
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports

Temporal encoding in deep
reinforcement learning agents
Dongyan Lin 1,2*, Ann Zixiang Huang 2,3 & Blake Aaron Richards 1,2,3,4,5

Neuroscientists have observed both cells in the brain that fire at specific points in time, known as
“time cells”, and cells whose activity steadily increases or decreases over time, known as “ramping
cells”. It is speculated that time and ramping cells support temporal computations in the brain and
carry mnemonic information. However, due to the limitations in animal experiments, it is difficult to
determine how these cells really contribute to behavior. Here, we show that time cells and ramping
cells naturally emerge in the recurrent neural networks of deep reinforcement learning models
performing simulated interval timing and working memory tasks, which have learned to estimate
expected rewards in the future. We show that these cells do indeed carry information about time and
items stored in working memory, but they contribute to behavior in large part by providing a dynamic
representation on which policy can be computed. Moreover, the information that they do carry
depends on both the task demands and the variables provided to the models. Our results suggest that
time cells and ramping cells could contribute to temporal and mnemonic calculations, but the way in
which they do so may be complex and unintuitive to human observers.

The neural computations underlying core cognitive functions such as navigation, memory, and timing, have long
been a central question in neuroscience. Many of these cognitive functions have been linked to the tuning of
neurons’ firing rates in the medial temporal lobes. For example, place cells in the hippocampus are considered
a neural substrate for navigation1, and due to their special properties such as contextual remapping2 and offline
 replay3, they have also been considered important to episodic memory. As the temporal analogue of place cells,
several recent studies have identified neurons in hippocampus CA1 and CA3 that tile the interval between dis-
contiguous events by firing sequentially at successive moments in time, suggesting that these “time cells” support
the organization of memory by encoding time4–10. The subsequent observations of such time cells throughout
the brain in multiple mammalian species confirmed that this coding regime was wide-spread6,10–29. It can also
be seen as complementary to the previously reported ramping-based model for tracking time, in which neurons
estimate elapsed time using increasing or decreasing neuronal firing rates30–35. Interestingly, multiple studies have
demonstrated that the same population of hippocampal time cells form distinct sequences during the mnemonic
delay following the presentation of different sensory stimuli, suggesting a potential mechanism by which the
hippocampus integrates information about “what” and “when” as part of the process of encoding memories5,21,36.

However, discrepancies in the current literature make it unclear whether time cells and ramping cells are
causally responsible for temporally-organized behavior and working memory, or if they are an emergent phe-
nomenon related to internal recurrent dynamics in circuits. For example, Salz et al.9 showed that these time cell
sequences emerged from not only the mnemonic delayed alternative task but also a “looping task” that contained
no memory load. Sabariego et al.8 reported that sequences formed by the hippocampal time cells during a spatial
working memory task did not distinguish between different trial stimulus conditions. Toso et al.29 demonstrated
a dissociation between time coding by ramping cells and time perception in the dorsolateral striatum of rats
tasked with comparing the duration of two sequential vibrations. These findings hint at the possibility that time
cells or ramping cells may not be how animals “compute time” for driving behavior, but could instead be related
to more general computations that involve temporal information in recurrent calculations, such as estimating
future-discounted value. Determining this would require difficult manipulations of task demands and highly
targeted lesion studies of time and ramping cells to determine their involvement in behavior.

Luckily, computational models are not limited in this way—it is easy to manipulate the tasks given to models
and lesions can be performed on specific cells at specific times. As such, in the present study, we use in-silico
models, namely deep reinforcement learning (DRL) agents37, trained on simulated timing and working memory

OPEN

1Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada. 2Mila, Montreal, QC H2S
3H1, Canada. 3School of Computer Science, McGill University, Montreal, QC H3A 0G4, Canada. 4Department
of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 0G4,
Canada. 5Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON M5G
1M1, Canada. *email: dongyan.lin@mail.mcgill.ca

http://orcid.org/0000-0002-8200-7999
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49847-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

tasks to investigate the question of how time and ramping cells may contribute to behavior. We show that time
cells and ramping cells, as defined in the neuroscience literature, emerge in the recurrent neural networks trained
with reinforcement, even when performing the task does not require keeping track of time. As long as the net-
work is calculating temporally discounted value, these cells emerge. And, time can be decoded from the activity of
time and ramping cells equally well in networks trained to calculate time, networks trained on working memory
tasks, and networks trained on simple stimulus-association tasks. Moreover, time cells and ramping cells carry
other pieces of critical information for the task, such as stimulus identity and space. When we performed targeted
lesion experiments to determine the role of time cells and ramping cells in the performance of these networks we
found that time cells and ramping cells largely contribute to task performance courtesy of their contribution to
recurrent dynamics, regardless of the task being performed. Moreover, when the networks operated in a spatial
environment time and stimulus information were not encoded independently from space. Our data suggests
that time cells and ramping cells could play a more subtle and complicated role in core cognitive functions, such
as helping to estimate temporally discounted values via recurrent dynamics. Our results point to the need for
more careful examination of the involvement of apparent, intuitive-to-human neural tuning curves, such as the
tuning of firing rate to time elapsed, when trying to judge the role of different neurons in cognitive functions.

Results
Time cells and ramping cells naturally emerge in recurrent circuits trained on timing and work-
ing memory tasks
In order to examine networks in conditions where time must be computed, we first simulated a Delayed Dura-
tion Comparison (DDC) task, an interval duration judgment task for which time cells and ramping cells have
been observed in the hippocampus22 and striatum29. In each episode, the agent receives two stimuli of varying
length presented sequentially, separated by a fixed-length delay period (Fig. 1a, top). The duration of stimulus
1 and stimulus 2 was sampled uniformly among 7 equally spaced stimulus lengths between 10 and 40 s (10,
15, 20, and so on), under the constraint that the two stimuli must have different durations. After the stimulus
presentation, the agent makes a response to indicate which stimulus was longer and receives a reward for the
correct response. Similar to animal training, we used a reinforcement learning paradigm. Here, we trained DRL
agents that had an actor-critic architecture (Fig. 1b). The models assumed rate-based coding, i.e., each unit had
a real-valued activity. In any aggregate data presented here we trained 50 agents with different random seeds
for statistical analyses. At each time step, the agents received the stimulus as input (one-hot encoded), which
was passed through a layer of recurrent units and a layer of linear units, before outputting a value estimate and
a policy (Fig. 1b; see “Methods”). Over episodes the agents’ performance improved, reaching almost 100% cor-
rect eventually (Fig. 1c, top). The performance depended on the difference in the durations for stimulus 1 and
stimulus 2 (the greater the difference the higher the performance), but it did not depend on which of the stimuli
was longer (Fig. 1c, bottom), similar to behavioral results in animals38.

We also simulated the delayed non-match-to-stimulus (DNMS) task, an episodic working memory task
that does not require keeping track of time, but in which time cells have been observed in the hippocampus of
location-fixed, trained animals during the delay period36. In each episode, the DRL agents received one of two
possible stimuli, followed by a stimulus-free delay, after which the agents had to choose whichever stimulus was
not presented before the delay (i.e., non-match) to receive a reward (Fig. 1a, bottom). This task is fundamentally
similar to other working memory tasks used in time cell studies that require the animal to hold a piece of informa-
tion for a short period of time and make a decision based on the information, such as delayed match-to-sample
 tasks36,39, object-pairing tasks5,40 and delayed alternation tasks4,6,8,9,26,41,42. We used the same agent architecture
as for the DDC task (Fig. 1b). The agents were also able to learn this task well, getting close to 100% accuracy
by the end of training (Fig. 1d).

