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Optimization of ultrasound‑aided 
extraction of bioactive ingredients 
from Vitis vinifera seeds using RSM 
and ANFIS modeling with machine 
learning algorithm
Selvaraj Kunjiappan 1*, Lokesh Kumar Ramasamy 2, Suthendran Kannan 3, 
Parasuraman Pavadai 4, Panneerselvam Theivendren 5 & Ponnusamy Palanisamy 6*

Plant materials are a rich source of polyphenolic compounds with interesting health‑beneficial 
effects. The present study aimed to determine the optimized condition for maximum extraction of 
polyphenols from grape seeds through RSM (response surface methodology), ANFIS (adaptive neuro‑
fuzzy inference system), and machine learning (ML) algorithm models. Effect of five independent 
variables and their ranges, particle size (X1: 0.5–1 mm), methanol concentration (X2: 60–70% in 
distilled water), ultrasound exposure time (X3: 18–28 min), temperature (X4: 35–45 °C), and ultrasound 
intensity (X5: 65–75 W  cm−2) at five levels (− 2, − 1, 0, + 1, and + 2) concerning dependent variables, 
total phenolic content  (y1; TPC), total flavonoid content  (y2; TFC), 2, 2‑diphenyl‑1‑picrylhydrazyl 
free radicals scavenging  (y3; %DPPH*sc), 2,2′‑azino‑bis(3‑ethylbenzothiazoline‑6‑sulfonic acid) 
free radicals scavenging  (y4; %ABTS*sc) and Ferric ion reducing antioxidant potential  (y5; FRAP) 
were selected. The optimized condition was observed at X1 = 0.155 mm, X2 = 65% methanol in water, 
X3 = 23 min ultrasound exposure time, X4 = 40 °C, and X5 = 70 W  cm−2 ultrasound intensity. Under this 
situation, the optimal yields of TPC, TFC, and antioxidant scavenging potential were achieved to be 
670.32 mg GAE/g, 451.45 mg RE/g, 81.23% DPPH*sc, 77.39% ABTS*sc and 71.55 μg mol (Fe(II))/g 
FRAP. This optimal condition yielded equal experimental and expected values. A well‑fitted quadratic 
model was recommended. Furthermore, the validated extraction parameters were optimized and 
compared using the ANFIS and random forest regressor‑ML algorithm. Gas chromatography‑mass 
spectroscopy (GC–MS) and liquid chromatography–mass spectroscopy (LC–MS) analyses were 
performed to find the existence of the bioactive compounds in the optimized extract.

French Priest introduced grapes in Cumbum Valley, Tamilnadu, India, in 1832, and these grapes were rich in 
vitamins, tartaric acid, minerals, antioxidants and reduced the risk of some chronic illnesses. Panneer Thratchai 
(grapes) protect against cancer, heart, nervous diseases and treat haemorrhoids. They prevent Alzheimer’s disease, 
diabetes mellitus, and protect against oxidative rancidity & viral/fungal infections, also improving night  vision1. 
The “Cumbum Panneer Thratchai” grapes (Vitis vinifera L., family: Vitaceae; Muscat Hamburg species) grown can 
be mainly used for the formulation of wine, jam, spirit, canned grape juice, and raisins. During the formulation 
of grape juice, wine and jam produce large quantities of grape by-products containing seeds, skin, and stalks. 
Grape’s by-products estimate that the pomace signifies around 20–30% of processed grapes’ weight and 38–52% 
of  seeds2. Grape pomace is one of the most common solid by-products generated during the wine-making. 
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Grape pomace is used to recover a wide range of products, including ethanol, tartrates, citric acid, grape seed 
oil, hydrocolloids, bioactive compounds, and dietary fibre. Grape pomace is one of the significant research areas 
in the field of fibre extraction, particularly  pectin3. Importantly, grape seeds are a cost-effective source of anti-
oxidant and potential therapeutic compounds in the form of  polyphenols4. Grape seeds are described to consist 
of 11% protein, 35% fibre, 3% minerals, 7% water, 7–20% lipids, and 7% polyphenolic compounds (especially 
tocopherols and β-carotene)5. Polyphenols and other phenolic compounds are gaining attention from scientists 
because of their potential benefits for human  health6. Polyphenolic compounds have the property of neutralizing 
over-generated free radicals (reactive oxygen species (ROS), reactive nitrogen species (RNS), and DNA reactive 
aldehyde (DRA))7. Free radicals are typically generated as a by-product of oxygen metabolism, and mitochondria 
release it. Free radicals play a dual role; at a low level, they are vital for many cellular signaling mechanisms (i.e., 
regulate cellular events, like cell cycle, proliferation, migration, and programmed cell death)8. In contrast, at a 
high level, they lead to several pathological complications including damage to protein, nucleic acids, cell, and 
lipid membrane disturbances, and reduced cellular  viability9.

Remarkably, an elevated level of ROS causes oxidative stress and the loss of antioxidant and detoxifying 
enzymes in cells and tissues, as well as oxidative stress  itself9. An imbalance between a biological system’s capac-
ity to detoxify these reactive chemicals and generating and accumulating reactive oxygen species (ROS) in cells 
and tissues causes oxidative  stress10. Numerous studies have demonstrated that oxidative stress and depletion of 
antioxidant enzymes might have a role in developing and progressing several diseases (such as cancer, diabetes 
mellitus, cardiovascular diseases (coronary heart disease, atherosclerosis), metabolic disorders, arthritis, and 
neurodegenerative disorders)11–14. Recently, bioactive ingredients from grape seeds gained more attention due 
to their therapeutic  importance15. In addition, grape seed powder is a nutraceutical agent usually consumed as 
a well-being/dietary supplement and sold over-the-counter products in the United States of  America16. Grape 
seeds possess numerous polyphenolic compounds, including flavan-3-ols, which act to prevent various  diseases17. 
The flavan-3-ols (catechin, epicatechin, epigallocatechin, proanthocyanidin, trans-resveratrol, procyanidin B1, 
and their polymers) are natural antioxidants (eliminate ROS, RNS, DRA, stimulate detoxifying and antioxidant 
enzymes) that prevent cell damage and provide other  benefits18,19. Unfortunately, these bioactive ingredients 
are present inside the cell in meagre quantities and have a thermolabile structure/character. However, the most 
sophisticated extraction technique is needed to extract these bioactive compounds from plant sources completely. 
Compared to modern extraction techniques, traditional methods (such as soxhlation and blending) consume 
more solvents, take longer time to extraction, and produce less yield of active  compounds20.

A few advanced extraction techniques, such as microwave-assisted extraction (MAE), pressurized liquid 
extraction (PLE), ultrasound-aided extraction (UAE), and carbon-dioxide super-critical extraction (CSCE) 
techniques are followed in the pharmaceutical industries and research laboratories. These advanced extraction 
techniques are generally called greener and environment-friendly technologies because these processes will 
consume less energy, permit the use of solvent alternates, renewable natural products, and ensure a safe and 
high-quality extract/product21,22. Carbon-dioxide super-critical extraction is one of the best techniques because 
it consumes less solvents or eliminates the use of solvents, computer-controllable operations with shorter extrac-
tion time, especially thermolabile compounds, are extracted from plant sources without  damage23. Unfortunately, 
industries and research laboratories are seeking alternative extraction methods due to the unaffordable cost of 
carbon-dioxide super-critical  extractor24. The microwaves from the microwave-assisted extraction (MAE) tech-
nique heat the solvent system to enhance the solubility of bioactive compounds of plant  cells25. While generating 
heat, it is possible to disintegrate the thermosensitive compounds. This is the major issue for using MAE for 
thermosensitive  compounds26. Conversely, ultrasound-aided extraction (UAE) is an exciting and cost-effective 
alternative for completely extracting plant-derived bioactive  ingredients14. The UAE method is one of the most 
preferred extractions, which uses fewer solvents, can be automated at lower temperatures, requires less energy 
and has a higher yield. It also takes less time to extract the bioactive ingredients. Ultrasonic vibrations accelerate 
the release of extractable components into the solvent by enhancing mass transport. They also cause rupture of 
the plant cells by creating physical pressure during ultrasound  cavitation7.

