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Quantitative gait analysis 
and prediction using artificial 
intelligence for patients with gait 
disorders
Nawel Ben Chaabane 1,2*, Pierre‑Henri Conze 1,3, Mathieu Lempereur 1,2,4, Gwenolé Quellec 1, 
Olivier Rémy‑Néris 1,2,4, Sylvain Brochard 1,2,4, Béatrice Cochener 1,2,4 & Mathieu Lamard 1,2

Quantitative Gait Analysis (QGA) is considered as an objective measure of gait performance. In this 
study, we aim at designing an artificial intelligence that can efficiently predict the progression of gait 
quality using kinematic data obtained from QGA. For this purpose, a gait database collected from 734 
patients with gait disorders is used. As the patient walks, kinematic data is collected during the gait 
session. This data is processed to generate the Gait Profile Score (GPS) for each gait cycle. Tracking 
potential GPS variations enables detecting changes in gait quality. In this regard, our work is driven 
by predicting such future variations. Two approaches were considered: signal-based and image-based. 
The signal-based one uses raw gait cycles, while the image-based one employs a two-dimensional 
Fast Fourier Transform (2D FFT) representation of gait cycles. Several architectures were developed, 
and the obtained Area Under the Curve (AUC) was above 0.72 for both approaches. To the best of our 
knowledge, our study is the first to apply neural networks for gait prediction tasks.

Gait disorders are described as any deviation from normal walking or gait1. Their prevalence among adults rises 
with age. In the elderly population over the age of 70 years, they are present in approximately 35% of patients2,3 
and in 72% of patients over 80 years2. These statistics take into account whether such disorders result from 
neurological etiologies or not, which can be determined through laboratory work, clinical presentation, and 
diagnostic testing2. In fact, gait disorders etiologies include neurological conditions (e.g., sensory or motor 
impairments), orthopedic abnormalities (e.g., osteoarthritis and skeletal deformities), and medical conditions 
(e.g., heart failure, respiratory insufficiency, peripheral arterial occlusive disease, obesity)4,5. Cerebral palsy, as 
a group of neurological disorders, affects about 2 in every 1000 newborns. Its prevalence reaches 5–8% among 
newborns with very low birth weights or very pre-term deliveries. Gait disturbances have a tremendous impact 
on patients, especially on their quality of life1: they complain most often of pain, joint stiffness, numbness, or 
weakness6. Neurological gait disorders, in particular, are associated with lower cognitive function, depressed 
mood, and diminished quality of life7. To have insight into patients’ conditions and therefore treat their gait 
disorders, clinicians historically used Observational Gait Analysis (OGA)8. OGA usually relies on a clinician’s 
observation freeze-framed techniques and video slow-motion replay to record and analyze a patient’s gait. It is 
subject to bias and has limited precision because it relies on the experience of the clinician. To overcome this 
limitation, Quantitative Gait Analysis (QGA) is considered. It uses instrumentation to quantify the gait cycle 
by recording temporal-spatial, kinematic, and kinetic data that is rarely gathered by observation. The challenge 
facing clinicians is to analyze a large amount of clinical data from QGA in order to determine the severity of 
the illness and select the most effective therapeutic strategy. It is a very tricky task because of the great dispar-
ity between patients (e.g., children and adults) and the diversity of their pathologies. In this context, our aim 
is to assist clinicians in analyzing this large amount of clinical data with an artificial intelligence applied to 
kinematics from QGA. The target objective is to go beyond objectively quantifying gait quality by predicting 
whether it will improve within the next visit. These predictions tend to help clinicians select the most effective 
treatment strategy. For this purpose, two approaches were considered: signal-based, which uses raw gait cycles, 
and image-based, which converts gait cycles into image-like representations, making them suitable for training 
image-based deep neural networks, especially pre-trained ones. In the signal-based approach, a Long Short Term 
Memory (LSTM) and a MultiLayer Perceptron (MLP) were designed from scratch. Their hyper-parameters were 
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tuned with KerasTuner9. The obtained results were compared to five state-of-the-art architectures10, including 
Fully Convolutional neural Network (FCN), Residual Network (ResNet), Encoder, Time Le-Net (t-LeNet), and 
Transformer. For the two tailored and state-of-the-art architectures, the influence of data augmentation was 
studied. In the image-based approach, the first step was to map the time representation of 1D gait cycles to a 2D 
frequency representation using the two-dimensional Fast Fourier Transform (2D FFT). Then, the obtained 2D 
FFT images were processed with four pre-trained Convolutional Neural Networks (CNN): VGG16, ResNet34, 
EfficientNet_b0, and a Vision Transformer (ViT). The obtained results were compared to those of a tailored CNN 
with a much smaller number of parameters. The effectiveness of the proposed models was evaluated on a gait 
dataset collected from more than 700 patients.