After the agents reached the performance of > 90% correct responses in both tasks we recorded the activity of
the recurrent units in the neural network for 5000 episodes with the weights frozen (i.e., no learning occurring),
as an in-silico analogue of recording the firing rate of the population in a neural circuit. As in neural recordings,
we observed the presence of activity that tiled the delay period in both the DDC and DNMS tasks (Fig. 2a,b),
resembling the time cells and ramping cells observed in animals. Interestingly, the cell ensembles were charac-
terized by a decrease in their temporal resolution over the delay, as reflected by the overrepresentation of the
beginning of the delay period as well as an increase in the width of the temporal receptive field towards the end
of the delay period (Fig. 2a,b), which is a phenomenon commonly observed in biological time cells across brain
regions and species5,6,9,12,15,17,18,39. We then analyzed the recorded activity from the recurrent units with analyses
commonly employed in time cell and ramping cell studies (see “Methods”). Briefly, time cells were defined as
recurrent units whose trial-averaged temporal tuning curve had a significant temporal information46 compared
to a shuffled distribution (Fig. 2c,d, top). Ramping cells were defined as recurrent units whose trial-averaged
temporal tuning curve ramps either up or down during the interval of interest, as quantified by their fit to linear
regression (Fig. 2c,d, bottom). In addition, to qualify as a ramping cell or time cell, a unit had to exhibit reliable
activity patterns across trials to ensure that the trial-averaged temporal tuning curve was meaningful. Cells could
qualify as both time and ramping cells if they met both criteria.

Across seeds, we observed the presence of both time cells and ramping cells for both tasks, as has been
observed in animals and humans15,18,23,31. However, we observed that, while the number of units that qualified
as time cells was similar for the DDC and the DNMS tasks, in the DDC task most seeds had a large number of
ramping cells and thus a larger number of cells that qualified as both time cells and ramping cells (Fig. 2e,f). This
is consistent with the traditional neuroscientific view that ramping activity in the cortical and striatal regions
is involved in interval timing and temporal control of action43–45. Interestingly, in untrained networks we saw
almost all units qualified as time cells, due to the fact that the change over time in the temporal tuning curve

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

had significant temporal information, but no ramping cells and no difference between the two tasks (Fig. S1),
suggesting that the presence of ramping cells and the difference between the two tasks in the trained networks
was a result of the solutions discovered by learning. In line with this, we also observed that whereas transfer
learning from the DDC task to the DNMS task was easy for the networks, transferring from the DNMS task
to the DDC task was highly dependent on the random seeds used at initialization (Fig. S2). This implies that
training on these two different tasks leads to different solutions, even though both reliably produce time and
ramping cells. Altogether, these results show that even if performing the task does not require time tracking
(DNMS), time and ramping cells can be present, but when time tracking is required by the task (DDC), more
ramping cells are present. And, when we trained networks without resetting the hidden unit activity in between
trials we observed even fewer ramping cells in the DNMS task (Fig. S3). This suggests that ramping cells can be
useful for timing calculations, but can be present even when performing the task does not require time tracking.
As well, time cells (as defined by the criteria used in neuroscience studies) appear to be a natural phenomena
in recurrent networks, even untrained networks (Fig. S1), which suggests that their presence is not necessarily
indicative of any temporal calculations.

Figure 1. Training deep reinforcement learning (DRL) agents on simulated timing and working memory
tasks. (a) Task schema. Top: Delayed duration comparison (DDC) task wherein the agent must choose the
stimulus duration, T1 or T2, that is longer. Bottom: Delayed nonmatch-to-stimulus (DNMS) task wherein, after
a delay in each trial, the agent must choose the option that is a non-match to the stimulus presented to receive
a reward. (b) Agent architecture. At each time step, the agent received the input of the state of the environment
St , and output the estimated state value V̂(St) and the policy π(at |St) . (c) Top: Performance of 50 agents with
different random seeds on the DDC task over the course of training, measured by percentage of correct duration
comparison. Bottom: Performance of 50 agents, after training on the DDC task, as a function of the difference
between T1 and T2. (d) Performance of 50 agents on DNMS tasks over the course of training, measured by the
percentage of nonmatch choice to the stimulus. Solid line and shaded area in (c) and (d) represent the average
and standard deviation over 50 seeds, respectively.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Time and ramping cells emerge based on value calculation demands
One important factor to recognize, though, is that while performing the DNMS task does not require the agent
to keep track of time, training the network on the task still requires the network to learn to estimate a tempo-
rally discounted value function. One possibility, then, is that this value learning is what drove the emergence of
time cells and ramping cells in the DNMS task. To test this, we trained networks with separate pathways for the
policy and value calculations (Fig. 3a). Many initializations of these networks struggled to learn the task, likely
because the policy network benefits from the representations of state encouraged by the value function. None-
theless, some seeds converged for this separate pathway architecture (Fig. S4). Interestingly, when we examined
the activity of the recurrent units in the networks that did learn, the activity profiles of units in the two different
pathways were radically different (Fig. 3b). In the value pathway, time cells and ramping cells emerged robustly
again (Fig. 3c, left). In contrast, in the policy pathway, the units exhibited oscillatory activity during the delay,
and almost no ramping cells emerged (Fig. 3c, right). As well, the cells that qualified as time cells according to
the criteria in the policy pathway had a very different temporal receptive field than the time cells observed in
the previous models with a single pathway.

We then examined the extent to which the units that qualified as time or ramping cells carried stimulus
information. In the value pathway, the units no longer appeared to carry any information about whether the
stimulus had appeared on the left or the right (Fig. 3d, left). In contrast the oscillatory units in the policy pathway
did seem to distinguish between left and right (Fig. 3d, right). We quantified this using the Pearson correlation
between the trial average activities for left trials versus right trials. As expected, given the qualitative appearance
of the activity profiles of the units, the correlation between the left and right trials was very close to 1 for almost
all units in the value pathway, and negative for most units in the policy pathway (Fig. 3e). These findings show
that the emergence of single peaked time cells and ramping cells in the RNNs is driven by the temporal calcula-
tion involved in learning value estimation. They also show that the extent to which time and ramping cells carry
stimulus information during a delay depends on there being a requirement for the RNN to remember a stimulus.
A similar teleological origin for the behavior of time and ramping cells could therefore exist in the brain.

Time cells and ramping cells contribute to timing calculation through value‑based dynamic
representation
To better understand how time cells and ramping cells may or may not be contributing to temporal calculations
in the DRL agents, we next conducted a set of information theoretic analyses and lesion studies. Using tools for
estimating mutual information in neural circuits46, we calculated the number of bits carried by the recurrent
networks about both timing and stimulus during the delay period, in both the DDC and DNMS tasks. As well,
we examined how the mutual information estimates were affected by shuffling either the temporal variables, or
the stimulus variables. This allowed us to determine how much the joint distribution mutual information was
related to either time or stimulus identity separately. We found that for either task the RNNs carried roughly the
same amount of information about time and stimulus identity. As well, the shuffling analyses showed that the
networks carried information about both time and stimulus identity in each task, as shuffling either variable led
to a statistically significant drop in mutual information (Fig. 4).

The information theoretic analysis suggested that the activity dynamics in the networks are indeed encoding
information about time and stimulus identity, but whether this information is being used to solve the task directly
cannot be determined by such analyses. To determine this, we then turned to a virtual lesion study. Leveraging
the manipulability of artificial neural networks, we designed two types of virtual “knock-out" experiments that
took advantage of our ability to selectively manipulate activity in specific units and specific times of the RNNs.

In the first type of knock-out experiment, which we termed “lesion experiments”, we set the targeted recurrent
unit’s activity to zero at each time step throughout the simulation (Fig. 5a), akin to killing a cell in a neurosci-
ence experiment. We did this “lesioning” after training on the tasks. Notably, as in real lesion experiments, this
would affect the activity of the rest of the non-lesioned population, thanks to the recurrent dynamics. As such,
any drop in performance in the tasks could be a result of the impaired dynamic representation that arises from
value estimation, rather than a result of time cell or ramping cell activity directly driving the downstream policy
or value units.