The present study aimed to maximize the extraction of bioactive ingredients from grape seeds using an 
ultrasound-aided extraction technique. Many extraction parameters, such as particle size, extraction solvent, 
solvent concentration, solid-to-liquid ratio, temperature, ultrasonic exposure time, ultrasound intensity, pulse 
cycle/mode, pH, etc., have potentially influenced the yield of bioactive ingredients and their free radicals scav-
enging  properties27. Combining these criteria resulted in the highest yield of bioactive compounds from plant 
sources, even though they fundamentally appeared  unrelated28. Combining these parameters must be optimized 
to achieve the maximum yield of bioactive  ingredients29. Under this condition, a statistical method of optimiza-
tion is helpful. One effective method frequently considered for this purpose is the response surface methodology 
(RSM)30. RSM is a statistical technique that determines and simultaneously solves multivariant equations using 
quantitative data from relevant  studies31. In RSM, a second-order polynomial equation is applied for modeling 
and  optimization32. RSM can be utilized to compare theoretical and actual variables involved in the process 
with the help of second-order polynomial equations generated in the  experiment33. Several methods, namely, 
central composite design (CCD), Box–Behnken design (BBD) and three-level full factorial design (FBD) have 
been widely applied for RSM to obtain an optimized extraction of bioactive polyphenolic compounds from 
natural  sources34. One of the designs used for the application of RSM is CCD, which provides viable models for 
 processes35. In contrast to the Box–Behnken design, which is made up of rotated lower-dimensional designs 
and estimates all linear effects, quadratic effects, and two-way interactions, the CCD is made up of a cube part 
that is a full factorial that determines main and interaction effects and a star design (α) that quantifies main and 
quadratic  effects36. It does not allow for reductions in design, being much less flexible than the CCD. The design 
space is devoid of any corner points. The factorial portion of the design, which generates rotability, defines the 
design space box, and the axial points are outside of it. This makes it possible to estimate the expected response 
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with equal variance in any direction with respect to the design space’s centre. Therefore, many researchers have 
used the central composite design (CCD) to extract bioactive compounds and  antioxidants37. The (adaptive 
neuro-fuzzy inference system) and Machine learning algorithm approaches are also used to predict the opti-
mal conditions, producing the best results for nonlinear  systems38. ANFIS simulates human thought processes 
using highly developed fuzzy and neural network computer  systems39. An intelligent neuro-fuzzy method called 
ANFIS is used to study how variables interact and have nonlinear  effects40. ANFIS, a hybrid intelligent  system41. 
Consequently, multivariable related ambiguous relationships can be quantified using ANFIS through the defuzzi-
fication process of the fuzzy inference system (FIS), and error is adjusted for dependable prediction using a 
backpropagation algorithm with a hidden layer of an artificial neural network (ANN)42. Further, a machine 
learning algorithm adapts the most effective extraction parameters. The aim of machine learning algorithm-based 
optimization is to reduce the degree of error in a machine learning model, improving its accuracy in making data 
predictions. Machine learning is generally used to learn the underlying relationship between input and output 
responses, which is learned from a set of training  data43. When confronted with new data in a live environment, 
the model can use this learned approximated function to predict an outcome from this new data. Optimization 
algorithms can make this process more efficient than any manual process. These algorithms optimize a machine 
learning model iteratively using mathematical  models44. The Random Forest Regressor is a simple and widely 
used algorithm in machine  learning45. For the best combinations, every hyperparameter configuration is ran-
domly searched and combined. Ultimately, the bioactive ingredients have been recognized using GC–MS (gas 
chromatography-mass spectrometry) and LC–MS (liquid chromatography-mass spectrometry), indicating the 
potential of the chosen grape seeds to be used in the healthcare sectors.

Experimental section
Materials
Grape seeds
Fresh fruits of grapes “Cumbum Panneer Thratchai” (Vitis vinifera L., family: Vitaceae; Muscat Hamburg variety) 
personally collected as a gift sample from grapes farm, Cumbum valley (latitude: 9.734426°, and longitude: 
77.280739°), Cumbum (is known as the ‘Grapes city of South India’), Theni District, Tamilnadu, India, on April 
2023. The plant material was collected with the consent of the Swamy Vivekanandha College of Pharmacy, 
Tiruchengode, Tamilnadu, India. No further regulation was required for the collection of this plant. In addition, 
the collection of plant material complied with the relevant institutional (Swamy Vivekanandha College of 
Pharmacy), national, and international guidelines and legislation. A pharmacognosist, Professor Murugananthan 
Gopal M. Pharm., PhD., Principal, Department of Pharmacognosy, Swamy Vivekanandha College of Pharmacy, 
Tiruchengode, Tamilnadu, India was authenticated grape seeds collected Cumbum (Specimen Number: VV/
HER/COG-002). It was deposited at the herbarium, Swamy Vivekanandha College of Pharmacy, Tiruchengode, 
Tamilnadu, India. The grape seeds were removed from the fruits, and then the separated seeds were washed with 
tap water and shade-dried for seven days. Thoroughly dried grape seeds were ground into a fine powder using 
a kitchen mixer grinder (Butterfly Gandhimathi Home Appliances Ltd., Chennai, India). Then, the powdered 
sample was screened into specified particle size powders (0.15, 0.5, 0.75, 1.0, and 1.35 mm) using an exact sieve 
(Mesh No. 100, 35, 20, 18, and 14). The powder samples were stored under an airtight container until the start 
of the experiment (moisture content: 10 ± 2%).

Chemicals
Ethanol, methanol, chloroform, petroleum ether, ethyl acetate, diethyl ether, acetone, n-hexane, gallic acid 
standard, rutin standard, ascorbic acid, Folin–Ciocalteu’s phenol reagent, sodium carbonate, sodium nitrite, 
sodium hydroxide, aluminium chloride, ferric chloride, and potassium persulfate were obtained from Himedia 
Laboratories, Mumbai, India. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,4,6-tripyridyl-s-
triazine (TPTZ), 2, 2-diphenyl-1-picrylhydrazyl (DPPH) were obtained from Sigma Aldrich, Bengaluru, India. 
All other analytical grade chemicals and reagents were obtained from Himedia Laboratories, Mumbai, India. 
Distilled water was used for all experiments.

Ultrasound‑aided solvent extractor set‑up
The extraction of bioactive ingredients from grape seed powder was performed with an ultrasonic bath extractor 
(designed by PCI Analytics Ltd., Mumbai, India) having an optimal capacity of 250 mL. The ultrasonic bath 
has a temperature controller device (accuracy of ± 1.0 °C) with degassing, ultrasound power (220 V), 33 ± 3 kHz 
operating frequency, continuous mode at 40 kHz high-intensity ultrasound processor, and input voltage range 
between 200VAC-230VAC, single phase. The ultrasound-instrument produced maximum ultrasound intensity 
(220 W  cm−2) with 25 mm titanium probe.

Methods
Preliminary experiments for selection of suitable solvent system
The preliminary experiments were performed to identify the best solvent system for maximum yield of bioactive 
ingredients based on the highest total phenolic content (TPC), total flavonoid content (TFC), and %DPPH*sc 
from grape seeds extract. Eight solvents, namely ethanol, methanol, chloroform, petroleum ether, ethyl acetate, 
diethyl ether, acetone, and n-hexane were selected for this investigation. Each solvent system of the extraction 
process involved using 2 g of grape seed powder (particle size 0.5 mm), 10 mL of fixed solvent concentration (70% 
V/V in distilled water), ultrasound intensity: 60 W  cm−2, ultrasound exposure time: 10 min, and temperature: 
40 °C. Using a UV–Visible spectrophotometer, Shimadzu UV-1800 series, and UV Probe 2.62 software, Japan, 
to measure the concentration of bioactive ingredients from grape seed extract. A rotary vacuum dryer (Buchi 
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rotary evaporator, Mumbai, India) was used to concentrate the extracts. The concentrated extracts were then 
lyophilized (freeze dryer) to convert into powder form and stored in a desiccator until the experiment.

Selection of relevant extraction variables
Five independent extraction variables were selected, i.e., particle size (X1; in mm), solvent concentration (X2; 
in % V/V with distilled water), ultrasound exposure time (X3; in min), temperature (X4; in °C), and ultrasound 
intensity (X5; in W  cm−2), basis on the dependent variables, such as total phenolic content (TPC;  y1), total 
flavonoid content (TFC;  y2), and their antioxidant potentials (DPPH free radical scavenging  (y3), ABTS free 
radical scavenging  (y4), and FRAP potential  (y5)). According to the preliminary experimental findings, methanol 
is an ideal solvent for extracting grape seeds’ highest concentration of beneficial compounds, as shown in Table 1. 
The selected five independent variables were investigated at five-coded levels, such as very low (− 2), low (− 1), 
medium (0), high (+ 1), and very high (+ 2), and each variable range presented in Supplementary Table 1. The 
selected independent variable ranges were particle size (X1: 0.5–1 mm), methanol concentration (X2: 60–70% in 
distilled water), ultrasound exposure time (X3: 18–28 min), temperature (X4: 35–45 °C), and ultrasound intensity 
(X5: 65–75 W  cm−2) investigated.