Materials and methods
Data acquisition
This study was carried out in accordance with the tenets of the Declaration of Helsinki and with the approval 
of the Brest, France hospital’s (CHRU’s) Ethics Committee. Patients had also signed an informed consent. Our 
work was conducted between 2021 and 2022. Data collected between June 2006 and June 2021 from 734 patients 
(115 adults and 619 children) who had undergone clinical 3D gait analysis were used. Their identities were 
preserved by respecting medical secret and protecting patient confidentiality. All data were recorded using the 
same motion analysis system (Vicon MX, Oxford Metrics, UK) and four force platforms (Advanced Mechanical 
Technology, Inc., Watertown, MA, USA) in the same motion laboratory (CHU Brest) between 2006 and 2022. The 
data collected by the 15 infrared cameras (sampling rate of 100 or 120 Hz) were synchronized with the ground 
reaction forces recorded by the force platforms (1000 Hz or 1200 Hz). The 16 markers were placed according 
to the protocol by Kadaba et al.11. Marker trajectories and ground reaction forces were dual-pass filtered with a 
low-pass Butterworth filter at a cut-off frequency of 6 Hz. After an initial calibration in the standing position, 
all patients were asked to walk at a self-selected speed along a 10m walkway.

Gait kinematics were processed using the Vicon Plug-in Gait model. Kinematics were time-normalized to 
stride duration, from 0 to 100% from initial contact (IC) to the next IC of the ipsilateral foot. Nine gait joint angles 
(kinematic gait variables) were used: anteversion/retroversion of the pelvis, rotation of the pelvis, pelvic tilt, flex-
ion/extension of the hip, abduction/adduction of the hip, internal/external rotation of the hip, flexion/extension 
of the knee, plantar/dorsiflexion of the ankle, and the foot’s angle of progression. As a result, a gait cycle yielded 
101 × 9 measurements. Let Ep,d denote the gait session of patient p at datetime d. It can be written as follows:

where CEp,d
k is the k-th gait cycle of a gait session Ep,d and K the total number of gait cycles. Let c

Ekp,d
t,n  denote the 

gait cycle CEp,d
k value at time step t and joint angle n. To keep notations simple, c

Ekp,d
t,n  is referred to as ct,n in what 

follows. CEp,d
k can simply be represented with a matrix of 101 lines and 9 columns, as follows:

The Gait Profile Score (GPS), a “walking behavior score”, was computed for each gait cycle from the previ-
ously described joint angles12–14. The GPS is a single index measure that summarizes the overall deviation of 
kinematic gait data relative to normative data. It can be decomposed to provide Gait Variable Scores (GVS) for 
nine key component kinematic gait variables, which are presented as a Movement Analysis Profile (MAP). The 
GVS corresponding to the n-th kinematic variable, GVSn , is given by15–17:

where t is a specific point in the gait cycle, T its total number of points (typically equal to 10118,19), ct,n the value 
of the kinematic variable n at point t, and creft,n  is its mean on the reference population (physiological normative). 
The GPS is obtained from the GVS scores15,17 as follows:

where N is the total number of kinematic variables (equal to 9 by definition).

Gait database
We had a total of 1459 gait sessions from 734 patients (115 adults and 619 children). Each patient had an average 
of 1.988 gait sessions with a standard deviation of 1.515. 53,693 gait cycles were collected. Their average number 
per gait session is equal to 18 with a standard deviation of 6. Neurological conditions, notably cerebral palsy, are 
the most frequent etiologies, as we can see in Fig. 1.
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The average patient age within the first gait session is equal to 14 years, with a standard deviation of 16 years. 
The time delay between the first and last gait session (for patients with more than one gait session, i.e., 319) is 
equal to 3.92 years on average with a standard deviation of 3.24 years. Directly consecutive gait sessions are, on 
average, separated by approximately 740 days, with a standard deviation of 577 days. The shortest (resp. longest) 
time delay was equal to 4 (resp. 4438) days. We had 1384 pairs of directly consecutive gait sessions belonging to 
319 patients (the remaining patients were removed since they had only one gait session). Involved gait conditions 
are various: without any equipment, with a cane, with a rollator, with an orthosis, with a prosthesis.. Only pairs 
of gait sessions without equipment were selected in order to be in the same condition (79% of all available pairs, 
i.e. 1152). The first gait sessions in these pairs were used for training. Models were fed the gait cycles of these 
first gait sessions (i.e., 21,167 gait cycles in total).