Figure 2. Ramping cells and time cells emerge in the recurrent units in DRL agents trained on cognitive tasks.
(a) In an example agent trained on the DDC task, the heatmap shows the activity of the RNN units of the agent
during the stimulus presentation, averaged across both stimuli for all durations. Each row shows the trial-
averaged activity of a single unit normalized to its minimum (blue) and maximum (red) activity throughout the
recorded episodes. Rows in each panel are sorted by the latency to the peak trial-averaged activity of units. (b)
Same as (a), but for the RNN activity during the delay period in an example agent trained on the DNMS task. (c)
An example time cell (top row) and an example ramping cell (bottom row) during the presentation of stimulus
1 (left column) and stimulus 2 (right column) in the DDC task. In each panel, the heatmap shows normalized
RNN activity during the stimulus presentation in 100 consecutive example trials for each duration; the curves
indicate the average activity across trials of the same duration throughout the recorded episodes, color-coded to
indicate different durations. (d) Similar to (c), the heatmaps show the RNN activity during the delay period of
the DNMS task in 100 example trials for each stimulus, the curves show the trial-averaged responses throughout
the recorded episodes. (e) The number of units qualified as time cell, ramping cell, both time cell and ramping
cell, and neither time cell nor ramping cell in each agent averaged across 50 agents trained on the DDC task.
Error bars indicate the standard deviation. Dashed line indicates the total number of RNN units in the network
(i.e., 128). (f) Same as (e) but for the DNMS task.

▸

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

To examine the potential direct role of time and ramping cells in the final computation of policy and value,
we also ran a second type of knock-out experiment, which we termed “silencing experiments”. In these experi-
ments, we first recorded the activity in the RNN under normal conditions. Then, at each time step during the
experiment, we manually fed in the previously recorded neural activity patterns but with the activity of a targeted
set of neurons fixed to zero, i.e., “silencing” them (Fig. 5b). By manually inserting the activity from a normal
run like this, we kept the activity in the non-targeted recurrent population the same as it would be without the
silencing. Thus, in these experiments the “knock-out” only altered the activity of the targeted neurons, and not

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

the rest of the population, allowing us to isolate the impact of these cells in the downstream policy and value
calculations during task performance separately from their impact on the dynamic representation on which
policy can be computed.

In the lesion experiments, we found that in both DDC and DNMS tasks, lesioning time cells, ramping cells,
or random cells led to equivalent drops in performance (Fig. 5c,e). In all three conditions, the performance
on the task dropped as the number of units lesioned increased, and the performance approached chance level
asymptotically once the number of units lesioned exceeded a certain amount. This suggests that time cells and
ramping cells are contributing to the tasks equally in both the DDC and DNMS tasks.

In the silencing experiments, we again found similar results for the DDC and DNMS tasks, with lesions of
time cells, ramping cells, or random cells producing similar drops in performance (Fig. 5d,f). However, unlike

Figure 3. Time and ramping cells only emerge when there is value calculation demand. (a) Agent architecture
for separate actor (policy) and critic (value) pathways. The two pathways receive the same input, and calculate
policy and value independently, without sharing representation. (b) Heatmaps show the trial-averaged RNN
neural activity during the delay period in the value (left) and policy (right) networks in an example agent that
successfully learned the DNMS task. (c) The number of units qualified as time cell, ramping cell, both time
cell and ramping cell, and neither time cell nor ramping cell in the value network (left) and policy network
(right) in each agent, averaged across all agents that successfully learned the DNMS task. Error bars indicate
the standard deviation. Dashed line indicates the total number of RNN units in the network (i.e., 128). (d) Four
example RNN units—two from the value network (left), two from the policy network (right)—in an agent that
successfully learned the DNMS task. For each unit, the heatmaps show normalized RNN activity during the
delay period in 100 consecutive trials for left (top panels) and right sample (middle panels). The bottom panels
show the trial-averaged responses during the delay period in all recorded trials, for left trials (yellow curve) and
right trials (brown curve). (e) Distributions of Pearson correlations between each RNN unit’s temporal tuning
curves for left trials versus right trials in the value pathway (left) and policy pathway (right) of all agents that
successfully learned the DNMS task.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

in the lesion experiments, we found that many more units had to be silenced to induce a drop in performance.
This shows that the contribution of time and ramping cells to the tasks was in large part a result of their impact
on the dynamic regime that is needed for policy computation. As well, this implies that the policy and value
calculations rely on a highly distributed code for their calculations, one that depends equally on time and ramp-
ing cells in both tasks. Thus, altogether, these results demonstrate that time and ramping cells are contributing
a great deal to task performance courtesy of their impact on recurrent dynamics. As such, the exact manner in
which encoded information about time and stimulus identity is being used is complex, and not a simple function
of a small number of units individually contributing a great deal to any temporal or stimulus computations made
by the policy or value units. Contrary to the currently widespread belief, our results suggest that units tuned to
elapsed time may not be the mechanism the brain uses to read-out “what happened when”, per se, even though
they contain information about time, and represent time in a human-interpretable fashion. Instead, they may
contribute to temporal calculations as part of the dynamic regime in the brain that is associated with learning
the value function.

Encoding of time is dissociable from behavior in the DDC task
A previous study has suggested that the encoding of time by ramping cells in the rat striatum might be distinct
from the perception of time, as measured by behavior in the DDC task29. Hence, we sought to determine whether
the same holds true in our DRL agents. We found that, during stimulus presentation, the vast majority of the
units were tuned globally to the most prolonged stimulus duration and did not rescale across different stimulus
duration (example cells shown in Fig. 2c, tuning curves of different colors indicate different durations). This
meant that individual units maintained their temporal receptive field regardless of the actual stimulus duration,
implying that the recurrent units track the absolute passage of time independent of the behavior that different
stimulus lengths could imply.

We therefore examined time encoding and population activity separately for correct and incorrect trials, as
done in the previous study in the striatum29. If behavior is indeed dependent on the encoding of time by time
and ramping cells, then we should observe more errors in temporal decoding for incorrect over correct trials.
However, a linear regression decoder predicted the time elapsed with equal accuracy in both the correct trials
and the incorrect trials (Fig. 6a), even though the decoder was trained only on the correct trials. This suggests
that the temporal encoding provided by time cells and ramping cells did not determine which trials were cor-
rect versus incorrect. In other words, there was a dissociation between the temporal information carried by the
population activity of time and ramping cells and the agent’s perceptual decision regarding the relative duration
of sensory stimuli.

Figure 4. The activity of RNN units carry information about stimulus and elapsed time. (a) Boxplots show
the distribution of mutual information between the RNN activity during stimulus presentation in the DDC
task and occupancy in a two-dimensional joint stimulus-by-time (S × T) space (left column), compared to
the amount of mutual information if the units encoded just stimulus (middle column, S × RT) or just time
(right column, T × RS) independently. RT and RS indicate that the time and stimulus dimension is randomized,
respectively. Results were aggregated across 50 agents. Only units with significant mutual information in the
non-randomized S × T space were included in the statistical analysis. RNN activity significantly encoded
both stimulus (****Kruskal–Wallis test, N = 5889, p < 0.00001) and time (****Kruskal–Wallis test, N = 5889,
p < 0.00001). (b) Same as (a), but for the DNMS task during the delay period. RNN activity significantly encoded
both stimulus (****Kruskal–Wallis test, N = 5888, p < 0.00001) and time (****Kruskal–Wallis test, N = 5888,
p < 0.00001). P-values were corrected for multiple comparisons with Bonferroni.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Figure 5. Performance drop in the neural networks with units selectively lesioned or silenced. (a) Graphical
illustration of the lesion experiment. In these experiments, the targeted units are also governed by the RNN
equations just like the non-lesioned units, and therefore, will affect the activity of the rest of the non-lesioned
population. (b) Graphical illustration of the silencing experiment. In these experiments, the activity of the
targeted units is manually fixed to zero while the activity in the non-targeted recurrent population is kept the
same as it would be under the normal conditions (top row, governed by the RNN equations). In both (a) and
(b), black circles indicate targeted units with zero activity, while colored circles indicate non-targeted units.
Changes in the color of the circle between two consecutive time steps indicate changes in the population activity
in the RNN. For visual clarity, differences in the activity of individual units at a given timestep are not reflected
in the color of the circles. (c–f) Percentage of correct responses in 100 trials during which different numbers of
RNN units were lesioned in agents trained on the DDC task (c) or DNMS task (d), or silenced in agents trained
on the DDC tasks (e) or DNMS task (f). Solid lines and shaded areas indicate average and standard deviation
across 50 random selections of each cell type per agent, for 50 agents.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Supporting this, the temporal dynamics in the recurrent population did not differ qualitatively between cor-
rect and incorrect trials (Fig. 6b). As well, we observed time cells and ramping cells during the delay period in
the task, when no temporal information is required (Fig. 6c). Plus, during the delay period, time elapsed could
be accurately decoded by a linear regression decoder from the population activity at each time step (Fig. 6d).
Altogether, this suggests that time encoding may emerge as an intrinsic circuit property of RNNs irrespective
of the downstream behavior.