Procedure for ultrasound‑aided extraction (UAE) of bioactive ingredients
The extraction of bioactive ingredients from grape seeds powder was performed using an adjustable ultrasonic 
bath extractor with a sample of 2 g grape seeds powder in a closed container, which contained 10 mL solvent 
(miscible methanol in water), and specified particle size, ultrasound exposure time, temperature and ultrasound 
intensity. According to the Response Surface Methodology’s (RSM) central composite design (CCD), experiments 
were conducted in triplicate. After UAE, the extracts were filtered using Whatman No. 1 filter paper and filtrate 
was centrifuged at 3500 rpm for 30 min at 4 °C. The supernatant liquid (extract) was concentrated at 40 °C using 
a rotary vacuum dryer. The concentrated methanolic extract was then lyophilized (freeze dryer) to convert it 
into powder form to determine the TPC, TFC, and antioxidant potentials (%DPPH*sc, %ABTS*sc, and FRAP).

Determination of total phenolic content (TPC)
The spectrophotometric analysis determined the quantity of TPC  (y1) present in the extract according to the 
previously described  method46. Briefly, 0.2 mL of grape seeds extract was mixed individually with 5 mL of 10% 
resolubilized Folin–Ciocalteu reagent. 2 min vortex the mixture, and 2 mL of 7.5% sodium carbonate  (Na2CO3) 
was added to the mixture after 5 min. The samples were kept in the dark at room temperature for an hour. They 
used a UV–Visible spectrophotometer, Shimadzu UV-1800 series, and UV Probe 2.62 software, Japan, to measure 
the absorbance at 765 nm. The results were presented as mg of gallic acid equivalent (GAE) per gram of sample 
using gallic acid as the reference standard.

Determination of total flavonoid content (TFC)
The TFC  (y2) was determined by the method developed by da Silva et al.47. 1 mL of resolubilized extract sample 
mixed with 0.3 mL of 5% sodium nitrite. The mixture was allowed to incubate for 6 min in a dark place, and then 
0.3 mL of 10% aluminium chloride solution was added. 3 mL of 1 M sodium hydroxide was added to the reaction, 
and the incubation was continued for 10 min. After 10 min, a UV–Visible spectrophotometer was employed to 
measure the absorbance at 510 nm. The results were presented as mg of rutin equivalent (RE) per gram of sample.

Determination of antioxidant potential
%DPPH scavenging assay
The DPPH free radical scavenging potential  (y3) of grape seed extracts was determined according to Musa et al.48. 
Concisely, 3 mL of DPPH free radical solution (0.1 mM DPPH in ethanol) was mixed with 0.1 mL of grapes seeds 
extract; the mixture was then incubated at 37 °C for 30 min. After incubation, a UV–Visible spectrophotometer 
was used to quantify the absorbance at 517 nm. Methanol and DPPH were both employed as controls. The % 
DPPH radical scavenging ability was calculated as Eq. (1):

Table 1.  Preliminary selection of appropriate extraction solvent. *All the experiments were repeated three 
times and values are expressed as mean ± standard deviation.

Solvents TPC* in mg GAE/g TFC* in mg RE/g %DPPHsc*

Ethanol 543.36 ± 2.57 348.64 ± 2.5 65.34 ± 1.04

Methanol 548.52 ± 7.15 354.28 ± 2.85 67.28 ± 1.95

Chloroform 474.72 ± 4.05 301.43 ± 1.04 53.34 ± 1.17

Petroleum ether 523.56 ± 1.19 335.72 ± 2.16 58.43 ± 0.76

Ethyl acetate 518.34 ± 1.77 321.26 ± 3.68 55.76 ± 0.51

Diethyl ether 528.35 ± 2.65 338.39 ± 1.95 59.53 ± 1.14

Acetone 504.2 ± 2.04 307.32 ± 0.72 52.38 ± 1.07

n-Hexane 472.23 ± 2.08 303.85 ± 1.17 51.56 ± 1.06
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where  A0—absorbance of the control and  A1—absorbance of the sample.

%ABTS scavenging assay
The ABTS free radical scavenging potential  (y4) of grape seed extract was determined according to Canabady-
Rochelle et al.49. Concisely, 2.45 mM of potassium persulfate was mixed with 7 mM ABTS radical solution, and 
the resultant reaction mixture was stored in the dark for 16 h at room temperature. Then, ethanol was used to 
adjust the reaction mixture’s absorbance to 0.70 ± 0.05 at 734 nm. 1 mL of this reaction mixture was mixed with 
10 µL of grape seed extract. The absorbance was measured against the blank reagent at 734 nm. The inhibition 
activity was determined by the following Eq. (2):

where A0—absorbance of the control and A1—absorbance of the sample.

The ferric‑reducing antioxidant potential (FRAP) assay
The FRAP (y5) of grapes seed extract was carried out based on the FRAP  technique50 and modified by Pulido 
et al.51. The FRAP reagent was prepared using 300 mM acetate buffer (3.1 g sodium acetate in 16 mL acetic acid 
at pH 3.6), 10 mmol TPTZ, and 20 mmol  FeCl3·6H2O and 4mMol hydrochloric acid in the ratio of 10:1:1. 0.1 mL 
of grapes seed extract was mixed with 3.0 mL FRAP reagent and incubated in darkness for 30 min at 37 °C. The 
absorbance was read at 595 nm using a UV–Vis Spectrophotometer. The standard curve was linear through 200 
and 1000 μM  FeSO4. Results calculated in μM Fe (II)/g dry mass were compared with ascorbic acid as a standard.

Experimental design and optimization using RSM
A five-level, five-coded variable central composite design (CCD) in Response surface methodology (RSM) was 
applied to optimize the effective extraction parameters of ultrasound-aided extraction technique concerning 
TPC, TFC, and antioxidant potentials (DPPH*sc, ABTS*sc, and FRAP) from grape seed extract. The selected 
five-coded variables were particle size (X1: 0.5–1 mm), methanol concentration (X2: 60–70% in distilled water), 
ultrasound exposure time (X3: 18–28 min), temperature (X4: 35–45 °C), and ultrasound intensity (X5: 65–75 
W  cm−2) at five levels deficient (− 2), low (− 1), medium (0), high (+ 1), and very high (+ 2) investigated for 
maximum yield of bioactive ingredients from grape seeds extract. The independent variables were coded based 
on the below Eq. (3):

where xi is the dimensionless value of the independent parameter; Xi, is the actual value of an independent 
parameter; Xz, is the actual value of an independent parameter at the central point; and ΔXi, is the step change 
of the actual value of the parameter i representing to a variation of a unit for the dimensionless value of the 
parameter i. The total number of experiments was calculated from Eq. (4), which is given below:

where N is the total number of experiments, k is the independent variable number, and  n0 is the replicate number 
at the central points, resulting in an experimental design of 50 runs. Fitting experimental data determined the 
correlation between the dependent and independent variables in a second-order polynomial regression model. 
In the case of these 50 experimental runs comprised of 32 factorial points, 8 repeated levels of central points, 
and 10 axial points (α) at a distance of ± 2 from centre points is shown in Table 2. The results of the CCD studies 
(Table 2) were analysed employing the multiple regression equation.

The above Eq. (5) could be converted, which is given below based on the value of five variables,

where Y is the dependent response, α0 is the coefficients-constant of the intercept, αi is linear, αii is quadratic, 
and αij are interaction terms. Xi and Xj are coded values of independent variables of particle size (X1), methanol 
concentration (X2), ultrasound exposure time (X3), temperature (X4), and ultrasound intensity (X5), and ε is an 
error. Model significance (p value), coefficient of determination  (R2), predicted coefficient of determination  (R2 
pred), adjusted coefficient of determination  (R2 adj), and the adequacy of the models by the statistic lack-of-fit 
value were all determined by analysis of variance (ANOVA). Only significant coefficients (p < 0.05) or those neces-
sary for the hierarchy were considered when creating the models. Further analysis was performed to determine 
the accuracy of the extraction parameters.