GPS variation prediction
GPS variation prediction is similar enough to a Time Series Classification (TSC) issue that its proposed popular 
architectures should be adopted. Consecutive gait session pairs (Ep,d ,Ep,d+�d) were considered. For each gait 
cycle CEp,d

k of the current gait session Ep,d , a GPS variation �GPS was computed using:

where GPSavg (Ep,d+�d) is the average GPS per cycle of Ep,d+�d and GPS(CEp,d
k) the GPS of the current gait cycle 

CEp,d
k . The average GPS per cycle GPSaverage(Ep,d) of a gait session Ep,d is simply equal to:

�

GPS was ranked in a binary fashion. Either it is negative, in which case the patient’s gait improves (class 1), 
or it is positive, in which case the patient’s gait worsens (class 0). The metric used is the Area Under the Curve 
(AUC).

The distribution of patients between training, validation, and test groups is provided in Table 1. Such a split 
put 73%, 12%, and 14% of total gait cycles within the training, validation, and test groups, respectively.

Signal‑based approach
To be exhaustive, one MLP, one recurrent neural network (LSTM), one hybrid architecture (Encoder), several 
CNN architectures (FCN, ResNet, t-LeNet), and a one-dimensional Transformer20 were included. The MLP 
and LSTM were designed and developed from scratch. Their hyper-parameters were optimized manually. FCN, 
ResNet, Encoder, and t-LeNet are among the most effective end-to-end discriminative architectures regarding 

(5)�GPS(CEp,d
k) = GPSavg (Ep,d+�d)− GPS(CEp,d

k)

(6)GPSavg (Ep,d) =

∑K
k=1 GPS(CEp,d
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Figure 1.   Etiologies pie chart.

Table 1.   Data distribution for �GPS prediction.

Train Validation Test

224 patients 48 patients 47 patients

15509 cycles 2678 cycles 2980 cycles

844 gait session pairs 142 gait sessions pairs 166 gait session pairs

45.61 % of class 0 45.89 % of class 0 44.4% of class 0
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the TSC state-of-the-art10. These methods were also compared to the Transformer, a more recent and popular 
architecture. The Transformer does not suffer from long-range context dependency issues compared to LSTM21. 
In addition, it is notable for requiring less training. The Adam optimizer22 and binary cross-entropy loss were 
employed23.

For MLP, gait cycles were flattened so that the input length was equal to 909 time steps. The number of neu-
rons was the same across all the fully connected layers. Many values of this number were tested to find the best 
structure for our task. In the same way, the number of layers was optimized. The corresponding architecture is 
shown in Fig. 2.

LSTM layers were stacked, and a dropout was added before the last layer to avoid overfitting. The correspond-
ing architecture is shown in Fig. 3.

For FCN, ResNet, Encoder and t-LeNet, the architectures proposed in Ref.10 were considered. They are shown 
in Figs. 4, 5, 6 and 7, respectively. We followed an existing implementation24 to set up the Transformer.

Figure 2.   MLP architecture for prediction.

Figure 3.   LSTM architecture for prediction.

Figure 4.   FCN architecture for prediction.
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Data augmentation
Different techniques of data augmentation were tested as a pre-processing step to avoid overfitting: jittering, 
scaling, window warping, permutation, and window slicing. Their hyperparameters were empirically optimized 
for each model. These are among the TSC literature’s most frequently utilized techniques, particularly when it 
comes from sensor data10.

Image‑based approach
Image-based time series representation initiated a new branch of deep learning approaches that consider image 
transformation as an innovative pre-processing of feature engineering25. In an attempt to reveal features and 
patterns less visible in the one-dimensional sequence of the original time series, many transformation methods 
were developed to encode time series as input images.

Figure 5.   ResNet architecture for prediction.

Figure 6.   Encoder architecture for prediction.