Encoding of stimuli depends on mnemonic demands
Previous research on rodent hippocampal time cells has been inconclusive as to whether these sequential activ-
ity patterns indeed contribute to stimulus-encoding in memory or not8,9,40. Here, we investigated the effect of
mnemonic demand on the temporal representations by developing a non-mnemonic version of the DNMS task.
In this version, upon the onset of the choice phase, the agent must choose the left location to receive a reward

Figure 6. Dissociation between the encoding of time and the behavior of timing in the DDC task. (a) Decoding
time on either correct (blue) or incorrect (red) trials, using a linear regression decoder trained only on correct
trials, plotted against the actual elapsed time. Dashed gray line represents correct decoding. Solid lines and
shaded areas indicate average and standard deviation across 5 cross-validation folds per agent for 50 agents. (b)
The population activity averaged across all stimulus durations for correct trials versus incorrect trials. Rows in
both panels are sorted according to the latency to the unit’s peak activity during the correct trials. (c) Similar
to Fig. 2a, but for the delay period in the DDC task. (d) Linear regression decoding of elapsed time since delay
onset from the activity of all RNN units at each time step from an example agent. Each dot represents the
decoding accuracy of a population vector at one time step on one trial. Blue line and shaded area represent mean
and standard deviation of decoded time for each actual time, gray dashed line represents correct decoding.

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

regardless of the sample location, thus eliminating the demand for the agent to remember the sample location
across the delay period (Fig. 7a). The agents trained on the non-mnemonic DNMS task had the same architec-
tures as the single pathway models trained on the normal DNMS task (Fig. 1b). As expected, the agents learned
the non-mnemonic task much faster than its mnemonic counterpart (Fig. 7b). We also conducted lesion and
silencing experiments on agents trained on the non-mnemonic DNMS tasks and observed that solving the non-
mnemonic DNMS task did not rely on recurrence as much as the mnemonic task, suggested by the preserved
performance in the lesion experiment (Fig. S5).

To characterize the effect of memory demand, we first examined the temporal organization of recurrent units
during different trial types (left sample versus right sample) under mnemonic or non-mnemonic conditions.
We found that under the mnemonic condition, the identity of the sensory stimuli were represented by time and
ramping cells in the recurrent dynamics throughout the delay, as suggested by the different orders of sequential
activation of the neural ensemble during the delay period (Fig. 7c). When we examined each unit’s temporal tun-
ing curves during the delay period following different stimuli, we found that most units had almost orthogonal
representations for the two stimuli as suggested by the negative Pearson correlation (Fig. 7e, left). In contrast,
in the non-mnemonic task, different sensory stimuli were represented by almost identical neural dynamics
(Fig. 7d) and highly correlated temporal tuning curves (Fig. 7f, left), suggesting a lack of representation for the
stimuli when it is task-irrelevant.

To quantify how informative these patterns were, we trained a support vector machine (SVM) to decode
the identity of the stimulus from the activity of the recurrent units at each time step during the delay period.
We found that, when the agent was required to remember the identity of the sample (i.e., mnemonic DNMS),
the recurrent units successfully preserved the information about the stimulus in their activity across the entire

Figure 7. Time cell encoding of sensory stimulus depends on the mnemonic demands. (a) Task schema for the
non-mnemonic DNMS task. After the delay, the agent must choose the left location regardless of the stimulus
location to receive a reward. (b) The percentage of correct (i.e., left) choices over the course of training. (c,
d) Ensemble neural activity during the delay period for left- or right-stimulus trials under the normal (c) or
non-mnemonic (d) condition of the DNMS task. Each heatmap shows the trial-averaged hidden state activity
of all 128 RNN units, normalized to each unit’s minimum (blue) and maximum (red) activity throughout the
recorded episodes. In all heatmaps, the units (i.e., rows) are sorted by the latency to peak activity during the
left stimulus trials under the corresponding task condition. (e) Left panel: Distributions of Pearson correlations
between each RNN unit’s temporal tuning curves for left trials versus right trials during the mnemonic DNMS
task for all units in 50 agents. Right panel: SVM decoding of the stimulus displayed prior to the delay period
from the population activity at each time step during the delay period of the mnemonic DNMS task. Decoding
accuracy is measured by the fraction of test trials decoded correctly. Decoding accuracies from unit-shuffled
population activities are plotted in gray and serve as a chance baseline. Solid lines and shaded areas indicate the
average and standard deviation across 5 cross-validation folds per agent for 50 agents. (f) Same as (e), but for the
non-mnemonic DNMS task.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

delay. To confirm the significance of this, we also conducted the decoding using shuffled activities (i.e., the cell
identities were shuffled), which led to chance decoding performance (Fig. 7e, right). In contrast, in the absence
of working memory demand (i.e., non-mnemonic DNMS), the activity of recurrent units gradually lost infor-
mation about the stimulus over the course of the delay period eventually settling at chance level (Fig. 7f, right).
Thus, our results support the idea that time cell representations can contribute to a lasting record of sensory data
in the presence of mnemonic demands.

DRL agents trained on a spatial working memory task exhibited conjunctive coding of time,
space, and stimulus
We had found time is encoded by DRL agents trained on the DNMS task, likely due to the temporal calculations
required for value estimation (Fig. 3b). One possible reason for this is that our models receive no inputs over
the delay period, and so, dynamic computations (such as estimating value) over the delay period necessarily
also carry temporal information. If, however, there were other variables that could change over the delay period,
then temporal encoding may be less important. In other words, there may be no disentanglement of temporal
representations from representations of other variables when other variables are available during the delay.

To this end, we altered the DNMS task by making a version in a triangular arena, similar to the arenas used
with animals47. In this scenario, the agents can freely move, even during the delay period (“spatial DNMS task”;
Fig. 8a), and as such, space becomes another variable that can change over the delay. All components of the task
were the same, except that the two stimuli are placed at the left and right sides of the arena, and the initiation
signal is placed at the bottom of the arena. The agent must navigate to these locations and interact with them to
proceed to the next stage of the task. To maximize the reward, the agent must not only remember the stimulus
presented, but also navigate to desired locations in the shortest path possible without taking redundant actions.
The agent used in the spatial DNMS task was similar to the one shown in Fig. 1b, but we added a convolutional
neural network to generate a latent representation of the visual input, an RGB image of the environment from
above (Fig. 8b). We also simulated the non-mnemonic version of the spatial DNMS task in which, after the
delay, the agent must navigate to and interact with the left location to receive reward regardless of the sample.
As expected, The DRL agents learned both tasks, with the non-mnemonic version learned much faster (Fig. 8c).

We then examined the representations of task-relevant variables by the recurrent units. We found that, similar
to the location-fixed DNMS task, the recurrent units during the spatial DNMS task also exhibited trial-reliable
temporal tuning, resembling time cells and ramping cells (Fig. 8d). We also found that the recurrent dynamics
only differed for the two stimuli when there was a mnemonic demand (Fig. 8e). Plus, we observed spatial tuning,
modulated by the sensory stimuli presented before the delay period, similar to the “splitter cell” phenomenon
observed in the rodent hippocampus48,49 (Fig. 8f). We then conducted mutual information analyses using stimu-
lus, time, and location as variables. We found that the RNNs carried joint information about stimulus, time, and
location in the spatial DNMS tasks, but they only carried significant information about spatial location, as this
was the only variable whose shuffling led to a significant drop in mutual information (Fig. 8g). This suggests that
time cells and ramping cells will appear as a result of natural recurrent dynamics and the timing calculations
involved in estimating value, but these cells do not necessarily carry disentangled information from other relevant
variables, such as space. In summary, we observed conjunctive coding of space, time, and stimulus in the same
recurrent population, which pointed to the possibility that the temporal selectivity of time cells and ramping
cells may represent task-relevant variables that correlate with time rather than time, per se.