(1)% DPPH radical scavenging activity = ((A0 − A1) × 100)/A0,

(2)% ABTS radical inhibition activity = ((A0− A1) × 100)/A0,

(3)xi =
Xi − XZ

�Xi
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Modeling an adaptive neuro‑fuzzy inference system (ANFIS) for optimization
Adaptive neuro-fuzzy inference system (ANFIS) has an advantage over artificial neural networks (ANN) because 
it combines the best features of neural networks and fuzzy logic to model complex systems more accurately and 
 precisely52. They are inspired by the properties of biological neural networks that resemble the human brain; 
these networks learn from experience and are used in data processing for categorization and  prediction53. It is 
also suitable for various applications, such as optimizing significant extraction variables, thanks to its ability to 
analyse both numerical and linguistic  data54. Additionally, merging ANN with fuzzy-set theory helps address 
the benefits and limitations of both  approaches55. Jang can develop the intelligent computer tool ANFIS, which 
can be used to solve complex and nonlinear  issues56. Both linear and nonlinear relationships between input and 
output responses can be analysed with this  method57. This method employs a rule-based fuzzy logic model, 
which is trained with the help of rules generated during the  procedure58. Data is used to inform the training 
 process59. Furthermore, training datasets are provided by least squares and backpropagation modeling in this 
system. Backpropagation of ANN is used as the first step in training data for the adaptive network-based fuzzy 
inference system (ANFIS)60. The output response of ANN will then be used to fuzzy logic membership func-
tions as the input parameters of particle size (X1), methanol concentration (X2), ultrasound exposure time 
(X3), temperature (X4), and ultrasound intensity (X5). These variable optimizations are performed with greater 
precision thanks to the fuzzy inference system (FIS). The backpropagation algorithm is employed as the initial 
training strategy in the adaptive network-based fuzzy inference system (ANFIS) for data training purposes. The 
input parameters of particle size (X1), methanol concentration (X2), ultrasound exposure time (X3), temperature 
(X4), and ultrasound intensity (X5) will be utilized as input variables for the artificial neural network (ANN). 
The output response of the ANN will subsequently be employed in the application of fuzzy logic membership 
functions. Utilizing the fuzzy inference system (FIS) enhances the accuracy of the optimizations pertaining to 
these variables. The analysis of each predicted output responses of yield of TPC, TFC and percentage antioxidant 
scavenging potential (DPPH*sc, ABTS*sc, and FRAP) was done using the optimization of ANFIS modeling and 
data from similar CCD of RSM experiments.

In this study, the Sugeno-type fuzzy inference model was employed for the ANFIS modeling to get multiple 
inputs (X1, X2, X3, X4, and X5) and a single output response (y1/y2/y3/y4/y5). Because the Sugeno-type fuzzy 
inference system is more computationally efficient than the Mamdani type. The Mamdani type depends more on 
specialized knowledge. Nonetheless, actual data is used to train the Sugeno type. The ANFIS architecture (Fig. 1) 
shows the design displayed multiple inputs and a single output response at a time. A Sugeno-Fuzzy Inference 
System (FIS) has one output response, “z,” and two inputs, “x” and “y”. Two fuzzy if–then rules for a first-order 
Sugeno fuzzy model can be expressed as follows:

Rule 1: If x is  A1 and y is  B1, then  f1 =  p1x +  q1y +  r1,
Rule 2: If x is  A2 and y is  B2, then  f2 =  p2x +  q2y +  r2,

where  A1 and  B1 are the fuzzy sets,  f1 is the output response, and  p1,  q1, and  r1 are the design parameters deter-
mined during the training process. The number of membership functions for each given input variable was 
determined by a procedure of trial and error. To predict the outcome of the extraction of the majority of bioactive 
components from grape seeds extract, the experimental data was divided into training, testing, and validation 
of the network model using MATLAB v. R2013a Fuzzy logic toolbox.

Optimization using machine learning algorithm
The technique of continuously increasing a machine learning model’s accuracy and decreasing its error rate is 
known as machine learning  optimization61. Most machine learning models use training data to understand the 
link between input and output responses. After this, the models can be applied to categorize fresh incoming 
data or predict trends. Since the target values of the experiment are continuous, a Random Forest Regressor is 
 employed62. This ensemble learning approach combines different decision trees to create a more accurate  model63. 

Figure 1.  The architecture of the ANFIS input and output response model.
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A subset of the training data and a randomly selected subset of the characteristics are used to train each decision 
tree. This randomization helps to improve the model’s prediction accuracy and reduce overfitting. The Random 
Forest algorithm generates many decision trees and then aggregates their forecasts to obtain a more accurate and 
reliable  prediction64. The primary benefit of the random forest regressor is its ability to handle high-dimensional 
data with a nonlinear relationship between the input and target values. The data set for this investigation has 
experimental values X1, X2, X3, X4, and X5 as inputs and  y1,  y2,  y3,  y4, and  y5 as output responses. In order to gen-
erate the predictions, the experimental values are the dataset that is initially imported. It is then preprocessed to 
see if there are any missing or noisy data in the dataset.

Verification optimized condition
By evaluating the dependability of the optimization findings, the applicability of the experiment was confirmed. 
Under optimal conditions, a triplicate experiment was carried out based on the combination of response and 
minor deviation. The mean experimental results were compared to assess the model’s reasonableness about the 
predicted values.

Utilizing GC–MS for volatile bioactive compounds identification
Gas chromatography and mass spectrometry (GC–MS) was used to determine the volatile nature of the bioactive 
components in the optimized grape seed  extract7. The GC–MS analysis was performed in gas chromatography 
that also served as a mass spectrophotometer (Shimadzu Make QP-2010 GC–MS system), equipped with a 
non-polar 60 M RTX 5MS column and helium gas as the carrier gas, with a constant pressure of 15 psi and an 
adjusted column flow velocity of 1.00 mL ×  min−1 with initial oven temperature at 40 °C held for 3 min and the 
final temperature of the oven was 480 °C. with the rate at 10 °C [min ×  sup−1]. A 2 μL sample was injected with 
split-less mode. Mass spectra was recorded over 35–650 amu range with electron impact ionization energy 70 eV. 
The total running time for a sample is 45 min. Identification of bioactive ingredients was achieved based on their 
retention time of chromatographic peaks utilizing a Quadrapole detector and the NIST 2014 (National Institute 
of Standards and Technology, 2014) library to relative retention indices. NIST library database contains more 
than 62,000 patterns of well-known compounds. The spectra of the unknown bioactive ingredients of grape seeds 
extract fraction obtained were compared to the reference mass spectra of recognised components deposited in 
the NIST library collection (NIST).

Utilizing LC–MS for non‑volatile bioactive compounds identification
Liquid chromatography and mass spectrometry (LC–MS) was used to determine the non-volatile nature of 
the bioactive components in the optimized grape seed extract. The LC–MS analysis was performed using the 
1290 Infinity UHPLC System, and 6550 iFunnel Q-TOFs (Agilent Technologies, USA). For separations Zorbax-
SB-C-18 column (2.1 × 50 mm, 1.8 µM particle size, Agilent Technologies, USA). Two mobile phases were used: 
A-0.1% formic acid in water and B-90% of acetonitrile in water, at a flow rate of 500 µL  min−1. The LC conditions 
were maintained at 5% at 0–3 min in B, a linear increase from 5 to 20% between 3 and 25 min, 20 to 40% during 
25–40 min, and from 40 to 50% between 40 and 55 min, finally, it reached 50 to 95% at 55–63 min. The peak 
detection was performed through direct injection mode with an Electron Spray Ionization (ESI) probe, both 
positive and negative modes. The non-volatile nature of bioactive compounds was identified by obtaining the 
molecular mass and structural formula of compounds with the help of online libraries.

Statistical analysis
All the experiments were performed based on RSM’s CCD and repeated three times. Design expert software (trial 
version 8.0.7.1, Stat-Ease, Inc., 2021 East Hennepin Ave, Suite 480, Minneapolis, MN 55413, USA) used for the 
experimental design, optimization, data analysis, prediction, and quadratic model building. In regression model, 
the goodness of fit was evaluated based on the  R2 (coefficients of determination). Further, the statistical analysis 
was assessed by one-way analysis of variance (ANOVA), with p-values less than 0.05 considered significant. The 
optimal extraction conditions were analysed by contour plots and three-dimensional (3D) response surface 
plots. Microsoft Excel (Microsoft Office Professional Plus 2021) was used for statistical analysis and the Adaptive 
neuro-fuzzy logic toolbox in the MATLAB (Mathematical Laboratory) v R2013b software.