Figure 7.   t-LeNet architecture for prediction.
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In our study, sensor modalities are transformed to the visual domain using 2D FFT in order to utilize a 
set of pre-trained CNN models for transfer learning on the converted imagery data. The full workflow of our 
framework is represented in Fig. 8.

2D FFT is used to work in the frequency domain or Fourier domain because it efficiently extracts features 
based on the frequency of each time step in the time series. It can be defined as:

where F(u, v) is the direct Fourier transform of the gait cycle. It is a complex function that shows the phase and 
magnitude of the signal in the frequency domain. u and v are the frequency space coordinates. The magnitude 
of the 2D FFT |F(u, v)|, also known as the spectrum, is a two-dimensional signal that represents frequency 
information. Because the 2D FFT has translation and rotation attributes, the zero-frequency component can be 
moved to the center of |F(u, v)| without losing any information, making the spectrum image more visible. The 
centralized FFT spectrums were computed and fed to the proposed deep learning models. A centralized FFT 
spectrum for a given gait cycle is represented in Fig. 9.

Proposed deep learning models
Timm pre‑trained models
The Timm library’s26 pre-trained VGG16, ResNet34, EfficientNet_b0, and the Vision Transformer ’vit_base_
patch16_224’ were investigated. They were pre-trained on a large collection of images, in a supervised fashion. 
For the Transformer, the pre-training was at a resolution of 224× 224 pixels. Its input images were considered 
as a sequence of fixed-size patches (resolution 16× 16 ), which were linearly embedded.

Converting our grayscale images to RGB images was not necessary because Timm’s implementations support 
any number of input channels. The model’s minimum input size for VGG16 is 32× 32 . The image’s width dimen-
sion (N) equals 9, which is less than 32. In order to fit the minimum needed size, 2D FFT images were repeated 
4 times in this width dimension. Transfer learning with fine-tuning methods was employed. One neuron’s final 
fully connected layer was used. In the same way that the top layers were trainable, all convolutional blocks were.
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Figure 8.   Proposed �GPS prediction workflow for the image-based approach.

Figure 9.   2D FFT for a given gait cycle. (a) The gait cycle; (b) FFT spectrum of the gait cycle; (c) Centralized 
FFT spectrum of the gait cycle.
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Two‑dimensional 2D CNN
The pre-trained Timm models are deep and sophisticated, with many layers. As a result, a CNN model with fewer 
parameters, designed from scratch, was conceived. The number of used two-dimensional convolutional layers was 
a hyper-parameter to optimize in a finite range of values {1, 2, 3, 4, 5}. After the convolutional block, a dropout 
function was applied. Following that, two-dimensional max-pooling (MaxPooling2D) and batch normalization 
were used. The flattened output of the batch normalization was then fed to a dense layer of a certain number of 
neurons to tune. In order to predict the �GPS , our model had a dense output layer with a single neuron. The 
corresponding architecture is shown in Fig. 10.

The following are all of the architecture hyper-parameters to tune: the number of convolutional layers (num_
layers), the number of filters for each convolution layer (num_filters), the kernel size of each convolution layer 
(kernel_size), the dropout rate (dropout), the pooling size of the MaxPooling2D (pool_size), the number of 
neurons in the dense layer (units), and the learning rate (lr). Five models with a varying number of convolutional 
layers (from 1 to 5) were tested. For each of them, the rest of the hyper-parameters were tuned using KerasTuner9 
to maximize the validation AUC.

Results
In this section, prediction results are presented in terms of AUC.

Signal‑based approach
Without data augmentation
Results are given in Table 2. They are homogeneous on the validation set. LSTM and MLP perform equally 
well on the validation set. ResNet has the highest val AUC​ (0.709) for the state-of-the-art architectures. FCN 
achieves a comparable result to ResNet with a val AUC​ of 0.705. Encoder, t-LeNet and Transformer perform 
nearly equally well, with a val AUC​ above 0.63.

MLP
The best model has 4 layers of 200 neurons each. It is referred to as MLP_4_200. It gives a val AUC​ equal to 
0.717.

LSTM
The best model has 4 LSTM layers of 500 units. It is referred to as LSTM_4_500. It gives a val AUC​ of 0.701.