Discussion
In this study we used DRL agents to ask whether time and ramping cells necessarily play a direct role in encod-
ing time and memory, or whether they may also be an “epiphenomenon” of recurrent neural network dynamics.
We found that time and ramping cells emerge in DRL agents trained on both a task that, while performing the
task, requires keeping track of time (DDC) and a task that, while performing the task, requires working memory
(DNMS) (Figs. 1 and 2). Notably, the emergence of time and ramping cells in the DNMS task appeared to be
driven by the value learning objective (Fig. 3), possibly because value calculations require a temporal estimate.
We also found that the recurrent activity in these agents encoded time accurately (Fig. 4). But, the role of these
cells in the behavior of the networks was complicated and related at least in part to their contributions to the
dynamic regime that arose from learning to estimate the value, on which the policy was computed (we also note
that value estimation is needed only when the agent is learning the task since it would reduce the variance in
weight updates and facilitate training, but not executing the task, at which point only policy computation would
suffice) (Fig. 5). As well, the encoding of time was dissociable from the performance of the networks (Fig. 6).
In a task that required only value calculations (non-mnemonic DNMS) time and ramping cells still emerged
(Fig. 7). But, when the task involved a spatial dimension, time and ramping cells did not encode time or stimulus
separately from spatial location (Fig. 8). In total, these results suggest that time and ramping cells may indeed
contribute to encoding of time and memory, but how they do so depends on the nature of the task. Furthermore,
our results suggest that the role of these cells could relate to recurrent circuit dynamics. Given this, we believe
that neuroscientists should utilize caution when making any interpretation of temporal encoding due to the
presence of time or ramping cells alone. One possibility, hinted at by our results, is that these cells are a natural
product of any system attempting to estimate value in a recurrent circuit.

Our results using DRL models replicated several findings in the animal brain. For example, the DRL agents
trained on the DDC task showed a dissociation between time encoding by ramping cells and time cells and time
perception, replicating the observations in the rat striatum by Toso et al.29. When trained on the DNMS task,
the recurrent units in the DRL agents exhibited sequential activation patterns that tiled the delay period with or
without a memory demand, replicating the observations in the rat hippocampus by Salz et al.9. When a memory

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

demand is present, the time cells in the DRL agent demonstrated distinct temporal tuning during the delay
period, replicating the observations in the rat hippocampus CA1 by MacDonald et al.36. Importantly, our DRL
models, trained only to optimize task reward, capture some of the properties of time cells that we did not train
them on at all, such as an increase in the width of the temporal receptive field later in the interval5,6,9,12,15,17,18,39. As
such, our DRL models provide a normative and algorithmic substrate for understanding the ubiquity of time cells
and ramping cells in the brain, and they can help us to integrate multiple findings across different brain circuits.

There are several limitations of our task-optimized DRL model. First, our model was not a physiological
model, since it utilized non-physiological recurrent dynamics with an assumption of rate-based coding (see
“Methods”) and was trained with backpropagation through time. Second, our DRL agents required tens of

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

thousands of training episodes, which was much more than what is usually needed for animals to learn the same
task. But, we note that our agents are trained from scratch, thus do not have the priors animals have, provided
by their innate wiring and the experience through their lifetimes. Third, our study used toy simulations of real
experiments used in the neuroscience literature, which calls for simulation experiments in more realistic 3D
environments to confirm our findings. Fourth, when training our networks we reset the hidden unit activity
between trials, which may or may not be an accurate reflection of real experiments, depending on how long of
a delay occurs between trials during training. Lastly, while our simulation data was collected after the agents
were trained on the tasks, with the weights frozen (i.e., during the inference phase, with no learning occurring),
real animals would always be learning and thus constantly updating their value estimations. The fact that we
saw fewer ramping cells in the DNMS task when hidden unit activity was not reset (and even observed some
oscillatory units Fig. S3) suggests that the length of delay between trials may be another experimental factor to
consider when looking for ramping cells in real experiments. Lastly, we note that in our study, even though we
used the same criteria to classify time cells and ramping cells as the animal studies, we observed a much higher
percentage of time cells and ramping cells in the recurrent population, likely because real neurons are much
noisier and more likely to be silent during the experiment than artificial units. Another potential explanation is
that real animals have learned many more things than a single task (or pair of tasks). It is possible, therefore, that
many neurons in real brains are simply tuned to task-unrelated information, reducing the number of observed
time and ramping cells.

In the past several decades, neuroscientists have discovered neurons tuned to a plethora of different variables
in a wide range of species50–53. However, our results suggest that one must be cautious when associating the vari-
ables these neurons are tuned to with their functions. In this case, ramping cells and time cells are indeed tuned
to elapsed time, but this is because they are defined by the change in their firing rate over time, and identified
via analyses that presume their tuning properties. One example of such analyses is sorting neurons based on
the latency to their peak activity, which is bound to result in a sequence due to the dynamical nature of recur-
rent neural circuits. Some may rebut by saying that time cells and ramping cells are not just tuned to time; they
carry information about time. However, our results on info-theoretic analysis and knock-out experiments sug-
gest that carrying information about a variable does not equate to helping the brain manipulate information
about this variable to accomplish cognitive tasks, necessarily; as we have seen, time could simply be a correlated
variable in the neural representation of other task-relevant variables, such as space (Fig. 7g, right). Instead, we
argue that what is important is how downstream networks parse and use information carried by these neurons
tuned to particular variables, including time. Lastly, some may argue that, it is now common practice in animal
experiments on time cells and ramping cells to hold every other variable (e.g., head direction, location, distance)
constant to make sure that time cells and ramping cells only represent time. However, we observed that appar-
ent time cells and ramping cells emerged even when there are no other variables that are being tracked by the
network other than value, and no need to track time (e.g., the delay period during the non-mnemonic DNMS
task, or the delay period of the DDC task), showing that these cells are a natural emergent property of almost
any recurrent neural network trained to estimate value over time. In line with this point, studies on time cells in
the rodent hippocampus, which constitute the majority of the time cell literature so far, suffer from an inevitable
dilemma: running or movement of the animal leads to higher firing rate of hippocampal neurons54,55. Most time
cell studies fix the animal’s location by having the animal running on a treadmill; in the absence of such behavior
that unfolds over time, the hippocampal network is less likely to show time cells8. In sum, our results show that
caution must be used when interpreting data on time cells and ramping cells, and these neurons could reflect
changes in neural dynamics and value-based learning, rather than time tracking required when performing the
task, per se. After all, without any changes, how do we really know that time has elapsed?

Figure 8. DRL agents trained on a spatial working memory task exhibit conjunctive coding of time, space,
and stimulus. (a) Schematic illustration of the task structure in one trial of spatial DNMS task. (b) Architecture
of the DRL agent trained on the spatial DNMS task. (c) Performance of the agent on spatial DNMS (orange)
and non-mnemonic DNMS (blue) tasks over the course of training, measured by the percentage of choices
that led to reward. Solid line and shaded area represent the average and standard deviation of performance
over 50 seeds, respectively. (d) Similar to Fig. 2d, but for the spatial DNMS tasks. (e) Similar to Fig. 6c,d, but
for the spatial DNMS tasks. (f) Two example neurons that exhibited stimulus-modulated location tuning. Each
heatmap shows the occupancy-normalized trial-averaged activity at different locations in all trials (left column),
left-stimulus trials (middle column), or right-stimulus trials (right columns). (g) Left panel: Boxplots show the
distribution of mutual information between the RNN activity during the delay period of the spatial DNMS task
and occupancy in a three-dimensional stimulus-by-time-by-location (S × T × L) space (left column), compared
to the amount of mutual information if the units only encoded two of the variables: (from left to right) stimulus
and location (S × L× RT), time and location (L× T × RS), stimulus and time (S × T × RL), with the third
variable randomized. Results were aggregated across 50 agents. Only units with significant mutual information
in the non-randomized S × T × L space were included in the statistical analysis. RNN activity only significantly
encoded location (****Kruskal–Wallis test, p = 0.00001), but not time (n.s., Kruskal–Wallis test, p = 0.117) or
stimulus (n.s., Kruskal–Wallis test, p = 0.144). Right panel: same as the left panel, but for the non-mnemonic
version. RNN activity only significantly encoded location (****Kruskal–Wallis test, p = 0.00001), but not time
(n.s., Kruskal–Wallis test, p = 0.468) or stimulus (n.s., Kruskal–Wallis test, p = 0.330). P-values were corrected for
multiple comparisons with Bonferroni.