Results and discussion
Adequacy of the models
Ultrasound-aided extraction is one of the best techniques for extracting thermosensitive and minute bioactive 
ingredients from natural sources. This ultrasound-aided extraction delivers numerous advantages, such as 
consuming less solvent as well as energy for extraction, heat not generated during ultrasonic waves rupturing the 
cell wall, and ultrasonic waves very quickly breaking the cell wall and solubilizing the internal active ingredients 
by the  solvent65. This study successfully optimized independent extraction variables through the CCD of RSM. 
This quadratic model was employed by combining ultrasound-aided extraction parameters of linear, interactions, 
and quadratic impacts on grape seed extract’s maximal extraction yield of bioactive  compounds66. CCD was 
flexible and effective, and could provide much information about experimental variables and errors with the least 
experimental  cycle67. Therefore, several experiments were carried out according to the central experiment design 
(CCD). Table 2 presented the experimental values and their predicted TPC, TFC, and antioxidant scavenging 
potentials (%DPPH*sc, %ABTS*sc, and FRAP) values of grapes seed extract under combination extraction 
parameters. Based on the experimental results, the optimized condition was observed at 0.155 mm particle 
size (X1), 65% methanol concentration (X2), 23 min ultrasound exposure time (X3), temperature (X4) at 40 °C, 
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and ultrasound intensity (X5) was 70 W  cm−2. This situation, the optimal yields of TPC, TFC, and antioxidant 
scavenging potential were achieved to be 670.32 mg GAE/g, 451.45 mg RE/g, 81.23% DPPH*sc, 77.39% ABTS*sc 
and 71.55 μg mol (Fe(II))/g FRAP value (Raw data was presented in Related file). The interaction of extraction 
parameters may be the primary factor causing the maximum production of bioactive components from grape 
seeds. Similar results were obtained in our previous optimization experiments, such as bioactive compounds 
from Garcinia indica, and Hemidesmus indicus Linn. of ultrasound-assisted  extraction7,14. The experimental 
results fitted to the model of a second-order polynomial equation. ANOVA was used to analyse the regression 
equation that was obtained.

The significance of the coefficients was ascertained at a 95% confidence level using the F and p tests. The 
associated variables would become highly significant if the p-value decreases and the F-value  increases68. 
The p-values were used as an essential tool to check the significance of the interactions of the  variables69. 
Importantly, when the p-value was < 0.05, then the model terms are assigned as statistically significant. While, 
the p-value was greater than 0.05 the model terms are called non-significant. The obtained F value for the 
lack of fit in this investigation was 18.49, and the present model was therefore highly significant (p-value 
0.0001 and F value 18.49). The multiple regression coefficient of determination  (R2) determines the model’s 
output response and the importance of lack-of-fit. The adequacy-output response model revealed that the 
quadratic model multiple regression coefficient of determination  (R2) of TPC, TFC, and antioxidant scavenging 
potentials (DPPH*sc, ABTS*sc, and FRAP) were 0.9273, 0.9323, 0.9045, 0.8730, and 0.8800, respectively, which 
demonstrated good depiction of the variables by the model and satisfied Le Man et al. For this reason, a model is 
considered acceptable when  R2 > 0.87. The predicted  R2 value (0.6930) is close to the adjusted  R2 value (0.8772), 
and the 95% confidence level shows that the quadratic models fit the experimental data well. This implied that 
95% of the experimental values agree with the model’s predictions.

Investigation of the response surfaces
Total phenolic content (TPC)
The experimental results and their predicted values of TPC using various combinations of extraction parameters 
in the ultrasound-aided solvent extraction method are presented in Table 3. Using the obtained experimental 
data, an analysis of variance (ANOVA) was performed to determine the coefficient of determination  (R2) of the 
model’s significance. The statistical significance of the model equation was evaluated using the lack-of-fit test, 
coefficient of determination  (R2), and p-values70,71. From the analyzed data in Table 3 and polynomial Eq. (7), it 
was determined that the linear term of particle size has a substantial (p 0.05) contribution to the most significant 
yield of total phenolic content (X1), temperature (X4), and quadratic term X2

2, X3
2, X5

2. As the ANOVA result in 
this model illustrates in Table 3, the model could reflect the relationship between the experimental values and 
their predicted responses with a higher F-value (18.49), and a very low probability value (p < 0.0001). Addition-
ally, sufficient precision and the coefficient of determination  (R2) were significant markers of the model fitting. 
An  R2 value near one indicates that the suggested model provides a better explanation for the variability of the 
experimental data; in other words, there is a stronger correlation between the observed and predicted  values72. 
The coefficient of determination of the ultrasound-aided solvent extraction of total polyphenolics was found 
to be  R2 = 0.9273,  R2 predicted = 0.6930, and  R2 adjusted = 0.8772, which indicated that this model has good 
reliability and fitting. The second-order polynomial equation for the fitted quadratic model for TPC in coded 
variables is given below Eq. (6)

The residuals were subsequently examined using the model data. Using residuals, it was possible to deter-
mine the difference between an experimental value from a response surface measurement and the value that 
the model anticipated. Figure 2a displays the studentized residuals of X1, X2, X3, X4, and X5 as a normal percent 
probability plot. These discovered variations do not deviate from the usual distribution. A model that fits the 
data well is indicated by a high coefficient of determination  (R2 >> 0.9), as seen in Fig. 2b. Figure 2c,d show 3D 
response surface and 2D contour plot reveal the significant effect of particle size (X1) and temperature (X4) in 
maximizing yield of TPC with methanol concentration, ultrasonic exposure time and ultrasonic intensity held 
at a fixed level (zero level) = 65%, 23 min, 70 W  cm−2, respectively).The effects of particle size (X1), temperature 
(X4), and the extract’s highest content of total polyphenolic content was further illustrated by the 3D response 
surface and contour plot in Fig. 2c,d. The total polyphenolic concentrations ranged from 360.76 to 670.32 mg 
GAE/g, as Table 2 demonstrates. The maximum yield of total polyphenolic content was achieved at 0.155 mm 
particle size, 65% methanol concentration, 23 min ultrasonic exposure time, temperature at 40 °C, and 60 W 
 cm−2 ultrasonic intensity.

Total flavonoid content (TFC)
From the ANOVA Table 3 and obtained second-order polynomial Eq. (8) illustrated that the linear term particle 
size (X1) and temperature (X4) and quadratic term X2

2, X3
2, and X5

2 are influencing significant (p << 0.05) effects 
for the maximum extraction yield of total flavonoid content from grape seeds extract. The effect of other terms 
was found to be non-significant because p value was greater than 0.05. The experimental model successfully 
fits the data, as evidenced by the response surface analysis of the total flavonoid content of the extract, which 
revealed a high coefficient of determination value of  R2 = 0.9323, adjusted  R2 = 0.8856, predicted  R2 = 0.7567 and 

(6)

TPC
(

y1
)

= 483.67− 95.59X1 + 2.5X2 + 3.19X3 + 12.2X4 + 3.36X5 + 9.4X1X2 − 2.64X1X3+ 3.01X1X4

+ 8.29X1X5 + 4.13X2X3 + 5.91X2X4 + 4.71X2X5 − 1.03X3X4 + 9.69X3X5 + 10.72X4X5

+ 5.07X2
1 + 11.14X2

2 + 12.22X2
3 + 7.16X2

4 + 14.44X2
5 .
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Source Sum of squares dfa Mean square F-valueb p-valuec

