
https://github.com/bioinfo-pf-curie/RNAseq
https://github.com/Jfortin1/ComBatHarmonization
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Identification of differentially expressed genes
We computed ratios of surgery/biopsy normalized gene expression levels as measured by RNAseq, with “biopsy” 
referring to treatment-naïve tumor samples, and “surgery” the paired post-afatinib ones. The Mann–Whitney 
U test was performed to identify variability of expression ratios between two response (responders versus non-
responders) groups. A cut-off of p-value < 0.05 was applied to select the most differentially expressed genes in 
the context of therapy.

Pathway enrichment analyses
Over Representation Analysis (ORA) was used for enrichment  analysis57. Pathway enrichment was computed 
using the Kyoto Encyclopedia of Genes (KEGG) database (https:// www. kegg. jp/ kegg/ kegg1. html) with hyper-
geometric test false discovery rate ≤ 0.1. Network-based pathway enrichment analyses were performed using 
ratios of surgery/biopsy gene expression levels across responders and non-responders in the bulk-tissue RNAseq 
data. In the bulk-tissue, the differentially expressed genes in the context of therapy that had a p-value < 0.05 
were selected as input for pathway analyses. ORA was performed separately by the direction of change in gene 
expression in order to identify gene sets that are over-represented when we only consider genes that are up- or 
down-regulated in one condition relative to another. KEGG datasets were retrieved from the R package software 
clusterProfiler v4.5.058.

Deconvolution of tumor microenvironment immune cells
The R package software  quanTIseq59 was applied to bulk RNAseq data from paired pre- and post-tumor sam-
ples to quantify the fractions of ten immune cell types, including B cells, M1 and M2 macrophages, monocytes, 
neutrophils, natural killer cells, non-regulatory CD4+ T cells, CD8+ T cells,  Treg cells and myeloid dendritic 
cells. quanTIseq also estimated the proportion of uncharacterized cells, namely cells that were present in the cell 
mixture of interest but were not represented in the signature matrix (e.g., cancer cells). Importantly, quanTIseq 
scores are proportional to the amount of each cell population in the total sample, thus allowing intra- and inter-
sample comparison for each population.

High throughput protein analysis
High throughput protein analysis used RPPA methods (Supplementary Fig. 10). The samples were processed 
as previously  described60 and printed onto nitrocellulose covered slides (Supernova, Grace Biolabs) using a 
dedicated arrayer (2,470 arrayer, Aushon Biosystems). Five serial dilutions, starting at 2000 mg/ml and two 
technical replicates per dilution were printed for each sample. Arrays were labelled with 77 specific, or without 
primary antibody (as negative control), as previously  described60. All primary antibodies used in RPPA have 
been previously tested by Western Blotting to assess their specificity for the protein of interest. Raw data were 
normalized using  Normacurve61, which normalizes for fluorescent background per spot, a total protein stain and 
potential spatial bias on the slide. Next, each RPPA slide was median centered and scaled (divided by median 
absolute deviation). We then corrected for remaining sample loading effects individually for each array by cor-
recting the dependency of the data for individual arrays on the median value of each sample, over all 77 arrays, 
using a linear regression.

The panel covered post translationally modified cancer pathway proteins, including phosphorylated and 
non-phosphorylated proteins derived from cell cycle, cell migration, genome integrity, immunity, metabolism, 
JAK/STAT signaling, MAPK signaling, NF-kappa B signaling, PI3K/AKT/mTOR signaling, receptor tyrosine 
kinase signaling, and Wnt/β-catenin signaling pathways (Supplementary Table 8).

Statistical analyses
The sample size was calculated to have a 90% power to detect a difference in treatment effect between biomarker 
positive versus biomarker negative patients. The treatment effect was defined as the difference in the tumor size 
evolution between the two arms. Since the observed mean tumor reduction under afatinib was less than the 
anticipated threshold of 20%62, correlative biomarkers analyses were done on the basis of the metabolic response 
and thus remained mainly exploratory.

All statistical analyses were performed using R software. Comparisons between groups were assessed using 
the Wilcoxon rank-sum test for quantitative variables, and the Fisher test for qualitative variables. For post-hoc 
analyses, univariate and multivariate Cox proportional hazard models were performed to identify prognostic 
biomarkers. The results are presented as hazard ratios (HR) and 95% confidence intervals (CIs). Survival curves 
were obtained with Kaplan–Meier estimates and compared using the log-rank test. The level of significance was 
set at P < 0.05. Correction for multiple testing was not applied.

Data availability
Original files and raw data files from the GEP11 PREDICTOR clinical trial will be made available from the cor-
responding authors upon reasonable request. The data are not publicly available due to information that could 
compromise the privacy of the research participants. All processed data used for the analyses are available in 
the Supplementary Materials.
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