Data augmentation
For all the architectures used, an overfitting behavior with very quick convergence was exhibited. To mitigate this, 
5 data augmentation techniques already presented were combined. The order of their application was chosen ran-
domly for each training batch. The best data augmentation parameters were found for each architecture. Results 
are presented in Table 3. Performances are slightly better after data augmentation except for the Transformer. In 
general, convergence is slower; it no longer appears in the first few epochs. FCN gives the best val AUC​ (0.723).

Figure 10.   Tailored 2D CNN for prediction.

Table 2.   GPS variation prediction results. Best results in bold.

Model Epoch of convergence Val AUC​ Test AUC​ Test accuracy

MLP 55 0.717 0.683 0.640

LSTM 3 0.701 0.710 0.665

FCN10 30 0.705 0.689 0.641

ResNet10 8 0.709 0.699 0.663

Encoder10 25 0.631 0.691 0.648

t-LeNet10 5 0.653 0.689 0.64

Transformer20 851 0.640 0.709 0.626
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Image‑based approach
Table 4 presents the obtained results.

Despite the overfitting behavior of the pre-trained models, the test set’s results are nearly identical to those 
from the validation set. The tested Timm models all produced results that were comparable, with a val AUC​ 
of greater than 0.63. The model with the highest efficiency, the CNN trained entirely from scratch, gives a val 
AUC​ of 0.726. It has two convolutional layers, and its hyper-parameter values are as follows: num_filters = 4, 
kernel_size = 32, dropout = 0, pool_size = 8, units = 300 and lr = 4.127× 10−4 . Transfer learning is unlikely to 
have made a significant contribution because our images are visually insufficiently meaningful. Besides, there are 
not enough large datasets (from the same domain) available within the community to carry out such a transfer 
learning task.

Discussion and conclusion
The goal of our study was to predict the �GPS between two consecutive gait sessions in a binary fashion. If 
this variation is negative, gait quality gets better and vice versa. Globally, from scratch designed architectures 
gave slightly better results than state-of-the-art ones, which introduce too many parameters to optimize given 
the relatively small quantity of available data. As a result, a trade-off should be made between the amount of 
available training data, the complexity of the task, and performance. In the signal-based approach, in general, 
data augmentation techniques made some improvements in performance. Because of that, we suggest trying to 
find a way to improve their efficiency. In the image-based approach, developed from scratch CNN surpassed 
pre-trained Timm models. This can be explained by the fact that the source and target domains are so different. 
ROC (Receiver operating characteristic) curves for all models are presented in Fig. 11.

To have better insight into results, the ROC curves of the best models (i.e., FCN after data augmentation 
for the signal-based approach and CNN for the image-based one) were compared using the DeLong’s test. This 
revealed a p-value of 2.316× 10−4 for the two ROC curves at hand, which means that the AUCs of both models 
are significantly different. In other words, the FCN model after data augmentation, with a val AUC​ of 0.723 
and a test AUC​ of 0.717, is meaningfully better than the CNN model. This outcome proves that knowledge 
extraction is more efficient on raw signals than synthetic images. In summary, for both approaches, the predic-
tion results are encouraging despite the complexity of such a prediction task on so heterogeneous data. The val 
AUC​ and test AUC​ are above 0.7 for both approaches.

One limitation of this study is the fact that we were not able to validate our findings on external datasets 
because we did not have any other external data at our disposal. Actually, we were unable to find any publicly-
available medical databases.

Our future work will focus on taking the different pathologies into account. Ways of having more data should 
be thought about as well.

Table 3.   Prediction results after data augmentation. Significant values are in bold.

Model Epoch of convergence val AUC​ test AUC​ Test accuracy

MLP_4_200 2932 0.667 0.667 0.643

LSTM_4_500 2126 0.712 0.710 0.66

FCN10 1517 0.723 0.717 0.598

ResNet10 172 0.719 0.716 0.663

Encoder10 1942 0.640 0.632 0.604

t-LeNet10 61 0.625 0.665 0.618

Transformer20 322 0.546 0.561 0.467

Table 4.   Quantitative results. Best results in bold.

Architecture Number of parameters val AUC​ test AUC​

VGG16 134,263,489 0.650 0.642

ResNet34 21,278,913 0.653 0.679

EfficientNet_b0 4,008,253 0.637 0.628

Vision Transformer 85,260,289 0.652 0.691

CNN 35,505 0.726 0.693
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Data availability
The dataset used and analysed during the current study is available from the corresponding author on reason-
able request.
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