TPC  (y1)d

 Model 439,900 20 21,993.66 18.49  < 0.0001

 X1 395,800 1 3.96E+05 332.8  < 0.0001

 X2 270.07 1 270.07 0.2271 0.6373

 X3 440.06 1 440.06 0.37 0.5477

 X4 6447.81 1 6447.81 5.42 0.0271

 X5 489.66 1 489.66 0.4118 0.5261

 X1X2 2830.15 1 2830.15 2.38 0.1337

 X1X3 222.29 1 222.29 0.1869 0.6687

 X1X4 290.77 1 290.77 0.2445 0.6247

 X1X5 2198.84 1 2198.84 1.85 0.1844

 X2X3 545 1 545 0.4583 0.5038

 X2X4 1117.46 1 1117.46 0.9397 0.3404

 X3X4 710.46 1 710.46 0.5974 0.4458

 X3X5 33.74 1 33.74 0.0284 0.8674

 X4X5 3002.74 1 3002.74 2.53 0.1229

 X1
2 3677.82 1 3677.82 3.09 0.0892

 X2
2 1430.88 1 1430.88 1.2 0.2817

 X3
2 6893.43 1 6893.43 5.8 0.0226

 X4
2 8144.72 1 8144.72 6.85 0.0139

 X5
2 2849.08 1 2849.08 2.4 0.1325

 Residual 11,581.3 1 11,581.28 9.74 0.0041

 Lack of fit 34,486.8 29 1189.2

 Pure error 34,470.1 22 1566.82 656.48  < 0.0001

 Cor total 16.71 7 2.39

TFC  (y2)e

 Model 129,800 20 6491.91 19.96  < 0.0001

 X1 115,600 1 1.16E+05 355.45  < 0.0001

 X2 679.09 1 679.09 2.09 0.1592

 X3 221.21 1 221.21 0.6801 0.4163

 X4 2763.7 1 2763.7 8.5 0.0068

 X5 737.91 1 737.91 2.27 0.1428

 X1X2 213.72 1 213.72 0.657 0.4242

 X1X3 1015 1 1015 3.12 0.0878

 X1X4 243.55 1 243.55 0.7488 0.394

 X1X5 720.84 1 720.84 2.22 0.1474

 X2X3 57.46 1 57.46 0.1767 0.6774

 X2X4 496.9 1 496.9 1.53 0.2264

 X3X4 32.37 1 32.37 0.0995 0.7547

 X3X5 0.0021 1 0.0021 6.40E-06 0.998

 X4X5 1006.91 1 1006.91 3.1 0.0891

 X1
2 317.76 1 317.76 0.9769 0.3311

 X2
2 660.42 1 660.42 2.03 0.1649

 X3
2 1594.97 1 1594.97 4.9 0.0348

 X4
2 1575.56 1 1575.56 4.84 0.0359

 X5
2 894.54 1 894.54 2.75 0.108

 Residual 3497.2 1 3497.2 10.75 0.0027

 Lack of fit 9432.79 29 325.27

 Pure error 9424.85 22 428.4 378.08  < 0.0001

 Cor total 7.93 7 1.13

%DPPH*sc  (y3)f

 Model 3314.9 20 165.74 13.73  < 0.0001

 X1 2645.01 1 2645.01 219.12  < 0.0001

 X2 33.29 1 33.29 2.76 0.1076

 X3 7.45 1 7.45 0.617 0.4385

 X4 49.66 1 49.66 4.11 0.0518

Continued
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Source Sum of squares dfa Mean square F-valueb p-valuec

 X5 5.49 1 5.49 0.455 0.5053

 X1X2 0.1164 1 0.1164 0.0096 0.9224

 X1X3 3.06 1 3.06 0.2532 0.6186

 X1X4 67.48 1 67.48 5.59 0.025

 X1X5 5.64 1 5.64 0.4669 0.4998

 X2X3 26.44 1 26.44 2.19 0.1496

 X2X4 67.77 1 67.77 5.61 0.0247

 X3X4 0.1093 1 0.1093 0.0091 0.9249

 X3X5 23.38 1 23.38 1.94 0.1746

 X4X5 69.24 1 69.24 5.74 0.0233

 X1
2 90.01 1 90.01 7.46 0.0106

 X2
2 105.14 1 105.14 8.71 0.0062

 X3
2 110.2 1 110.2 9.13 0.0052

 X4
2 37.65 1 37.65 3.12 0.0879

 X5
2 42.31 1 42.31 3.51 0.0713

 Residual 20.21 1 20.21 1.67 0.2059

 Lack of fit 350.06 29 12.07

 Pure error 321.82 22 14.63 3.63 0.0431

 Cor total 28.24 7 4.03

%ABTS*sc  (y4)g

 Model 3196.49 20 159.82 9.97  < 0.0001

 X1 2543.85 1 2543.85 158.7  < 0.0001

 X2 58.62 1 58.62 3.66 0.0658

 X3 6.13 1 6.13 0.3825 0.5411

 X4 61.36 1 61.36 3.83 0.0601

 X5 4.51 1 4.51 0.2812 0.6

 X1X2 2.43 1 2.43 0.1513 0.7001

 X1X3 10.66 1 10.66 0.6651 0.4214

 X1X4 73.84 1 73.84 4.61 0.0403

 X1X5 0.4209 1 0.4209 0.0263 0.8724

 X2X3 19.58 1 19.58 1.22 0.2782

 X2X4 56.9 1 56.9 3.55 0.0696

 X3X4 0.5913 1 0.5913 0.0369 0.849

 X3X5 38.43 1 38.43 2.4 0.1324

 X4X5 94.57 1 94.57 5.9 0.0216

 X1
2 52.56 1 52.56 3.28 0.0806

 X2
2 98.26 1 98.26 6.13 0.0194

 X3
2 74.67 1 74.67 4.66 0.0393

 X4
2 18.14 1 18.14 1.13 0.2961

 X5
2 35.28 1 35.28 2.2 0.1487

 Residual 14.48 1 14.48 0.9032 0.3498

 Lack of fit 464.86 29 16.03

 Pure error 428.67 22 19.48 3.77 0.039

 Cor total 36.19 7 5.17

FRAP  (y5)h

 Model 3282.89 20 164.14 10.64  < 0.0001

 X1 2564.2 1 2564.2 166.17  < 0.0001

 X2 76.61 1 76.61 4.96 0.0338

 X3 7.49 1 7.49 0.4854 0.4915

 X4 67.35 1 67.35 4.36 0.0456

 X5 3.5 1 3.5 0.2269 0.6374

 X1X2 2.48 1 2.48 0.1608 0.6914

 X1X3 14.62 1 14.62 0.9475 0.3384

 X1X4 67.31 1 67.31 4.36 0.0456

 X1X5 2.57 1 2.57 0.1666 0.6862

 X2X3 18.93 1 18.93 1.23 0.2772

Continued
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a least value for lack of fit p value < 0.0001. Further, the adjusted  R2 value close to predicted  R2 value showed this 
model fitting one.

(7)

TFC
(

y2
)

= 324.5− 51.6659X1 + 3.96X2 + 2.26X3 + 7.99X4 + 4.13X5 + 2.58X1X2 − 5.63X1X3

+ 2.76X1X4 + 4.75X1X5 + 1.34X2X3 + 3.94X2X4 + 1.01X2X5 + 0.0081X3X4 + 5.61X3X5

+ 3.15X4X5 + 3.45X2
1 + 5.36X2

2 + 5.32X2
3 + 4.01X2

4 + 7.93X2
5 .

Source Sum of squares dfa Mean square F-valueb p-valuec

 X2X4 59.98 1 59.98 3.89 0.0583

 X3X4 0.0109 1 0.0109 0.0007 0.979

 X3X5 26.48 1 26.48 1.72 0.2005

 X4X5 106.32 1 106.32 6.89 0.0137

 X1
2 59.32 1 59.32 3.84 0.0596

 X2
2 120.83 1 120.83 7.83 0.009

 X3
2 80.57 1 80.57 5.22 0.0298

 X4
2 25.1 1 25.1 1.63 0.2123

 X5
2 48.08 1 48.08 3.12 0.0881

 Residual 12.03 1 12.03 0.7794 0.3846

 Lack of fit 447.5 29 15.43

 Pure error 416.99 22 18.95 4.35 0.0264

 Cor total 30.51 7 4.36

Table 3.  Analysis of variance (ANOVA) for the quadratic polynomial mode. a Degrees of freedom. b Test for 
comparing model variance with residual (error) variance. c Probability of seeing the observed F value if the 
null hypothesis is true. d Std Dev: 34.48; Mean: 526.91;  R2 = 0.9273;  R2 predicted = 0.6930;  R2 adjusted = 0.8772. 
e Std Dev: 18.04; Mean: 347.09;  R2 = 0.9323; adjusted  R2 = 0.8856; predicted  R2 = 0.7567. f Std Dev: 3.47; Mean: 
67.88;  R2 = 0.9045; adjusted  R2 = 0.8386; predicted  R2 = 0.6661. g Std Dev: 4.0; Mean: 63.43;  R2 = 0.8730; adjusted 
 R2 = 0.7855; predicted  R2 = 0.5611. h Std Dev: 3.93; Mean: 58.74;  R2 = 0.8800; adjusted  R2 = 0.7973; predicted 
 R2 = 0.5789.