◂

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Methods
Simulated cognitive task environments
The simulated environments for the DDC and DNMS tasks were designed to be compatible with the OpenAI
gym framework56, a suite of environments with which reinforcement learning agents interact in discrete time
steps. In non-spatial environments, the states (observations) of the environment were one-hot encoded. In the
DDC task, in each episode, the agent received two stimuli of varying length presented sequentially, whose dura-
tions were sampled uniformly among 10, 15, 20, 25, 30, 35, and 40 time-steps, separated by a 20 time-step delay
period. The two stimuli must have different durations. The agent had two possible actions: to indicate whether
the first or the second stimulus was longer. Depending on the ground truth, the agent would either receive a
scalar reward (+ 1) or punishment (− 1) and the episode would conclude. In the DNMS task, in each episode,
the agent received one of two possible stimuli (“left” or “right”), and had to interact with the stimulus to proceed
to a delay period of 40 time-steps. After the delay period, the two stimuli were simultaneously presented to the
agent, and the agent had to choose the stimulus that was different from the one it received to receive a reward and
finish the trial. In the non-mnemonic version of the DNMS task, after the delay period, the agent had to choose
the “left” stimulus to receive a reward and finish the trial, regardless of what stimulus was presented before the
delay period, thus eliminating the working memory demand during the delay period.

In spatial DNMS tasks (mnemonic and non-mnemonic), the environment consisted of an inverted-triangular
grid arena in which the agent could freely move, surrounded by walls of at least 1 grid thick to make up for a
4-pixel by 7-pixel rectangular visual field input. The state of the environment was rendered as a colored image,
with the initiation signal in red, the left and right sample signals in green, the agent in blue, available grids in
black, and the walls in white, spatially arranged similar to the arenas used with animals47. The agent had six
possible actions: move up, move down, move left, move right, interact with the signal at its current location, or
stay at the same location without doing anything. When presented with a signal, the agent not only had to move
to the signal location but also interact in order to proceed in the trial. To obtain a reward (+ 100), the agent had
to select stimuli as in the non-spatial versions of the task. To teach the agent to move to the goal location in the
shortest path possible, all actions (except for interacting with the signal when appropriate) were punished slightly
(− 5). The structure of each trial mirrored its non-spatial counterpart as described above.

DRL agent architectures and training details
The DRL agents used to solve tasks in non-spatial environments consisted of a memory module and an actor-
critic module. The memory module consisted of an RNN layer with 128 units and a linear layer with 128 units.
For the RNN layer, we used long short-term memory (LSTM) modules. Though not as physiological as vanilla
RNNs, they help avoid vanishing and exploding gradient issues in vanilla RNNs, thanks to their gating mecha-
nism and linear cell57. The output of the linear layer was then fed forward to the actor-critic module, which
consisted of a value network that generated an estimate of state value V̂(St , θ) and a policy network that gener-
ated a stochastic policy π(at |St , θ) from which the action would be sampled using a softmax distribution with
temperature of 1. For the spatial environments, the DRL agents additionally had a visual module, which is a deep
convolutional neural network to generate a latent representation of the image input of the environment state.
The convolutional neural network consisted of two convolutional blocks with feature map counts of 16 and 32,
respectively. Each block had a convolutional layer with kernel size 2 × 2 followed by max pooling with kernel size
2 × 2 and stride 1 × 1. The output of the visual module was passed to the memory module, which consisted of an
LSTM layer with 256 units and a linear layer with 256 units, and then the actor-critic module.

The hidden states of the LSTM units were initialized to 0 at the beginning of training. After finishing each
trial, the hidden states of the LSTM units were reset to 0 to prevent the hidden state activity from growing too
large or dissipating. We conducted a control experiment in which we never reset the hidden units in the network
between trials (Fig. S3). To do this, we made a copy of the value of hidden states at the end of each trial, and
initialized the hidden states to the copied values.

Our agents were trained with the Asynchronous Advantage Actor-Critic (A3C) algorithm58, in which the
network parameters were adjusted to minimize the loss L = Lπ + LV , where

where t = 0, 1, . . . ,T − 1 index the time steps in an episode with T environment steps, Rt =
∑t

i=0γ
irt−i

denotes the discounted return at t calculated from all previous rewards r0, ..., rt , and l1 is the smooth L1 loss.
For all tasks, we used a discount factor γ = 0.99.

The separate actor-critic networks had two separate pathways to estimate value and generate policy, respec-
tively (Fig. 3a). The input to each pathway is the current observation St , then passed through each pathway’s
memory module (an LSTM layer with 128 units, then a linear layer with 128 units). Then, for the policy pathway,
the output from the memory module is passed to a linear layer with the same number of units as the number of
actions to generate policy π(at |St , θ) , and for the value pathway, the output from the memory module is passed
to a linear layer with one unit to calculate the estimated value V̂(St , θ).

The model parameters were adjusted to descend the loss gradient using Adam59 with β1 = 0.9 , β2 = 0.999 ,
ǫ = 1e− 8 , batch size = 1. We used a learning rate of 1e − 04 for the mnemonic DNMS task, 5e − 05 for the

Lπ =

T−1∑

t=0

−logπ ∗ (Rt − V̂)

LV =

T−1∑

t=0

l1(V̂ ,Rt)

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

non-mnemonic DNMS task, 1e − 05 for DDC task, 5e − 06 for the mnemonic and non-mnemonic spatial DNMS
task. These learning rates were selected by a grid-based hyperparameter search. For all tasks, we trained 50 agents
initialized with different random seeds and pooled results across the agents.

For the transfer learning experiments (Fig. S2), we (1) trained agents that were trained on the DDC task on
the DNMS task, in which case we used learning rate of 5e − 05 for the subsequent DNMS task and initialized
with 50 random seeds, and (2) trained agents that were trained on the DNMS task on the DDC task, in which
case we used learning rate of 1e − 05 for the subsequent DDC task and initialized with 50 random seeds. In both
cases we increased temperature in the softmax function in the policy layer from 1 to 1.5 to encourage exploration.

Data analysis
Identification of ramping cell and time cell
For all tasks, after the agent’s performance had plateaued (> 90% correct; 150,000 episodes for the DDC task,
200,000 episodes for the non-spatial DNMS tasks, 80,000 episodes for the spatial DNMS tasks), we recorded the
hidden state activity of the LSTM units in the network during the period of interest (i.e., the stimulus presenta-
tion period and the delay period for DDC task, only the delay period for DNMS task) for 5000 episodes, and
normalized each unit’s activity according to its maximum and minimum during these 5000 episodes. We then
calculated the temporal tuning curves of each unit by averaging its activity during the period of interest across
episodes (i.e., trial-averaged activity). Note that our models assume rate-based coding, i.e., each unit has a real-
valued activity which is analogous to the firing rate of real neurons in the brain.