Figure 2.  Normal percentage probability plot for the studentized residuals for highest yield of TPC (a), 
and TFC (e). Relationship between experimental and predicted value for highest yield of TPC (b), and TFC 
(f), Response surface and contour plot showing the combined effects of methanol concentration (X1) and 
temperature (X2) for highest yield of TPC, and TFC, when time and particle size were held at fixed level 
(c,g,d,h), respectively.
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Figure 2e illustrates normal % probability plot of studentized residuals of X1, X2, X3, X4 and X5. These vari-
ants are normally distributed without any deviations. Coefficient of determination  (R2) value should be close 
0.9 to have a good fit of the model. The closer the goodness of fit to 1, the better the empirical model fits the 
actual  data73. Figure 2f displayed the high coefficient of determination values  (R2 >> 0.9), which are indicative 
of a strong fit. Furthermore, the maximum content of total flavonoids in the grapes seeds extract is influenced 
by particle size (X1) and temperature (X4). In contrast, other three variables, such as methanol concentration 
(X2), ultrasonic time (X3), and ultrasonic intensity (X5) were kept constant (zero level) = 65%, 23 min, 70 W 
 cm−2, respectively, as shown by the 3D response surface and contour plot in Fig. 2g,h. Table 2 showed a range 
of 243.17 to 451.45 mg (RE)/g for total flavonoids. The highest yield of flavonoids was produced with 0.155 mm 
particle size, 65% methanol concentration, 23 min ultrasonic exposure time, temperature at 40 °C and 60 W  cm−2 
ultrasonic intensity; the lowest content was produced with 1.35 mm particle size, 65% methanol concentration, 
23 min ultrasonic exposure time, temperature at 40 °C and 70 W  cm−2 ultrasonic intensity.

Antioxidant scavenging potentials (%DPPH*sc, %ABTS*sc and FRAP)
Based on the statistical analysis of experimental data in Table 3 and second-order polynomial Eqs. (8)–(10), the 
linear term X1 interaction terms X1X4, X3X5, and quadratic terms X1

2,  X2
2are significantly (p < 0.05) contributing to 

the effects for the maximum yield of all three antioxidants (%DPPH*sc, %ABTS*sc, FRAP) scavenging potential 
from grape seeds extract. In addition, Table 3 shows the interaction terms X2X4, X4X5 contributing the highest 
DPPH* scavenging activity of grapes seeds extract. Similarly, linear term X4, and interaction term X3X5 has a 
significant effect on ABTS*sc and FRAP. The coefficient of determination  (R2) value of %DPPH*sc, %ABTS*sc, 
and FRAP are 0.9045, 0.8730, 0.8800 respectively, adjusted  R2 value of %DPPH*sc, %ABTS*sc, and FRAP are 
0.8386, 0.7855, 0.7973 respectively, the predicted  R2 value of %DPPH*sc, %ABTS*sc, and FRAP are 0.6661, 
0.5611, 0.5789, respectively. All three antioxidant potentials adjusted  R2 values very close to predicted  R2, with 

Figure 3.  Normal percentage probability plot for the studentized residuals for highest yield of %DPPHsc 
(a), %ABTSsc (e) and FRAP (i). Relationship between experimental and predicted value for highest yield of 
%DPPHsc (b), %ABTSsc (f) and FRAP (j). Response surface and contour plot showing the combined effects of 
methanol concentration (X1) and temperature (X2) for highest yield of %DPPHsc, %ABTSsc and FRAP when 
time and particle size were held at fixed level (c,g,k,d,h,l), respectively.
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the least lack of fit p value of %DPPH*sc, %ABTS*sc, and FRAP < 0.0001, < 0.0001, and < 0.0001, respectively. 
These observed data suggested that the model is significantly accurate. The second-order polynomial equation 
for the fitted quadratic models for %DPPH*sc, %ABTS*sc, and FRAP in coded variables is given in Eqs. (8)–(10).

Figure 3a,e,i shows that the normal percentage probability plot of studentized residuals of X1, X2, X3 and X4 and 
these variants are normally distributed and have no deviation for all three antioxidant scavenging experiments. 
Figure 3b,f,j displayed the high coefficient of determination  (R2 >> 0.87), which are indicative of a strong fit. The 
3D response surfaces and 2D contour plots for antioxidant scavenging potentials (%DPPH*sc, %ABTS*sc and 
FRAP) as responsible functional variables of particle size (X1) and temperature (X4) are shown in Fig. 3c,d,g,h,k,l. 
The figures show that 0.155 mm particle size, 65% methanol concentration, 23 min ultrasonic exposure time, 
temperature at 40 °C and 60 W  cm−2 ultrasonic intensity correspond to the highest antioxidant (%DPPH*sc, 
%ABTS*sc, and FRAP) potential. The highest yields of antioxidant scavenging potentials are %DPPH 81.23%, 
%ABTS 77.39%, and FRAP 71.55 μg mol Fe (II)/g.

ANFIS modelling
ANFIS modelling was used to investigate further verify experimental data and predict the extraction variables 
of bioactive ingredients in the grape seeds extract. The same 50 experimental data sets shown in Table 2 were 
divided into three sets to develop the ANFIS model prediction: 65% for the training data sets, 30% for the testing 
data sets, and 5% for validating the models. These sets were then used to construct a fuzzy inference system, the 
parameters of which were adjusted for the membership function using the least-squares method in conjunction 
with the back-propagation algorithm. The fuzzy logic toolbox in MATLAB v. R2013a was used to train ANFIS to 
obtain the results. To ensure accuracy, a FIS of ANFIS model with membership functions, five output responses, 
and five input responses must be constructed. The proposed architecture of the ANFIS model comprises five 
input parameters and one output value, as displayed in Fig. 1. Several parameters must be verified one at a time. 
For every input variable, including particle size (X1), methanol concentration (X2), ultrasound exposure time 
(X3), temperature (X4), and ultrasound intensity (X5), there are three fuzzy sets: low, medium, and high. Similarly, 
experimental results on predicted output responses were TPC (670 mg gallic acid equivalents (GAE)/g), TFC 
(451 mg rutin equivalents (RE)/g), DPPH*sc (81.2%), ABTS*sc (77.4%), and FRAP (71.6 μg mol (Fe (II))/g) 
were defined in five fuzzy sets namely very low, low, medium, high and very high. Experiment data and human 
observation data were utilized to construct the fuzzy rule. The fuzzy inference system had a total number of fuzzy 
rules 324 and a number of network nodes 664 (Number of input response 5, output response 1 (at a time), and 
the type of membership function is Gaussian) presented. The predicted values of the responses were utilized to 
improve the fuzzy rules through RSM.

Machine learning algorithm
The inputs are the characteristics of the experimental parameters (X1, X2, X3, X4, and X5), and the output responses 
are  y1,  y2,  y3,  y4, and  y5. The dataset contains the five goal columns. Thus, the five random forest regressor models 
were constructed by maintaining the input data constant and changing the output response for each model. This 
experiment’s estimators are set to 100. The R error value is used to evaluate the models after they have been fitted 
to the training set of data. Subsequently, the models predict the input data (X1: 0.1554 mm particle size, X2: 65% 
methanol concentration, X3: 23 min, X4: 40 °C, and X5: 70 W  cm−2 ultrasound intensity). Total polyphenolics 
(643.53 mg GAE/g), total flavonoids (411.64 mg RE/g), %DPPH*sc (76.84%), %ABTS*sc (71.12%), and FRAP 
(66.30 μg mol (Fe (II))/g) were all expected to have the desired output responses based on the experimental 
results. Figure 4a–e are created for each of the five models to illustrate the error variance between the predicted 
and actual values.

(8)

%DPPH ∗ sc
(

y3
)

= 72.28− 7.81X1 + 0.8766X2 − 0.4147X3 + 1.07X4 + 0.3561X5 − 0.0603X1X2

− 0.3091X1X3+ 1.45X1X4 − 0.4197X1X5 + 0.9091X2X3 + 1.46X2X4

+ 0.0584X2X5 − 0.8547X3X4 + 1.47X3X5 + 1.68X4X5 − 1.38X2
1 − 1.41X2

2

− 0.8231X2
3 − 0.8726X2

4 − 0.6030X2
5 ,

(9)

%ABTS ∗ sc
(

y4
)

= 67.22− 7.66X1 + 1.16X2 − 0.3762X3 + 1.19X4 + 0.3226X5 − 0.2753X1X2

− 0.5772X1X3+ 1.52X1X4 − 0.1147X1X5 + 0.7822X2X3 + 1.33X2X4

+ 0.1359X2X5 − 1.10X3X4 + 1.72X3X5 + 1.28X4X5 − 1.33X2
1 − 1.16X2

2

− 0.5714X2
3 − 0.7968X2

4 − 0.5104X2
5 ,

(10)

FRAP
(

y5
)

= 62.85− 7.69X1 + 1.33X2 − 0.4159X3 + 1.25X4 + 0.2843X5 − 0.2784X1X2

− 0.6759X1X3 + 1.45X1X4 − 0.2834X1X5 + 0.7691X2X3 + 1.37X2X4

− 0.0184X2X5 − 0.9097X3X4 + 1.82X3X5 + 1.36X4X5 − 1.47X2
1 − 1.20X2

2

− 0.6720X2
3 − 0.9301X2

4 − 0.4652X2
5 .
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Verification of the model
The obtained optimized extraction condition based on the CCD of RSM was confirmed with verification experi-
ments for maximum yield of bioactive ingredients from grapes seeds extract. The significantly influenced param-
eters’ values slightly changed, and verification experiments were performed individually. The obtained verifica-
tion experimental results feed into the Design Espert software and analyse the verification experimental results 
and their predicted output responses based on the yield of TPC, TFC, and antioxidant scavenging potentials 
(%DPPH*sc, %ABTS*sc and FRAP) from grapes seeds. ANFIS and the machine learning algorithm used the 
same data for further verification. The verification experimental results exhibited that the particle size, methanol 
concentration, and temperature significantly affected the highest yield of bioactive ingredients from grapes seeds. 
Table 4 displays the results of verification experiments conducted under optimized conditions and with minor 
modifications based on values of extraction parameters. Based on the verification experiment, 0.155 mm particle 
size of grapes seeds powder, 62.5% of methanol, in 23 min of ultrasonic waves exposure time, at 40 °C with 70 
W  cm−2 ultrasonic intensity, under this condition while the experimental values of TPC, TFC, and antioxidant 
scavenging potentials were 672. 45 mg GAE/g, 454.65 mg RE/g, 81.89%, 77.85%, and 71.52 μg mol (Fe (II))/g), 
respectively. Further, the predicted values from RSM models are TPC, TFC, %DPPH*sc, %ABTS*sc and FRAP 
were 772. 64 mg GAE/g, 469.42 mg RE/g, 82.22%, 76.72%, and 71.52 μg mol (Fe (II))/g), respectively. By chang-
ing the extraction parameter (input) values, the value of the responses (output) was observed using a rule viewer 
plot (Fig. 5). The rule viewer is a compressed toolbox with built-in neural weight optimization and fuzzification 
techniques. Implementation experiments and comparing the outcomes with the model’s predicted value allowed 
for additional cross-validation of the model. In the grape seeds extract, the predicted responses obtained through 
the ANFIS model were TPC, TFC, and antioxidant scavenging potentials (%DPPH*sc, %ABTS*sc, and FRAP) 
were 632 mg GAE/g, 426 mg RE/g, 76.5%, 72.8%, and 67.3 μg mol (Fe (II))/g), respectively. At the same time, the 
machine learning algorithm model predicted the responses, the values for TPC, TFC, and antioxidant scaveng-
ing potentials (%DPPH*sc, %ABTS*sc, and FRAP) were 669.69 mg GAE/g, 455.11 mg RE/g, 81.18%, 76.93%, 
and 71.14 μg mol (Fe (II))/g), respectively. According to the findings, RSM, ANFIS modelling, machine learning 
algorithm predictions, and the experimentally obtained values and regression analyses fit well.

Figure 4.  Machine learning algorithm validated the experimental and predicted values.
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GC–MS analysis
A total of 20 peaks were observed from optimally obtained grape seed extract of the GC–MS chromatogram 
(Fig. 6) by comparing the peak retention time, peak area (%), height (%), and mass spectral fragmentation 
patterns to those of the well-known compounds listed in the National Institute of Standards and Technology 
(NIST) library. Among the 20 peaks, 12 bioactive compounds (based on the active nucleus of the structure) were 
identified. Table 5 shows the identified bioactive compounds and their molecular formula, with molecular mass. 

Figure 5.  ANFIS rule viewer for the effect of extraction parameters on responses for extraction of TPC, TFC 
and antioxidants from grape seeds extract.

Figure 6.  GC–MS spectra of optimally optimized extract of grape seeds. List of bioactive phytocompounds 
presence in the optimally obtained extract.
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The bioactive compounds present in the optimized extract of grapes seeds were found to be 3-Hexenoic acid, 
5-Hydroxymethylfurfural, 2-Amino-5,6-dimethyl-3H-pyrimidine, Spiro[4.4]nonane-1,6-dione, 8-Methylnona-
noic acid, 3,4-Altrosan, 1,5-Anhydro-d-mannitol, 9-Eicosenoic acid, cis-Vaccenic acid, 1,37-Octatriacontadiene, 
1,3-Benzenedicarboxylic acid 2-Methyl-7-phenylindole.

LC–MS analysis
Liquid chromatography coupled with mass spectroscopy is one of the significant tools for the structural identifi-
cation of small molecules in the grape seed extract. Both positive and negative modes of LC–MS chromatogram 
of optimally obtained grape seed extract were presented in Supplementary Fig. S1. Further, the chromatogram 
(Supplementary Fig. S2) both positive and negative modes showed many peaks at different retention times and 
specified the presence of four active compounds, in the positive three active compounds identified, namely, 
catechin (retention time: 6.242 min; molecular formula:  C15H14O6; mass 290.27 g/m), (−)-epicatechin (reten-
tion time: 5.262 min; molecular formula:  C15H14O6; mass 290.27 g/m), Fisetinidol (retention time: 4.983 min; 
molecular formula:  C15H14O5; mass 228.24 g/m). and trans-resveratrol (retention time: 6.899 min; molecular 
formula:  C14H12O3; mass 274.27 g/m), and in the positive mode one compound identified (−)-epicatechin-3-O-
gallate (retention time: 9.284 min; molecular formula:  C22H18O10; mass 442.4 g/m).

Conclusion
The most effective extraction parameters for a high yield of bioactive components from powdered grape 
seeds were optimized using a statistical analysis technique based on the CCD of RSM. The experiments were 
performed per the design of a well-fitted model for extracting the highest yield of TPC, TFC and free radical 
scavenging potentials (%DPPH*sc, %ABTS*sc, and FRAP) from graph seeds powder. The optimized parameters 
are further verified through robust ANFIS and machine learning algorithm techniques. The obtained results 
demonstrated that the independent variables of linear term (particle size (X1) and temperature (X4), interaction 
terms (X2X4, X3X5, and X4X5), and quadratic terms X2

2, X3
2, and X5

2) potentially contributed to the maximum 
yield of bioactive ingredients from grape seeds powder. Combining all five parameters significantly enhances 
the yield of bioactive ingredients. The observed ideal experimental values were verified and found to fit both the 
observed and anticipated values using second-order polynomial equations. The design’s high  R2 value (>> 0.8) 
confirmed the model’s reliability. The optimal condition was observed at 0.155 mm particle size (X1), 65% 
methanol concentration (X2), 23 min ultrasound exposure time (X3), temperature (X4) at 40 °C, and ultrasound 
intensity (X5) was 70 W  cm−2. Under this optimal condition, the highest yield of TPC, TFC, and antioxidant 
activities was 670.32 mg GAE/g of TPC, 451.45 mg RE/g of TFC, 81.23% DPPH*sc, 77.39% ABTS*sc and 
71.55 μg mol (Fe(II))/g FRAP obtained. The optimized variable values were well matched with predicted values 
of RSM, ANFIS, and machine learning algorithm models. Furthermore, 12 volatile and five non-volatile natures 
of the bioactive compounds were recognized from the optimized extract of grape seed powder with the help 
of GC–MS and LC–MS spectroscopy. The optimization results from RSM coupled with ANFIS and machine 
learning algorithm is anticipated to help develop industrial-scale extraction procedures for the bioactive 
ingredients under research from grape seeds powder and related plant materials.

Data availability
All data generated or analysed during this study are included in this published article [and its Supplementary 
Information files].
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Table 5.  Analysed bioactive ingredients from optimized extract of graph seeds through GC–MS 
chromatogram. 

Retention time (min) % Area of peak Compound identified Molecular formula Molecular weight (g/mol)

6.996 0.36 3-Hexenoic acid C6H10O2 114.14

9.697 7.14 5-Hydroxymethylfurfural C6H6O3 126.11

11.467 0.43 2-Amino-5,6-dimethyl-3H-pyrimidine C6H9N3O 139.16

11.702 0.52 Spiro[4.4]nonane-1,6-dione C9H12O2 152.19

12.692 9.22 8-Methylnonanoic acid C10H20O2 172.26

13.338 8.22 3,4-Altrosan C6H10O5 162.14

14.588 8.29 1,5-Anhydro-d-mannitol C6H12O5 164.16

16.366 0.38 9-Eicosenoic acid C20H38O2 310.5

18.245 1.00 cis-Vaccenic acid C18H34O2 282.5

22.909 0.68 1,37-Octatriacontadiene C38H74 531

24.235 1.91 1,3-Benzenedicarboxylic acid C8H6O4 166.13

24.973 0.56 2-Methyl-7-phenylindole C15H13N 207.27
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