The identification of ramping cells and time cells in the present work was based on Shikano et al.23. To
determine whether a unit was a ramping cell, we fitted a linear regression to the temporal tuning curve of each
unit. Units with p ≤ 0.05 and Pearson correlation coefficient ≥ 0.9 were considered candidate ramping cells. To
determine whether a unit was a time cell, we calculated its temporal information based on Skaggs et al.46:

where �(t) is the mean activity of the unit in response at time t , p(t) is the probability density of being at time t ,
and � is the overall mean activity of the unit. If a unit was classified as a ramping unit, its temporal information
was calculated from a tuning curve after subtracting the regression line from the temporal tuning curve. Units
with significant temporal information (higher than 99 percentile compared to 100 shuffled tuning curves) were
considered candidate time cells. In addition, to ensure that the tuning curves were meaningful, we calculated the
trial-reliability score of each unit by computing the Pearson correlation coefficient between the tuning curves
obtained from even-numbered trials and odd-numbered trials; candidate ramping cells or time cells had to have
a significant trial-reliability score (higher than 99 percentile compared to the scores obtained from 100 pairs
of shuffled tuning curves) to be considered actual ramping cells or time cells. Each shuffled tuning curve was
obtained by circularly shuffling the activity in each episode by a random number of time steps and then taking
the average across episodes.

Mutual information
The information-theoretic analysis in the present work was based on Skaggs et al.46 but extended to consider
multiple variables. Specifically, to calculate the information about stimulus and time carried by the unit, we
used the formula

where �(s, t) is the mean activity of the unit in response to stimulus s at time t , p(s, t) is the probability density
for the agent receiving stimulus s and being at time t , and � is the overall mean activity of the unit. To randomize
either stimulus or time, we reconstructed �(s, t) and p(s, t) by resampling a new stimulus s′ or time t ′ randomly
from the their probability distributions, and substituting s with s′ or t with t ′ when calculating �(s, t) and p(s, t) .
We only included units with significant mutual information in the non-randomized (s, t) space (i.e., more than 2
standard deviations from the mean in the distribution of mutual information obtained from shuffling the activity
100 times) in the final results. Because mutual information is not normally distributed, we used a nonparametric
paired difference test, namely the Kruskal–Wallis test, to test for significance; the p-values were corrected for
multiple comparisons with Bonferroni.

Similarly, for the spatial DNMS tasks, we calculated the information about stimulus, time, and location car-
ried by the unit with the formula

where �(s, t, l) is the mean activity of the unit in response to stimulus s at time t at location l , p(s, t, l) is the prob-
ability density for the agent receiving stimulus s and being at time t and at location l , and � is the overall mean
activity of the unit. To randomize one of the dimensions, we reconstructed �(s, t, l) and p(s, t, l) by resampling
a new stimulus s′ or time t ′ or location l′ randomly from their probability distributions, and substituting s with
s
′ or t with t ′ or l with l′ when calculating �(s, t, l) and p(s, t, l) . We only included units with significant mutual

information in the non-randomized (s, t, l) space in the final results.

I =
∑

t

�(t)log2
�(t)

�
p(t)

I =
∑

(s,t)

�(s, t)log2
�(s, t)

�
p(s, t)

I =
∑

(s,t,l)

�(s, t, l)log2
�(s, t, l)

�
p(s, t, l)

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Decoding of stimulus and time from single‑time population activities
We used support vector machine decoders to quantitatively assess how well the activity of the LSTM population
at a given time during the delay period could predict the sample presented prior to the delay. For each time step,
the population activity and sample identity data was split into 5 cross-validation folds of train/test datasets, with
one-fold held out as testing data, and the remaining 4 folds as training data. To confirm that information about
the stimulus was indeed carried by the order of cells in the population, we shuffled the order of cells in each
episode at each time point, and constructed separate decoders to decode the sample identify from shuffled data
with the same procedure above. The decoder accuracy was measured by the fraction of test trials for which the
sample was decoded correctly.

Due to the continuous nature of time, we used linear regression decoders to assess how well the activity of
the LSTM population at a given time point within a period can decode the elapsed time since the beginning of
the period. For each task condition and interval duration, we pooled the single-time population activity from
all recorded intervals under that task condition and duration, and trained a linear regression decoder on 60%
of population activity vectors selected at random from that pool to predict the time elapsed since the onset of
the interval from the population activity. The remaining 40% of population activity vectors were used as the
testing dataset.

Lesion and silencing experiments
To prepare for the lesion and silencing experiments, we first randomly selected targeted units in the ramping cell
pool, time cell pool, or any cells in the population to be lesioned/silenced. For each cell type lesioned/silenced,
we started at randomly selecting 5 LSTM units from the pool to be lesioned/silenced, and gradually increased
the number of units lesioned/silenced by a step size of 5, up until 125 units were lesioned. When increasing the
number of units lesioned/silenced, we randomly selected 5 more units from the pool to be targeted, in addition
to the existing targeted units. When the number of targeted units surpassed the total number of ramping/time
cells in this agent, we recruited cells of other types as targets. This process of randomly selecting target units was
repeated 50 times per agent per cell type to ensure that the change in performance was not only because certain
“very important units” within the targeted units were lesioned.

To lesion an LSTM unit, we set the hidden state and the cell state of the LSTM unit to 0 during the forward
pass of the environmental state in the neural network, and selected actions from the policy π ′ downstream of
the lesioned LSTM layer to interact with the environment. To silence an LSTM unit, at each time step, we first
passed the environmental state through the neural network under the normal condition, cloned the activity of
the LSTM layer, then set the activity of targeted neurons to zero in the cloned activity. We then passed the altered
clone to the subsequent linear layers to compute the new policy π ′ and sampled actions from π ′ . The performance
of the network was evaluated on actions sampled from π ′.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.

Code availability
All experiments were performed using PyTorch60. All data were analyzed in Python. Decoding analyses were
performed using scikit-learn packages61. Additional analyses were performed using custom Python scripts, all
of which are available on the author’s GitHub account [https:// github. com/ lincl ab/ deeprl- timec ells].

Received: 14 July 2023; Accepted: 12 December 2023

References
 1. O’Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976).
 2. Anderson, M. I. & Jeffery, K. J. Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23, 8827–8835

(2003).
 3. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experi-

ence. Science 271, 1870–1873 (1996).
 4. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus.

Science 321, 1322–1327 (2008).
 5. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal, “time cells” bridge the gap in memory for discon-

tiguous events. Neuron 71, 737–749 (2011).
 6. Kraus, B. J., Robinson, R. J., White, J. A., Eichenbaum, H. & Hasselmo, M. E. Hippocampal ‘time cells’: Time versus path integra-

tion. Neuron 78, 1090–1101 (2013).
 7. Mau, W. et al. The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Curr.

Biol. 28, 1499-1508.e4 (2018).
 8. Sabariego, M. et al. Time cells in the hippocampus are neither dependent on medial entorhinal cortex inputs nor necessary for

spatial working memory. Neuron 102, 1235-1248.e5 (2019).
 9. Salz, D. M. et al. Time cells in hippocampal area CA3. J. Neurosci. 36, 7476–7484 (2016).
 10. Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57–62 (2018).
 11. Gouvêa, T. S. et al. Striatal dynamics explain duration judgments. eLife 4, e11386 (2015).
 12. Mello, G. B. M., Soares, S. & Paton, J. J. A scalable population code for time in the striatum. Curr. Biol. 25, 1113–1122 (2015).
 13. Akhlaghpour, H. et al. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working

memory. eLife 5, e19507 (2016).
 14. Bakhurin, K. I. et al. Differential encoding of time by prefrontal and striatal network dynamics. J. Neurosci. 37, 854–870 (2017).
 15. Tiganj, Z., Jung, M. W., Kim, J. & Howard, M. W. Sequential firing codes for time in rodent medial prefrontal cortex. Cerebral

Cortex 27, 5663–5671 (2017).

https://github.com/linclab/deeprl-timecells

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

 16. Heys, J. G. & Dombeck, D. A. Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility.
Nat. Neurosci. 21, 1574–1582 (2018).

 17. Cruzado, N. A., Tiganj, Z., Brincat, S. L., Miller, E. K. & Howard, M. W. Conjunctive representation of what and when in monkey
hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus 30, 1332–1346 (2020).

 18. Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. PNAS 117, 28463–28474
(2020).

 19. Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural sequences as an optimal dynamical regime for the readout of time. Neuron
108, 651-658.e5 (2020).

 20. Heys, J. G., Wu, Z., Allegra Mascaro, A. L. & Dombeck, D. A. Inactivation of the medial entorhinal cortex selectively disrupts
learning of interval timing. Cell Rep. 32, 108163 (2020).

 21. Taxidis, J. et al. Differential emergence and stability of sensory and temporal representations in context-specific hippocampal
sequences. Neuron 108, 984-998.e9 (2020).

 22. Shimbo, A., Izawa, E.-I. & Fujisawa, S. Scalable representation of time in the hippocampus. Sci. Adv. 7, eabd7013 (2021).
 23. Shikano, Y., Ikegaya, Y. & Sasaki, T. Minute-encoding neurons in hippocampal-striatal circuits. Curr. Biol. 31, 1438-1449.e6 (2021).
 24. Schonhaut, D. R., Aghajan, Z. M., Kahana, M. J. & Fried, I. A neural code for spatiotemporal context. https:// doi. org/ 10. 1101/

2022. 05. 10. 491339 (2022).
 25. Omer, D. B., Maimon, S. R., Las, L. & Ulanovsky, N. Social place-cells in the bat hippocampus. Science 359, 218–224 (2018).
 26. Yong, H. C., Chang, H. & Brandon, M. P. Optogenetic reduction of theta oscillations reveals that a single reliable time cell sequence

is not required for working memory. https:// doi. org/ 10. 1101/ 2022. 06. 25. 497592 (2022).
 27. Aghajan, Z. M., Kreiman, G. & Fried, I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex. https:// doi.

org/ 10. 1101/ 2022. 05. 05. 490703 (2022).
 28. Shahbaba, B. et al. Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events.

Nat. Commun. 13, 787 (2022).
 29. Toso, A., Reinartz, S., Pulecchi, F. & Diamond, M. E. Time coding in rat dorsolateral striatum. Neuron 109, 3663-3673.e6 (2021).
 30. Leon, M. I. & Shadlen, M. N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327

(2003).
 31. Kim, J., Ghim, J.-W., Lee, J. H. & Jung, M. W. Neural correlates of interval timing in rodent prefrontal cortex. J. Neurosci. 33,

13834–13847 (2013).
 32. Janssen, P. & Shadlen, M. N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241

(2005).
 33. Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y. & Tanji, J. Interval time coding by neurons in the presupplementary and sup-

plementary motor areas. Nat. Neurosci. 12, 502–507 (2009).
 34. Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-initiated actions in secondary motor cortex.

Nat. Neurosci. 17, 1574–1582 (2014).
 35. Jazayeri, M. & Shadlen, M. N. A neural mechanism for sensing and reproducing a time interval. Curr. Biol. 25, 2599–2609 (2015).
 36. MacDonald, C. J., Carrow, S., Place, R. & Eichenbaum, H. Distinct hippocampal time cell sequences represent odor memories in

immobilized rats. J. Neurosci. 33, 14607–14616 (2013).
 37. Deverett, B., Faulkner, R., Fortunato, M., Wayne, G. & Leibo, J. Z. Interval timing in deep reinforcement learning agents. arXiv:

1905. 13469 [cs] (2019).
 38. Toso, A., Fassihi, A., Paz, L., Pulecchi, F. & Diamond, M. E. A sensory integration account for time perception. PLOS Comput.

Biol. 17, e1008668 (2021).
 39. Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K. & Howard, M. W. Compressed timeline of recent experience in monkey lateral

prefrontal cortex. J. Cognit. Neurosci. 30, 935–950 (2018).
 40. Robinson, N. T. M. et al. Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 94,

677-688.e6 (2017).
 41. Kraus, B. J. et al. During running in place, grid cells integrate elapsed time and distance run. Neuron 88, 578–589 (2015).
 42. MacDonald, C. J. & Tonegawa, S. Crucial role for CA2 inputs in the sequential organization of CA1 time cells supporting memory.

PNAS. 118, 3 (2021).
 43. Narayanan, N. S. Ramping activity is a cortical mechanism of temporal control of action. Curr. Opin. Behav. Sci. 8, 226–230 (2016).
 44. Matell, M. S., Meck, W. H. & Nicolelis, M. A. L. Interval timing and the encoding of signal duration by ensembles of cortical and

striatal neurons. Behav. Neurosci. 117, 760–773 (2003).
 45. Merchant, H., Harrington, D. L. & Meck, W. H. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36,

313–336 (2013).
 46. Skaggs, W., McNaughton, B. & Gothard, K. An information-theoretic approach to deciphering the hippocampal code. in Advances

in Neural Information Processing Systems Vol. 5 (Morgan-Kaufmann, 1992).
 47. Mosser, C.-A. et al. The McGill-Mouse-Miniscope platform: A standardized approach for high-throughput imaging of neuronal

dynamics during behavior. Genes Brain Behav. 20, e12686 (2021).
 48. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types

of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).
 49. Kinsky, N. R. et al. Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. Nat. Commun.

11, 2443 (2020).
 50. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).
 51. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal

cortex. Nature 503, 78–84 (2013).
 52. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543,

719–722 (2017).
 53. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature

484, 62–68 (2012).
 54. McNaughton, B. L., Barnes, C. A. & O’Keefe, J. The contributions of position, direction, and velocity to single unit activity in the

hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).
 55. Fuhrmann, F. et al. Locomotion, theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a

medial septal glutamatergic circuit. Neuron 86, 1253–1264 (2015).
 56. Brockman, G. et al. OpenAI Gym. arXiv: 1606. 01540 [cs] (2016).
 57. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
 58. Mnih, V. et al. Asynchronous methods for deep reinforcement learning. http:// arxiv. org/ abs/ 1602. 01783 (2016).
 59. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. https:// doi. org/ 10. 48550/ arXiv. 1412. 6980 (2017).
 60. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv: 1912. 01703 [cs, stat] (2019).
 61. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

https://doi.org/10.1101/2022.05.10.491339
https://doi.org/10.1101/2022.05.10.491339
https://doi.org/10.1101/2022.06.25.497592
https://doi.org/10.1101/2022.05.05.490703
https://doi.org/10.1101/2022.05.05.490703
http://arxiv.org/abs/1905.13469
http://arxiv.org/abs/1905.13469
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1602.01783
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1912.01703

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:22335 | https://doi.org/10.1038/s41598-023-49847-y

www.nature.com/scientificreports/

Acknowledgements
This work was supported by a NSERC (Discovery Grant: RGPIN-2020-05105; Discovery Accelerator Supple-
ment: RGPAS-2020-00031; Arthur B. McDonald Fellowship: 566355-2022), Healthy Brains, Healthy Lives (New
Investigator Award: 2b-NISU-8), and CIFAR (Canada AI Chair; Learning in Machine and Brains Fellowship)
to B.A.R. In addition, D.L. is supported by a NSERC Canada Graduate Scholarship—Doctoral (569390-2022).
This research was enabled in part by support provided by (Calcul Québec) (https:// www. calcu lqueb ec. ca/ en/)
and Compute Canada (www. compu tecan ada. ca). The authors acknowledge the material support of NVIDIA in
the form of computational resources.

Author contributions
D.L. and B.A.R. conceived of the experiments. D.L. and A.Z.H. conducted the experiments and analyzed the
data. B.A.R. supervised the project. D.L. and B.A.R. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 49847-y.

Correspondence and requests for materials should be addressed to D.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://www.calculquebec.ca/en/
http://www.computecanada.ca
https://doi.org/10.1038/s41598-023-49847-y
https://doi.org/10.1038/s41598-023-49847-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Temporal encoding in deep reinforcement learning agents
	Results
	Time cells and ramping cells naturally emerge in recurrent circuits trained on timing and working memory tasks
	Time and ramping cells emerge based on value calculation demands
	Time cells and ramping cells contribute to timing calculation through value-based dynamic representation
	Encoding of time is dissociable from behavior in the DDC task
	Encoding of stimuli depends on mnemonic demands
	DRL agents trained on a spatial working memory task exhibited conjunctive coding of time, space, and stimulus

	Discussion
	Methods
	Simulated cognitive task environments
	DRL agent architectures and training details
	Data analysis
	Identification of ramping cell and time cell
	Mutual information
	Decoding of stimulus and time from single-time population activities

	Lesion and silencing experiments

	References
	Acknowledgements

