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Machine learning models 
to predict the warfarin discharge 
dosage using clinical information 
of inpatients from South Korea
Heejung Choi 1, Hee Jun Kang 2, Imjin Ahn 3, Hansle Gwon 3, Yunha Kim 3, Hyeram Seo 1, 
Ha Na Cho 3, JiYe Han 1, Minkyoung Kim 1, Gaeun Kee 3, Seohyun Park 3, Osung Kwon 4, 
Jae‑Hyung Roh 5, Ah‑Ram Kim 6, Ju Hyeon Kim 7, Tae Joon Jun 8,10 & Young‑Hak Kim 9,10*

As warfarin has a narrow therapeutic window and obvious response variability among individuals, it is 
difficult to rapidly determine personalized warfarin dosage. Adverse drug events(ADE) resulting from 
warfarin overdose can be critical, so that typically physicians adjust the warfarin dosage through the 
INR monitoring twice a week when starting warfarin. Our study aimed to develop machine learning 
(ML) models that predicts the discharge dosage of warfarin as the initial warfarin dosage using clinical 
data derived from electronic medical records within 2 days of hospitalization. During this retrospective 
study, adult patients who were prescribed warfarin at Asan Medical Center (AMC) between January 1, 
2018, and October 31, 2020, were recruited as a model development cohort (n = 3168). Additionally, 
we created an external validation dataset (n = 891) from a Medical Information Mart for Intensive Care 
III (MIMIC‑III). Variables for a model prediction were selected based on the clinical rationale that turned 
out to be associated with warfarin dosage, such as bleeding. The discharge dosage of warfarin was 
used the study outcome, because we assumed that patients achieved target INR at discharge. In this 
study, four ML models that predicted the warfarin discharge dosage were developed. We evaluated 
the model performance using the mean absolute error (MAE) and prediction accuracy. Finally, we 
compared the accuracy of the predictions of our models and the predictions of physicians for 40 data 
point to verify a clinical relevance of the models. The MAEs obtained using the internal validation set 
were as follows: XGBoost, 0.9; artificial neural network, 0.9; random forest, 1.0; linear regression, 1.0; 
and physicians, 1.3. As a result, our models had better prediction accuracy than the physicians, who 
have difficulty determining the warfarin discharge dosage using clinical information obtained within 
2 days of hospitalization. We not only conducted the internal validation but also external validation. 
In conclusion, our ML model could help physicians predict the warfarin discharge dosage as the initial 
warfarin dosage from Korean population. However, conducting a successfully external validation in a 
further work is required for the application of the models.
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Warfarin is an oral anticoagulant; it has been used for the treatment and prevention of thromboembolic disorders 
for more than 60  years1. Despite its well-studied clinical pharmacology, high efficacy, and cost-effectiveness, it is 
clinically challenging to determine the appropriate dosage of warfarin for each individual because of its narrow 
therapeutic window and variable patient  responses2. Warfarin is one of the ten main anticoagulants that cause 
adverse drug  events3. The risk of thrombosis increases if the dosage is insufficient, and conversely, the risk of 
bleeding increases if the dosage is  excessive3. Conventionally, the international normalized ratio (INR) blood 
coagulation test is performed daily to achieve optimal efficacy and minimize side effects of warfarin, and physi-
cians adjust the warfarin dosage individually based on their medical experience and INR  values4.

Recent studies have attempted to predict the ideal warfarin dosage using machine learning algorithms, and 
most models were developed using genetic data obtained through genetic  testing5–12. Genetic variations in 
CYP2C9, VKORC1, and CYP4F2 have been shown to have significant correlations with warfarin. However, 
genetic testing is not performed in actual clinical settings because it is time-consuming13. One study aimed to 
predict the adjustment dose of warfarin using only clinical  data14. However, warfarin adjustment doses are pre-
scribed to outpatients and can interact with some foods or alcohol, thus affecting their lifestyle. In such cases, it is 
questionable whether it is more appropriate to use lifelog data that reflects the patient’s lifestyle and environment 
than using clinical data included in the electronic medical records. Consequently, it is more proper to use EMR 
derived from controlled inpatients populations in large hospitals for initial warfarin dose prediction.

In this study, we suggested that clinical warfarin dosing algorithms that predict discharge warfarin dosage to 
the initial warfarin dosage without genetic data are important for the following rationale. In tertiary hospital, it 
is difficult to use the genetic test in initial warfarin dose judgement immediately after hospitalized, becase it takes 
about two weeks the genetic test to come out. It results in physicians must decide the initial warfarin dosage based 
on limited the patient’s information. Accordingly, we concluded that a tool providing reliable warfarin dosage 
from limited clinical information is clinically relevant.

Finally, we proposed machine learning models that predict the warfarin discharge dosage as an appropriate 
initial warfarin dosage using only clinical data generated in the hospital within 2 days of hospitalization. The 
models proposed in this study can not only reduce unnecessary treatment duration but also prevent the adverse 
drug event of warfarin, by rapidly presenting appropriate warfarin dosing. Additionally, it can contribute to both 
hospitals and patients, by securing space for other patients in hospital wards and reducing the financial burden 
of hospitalization costs for patients.

Methods
Ethical approval
The Institutional Review Board of Asan Medical Center approved the protocols of this study (No. 2021-0321), 
which was conducted corresponding to the 2008 Declaration of Helsinki. Also, this study exempted the require-
ment for informed consent as the database used for the study consisted of anonymous, de-identified information. 
All experiments were performed in accordance with relevant guidelines and regulations. Also, we gained the data 
access to MIMIC-III database to use for external validation process taking courses titled Biomedical Responsible 
Conduct of Research from CITI.

Study design
In general, warfarin is prescribed at 8 p.m based on initial blood test results, physiological measurements, and 
concomitant medications of a patient on the day of starting warfarin. Initially, a dose of 5 mg or higher may 
be initiated to rapidly achieve a therapeutic level, but in cases where the patient is deemed to be at a higher 
risk of bleeding, a lower dose of 1–2 mg may be used. Following the initiation of warfarin, the daily INR tests 
are performed to determine the appropriate dosage until the patient reaches a stable therapeutic level (INR 
2.0–3.0). While some patients may easily reach the appropriate warfarin dosage, for others, the daily fluctuations 
in INR values can lead to several days of adjustment before achieving the target range of INR 2.0–3.0. Among 
the patients admitted to Asan Medical Center, those included in this dataset typically undergo such a process. 
Reflecting the warfarin therapy schedule of the patients, we designed four machine learning models to predict 
the warfarin dosage prescribed at discharge using only clinical data measured on the first and second days of 
hospitalization (Fig. 1). At first, we extracted clinical variables in electronic medical records (EMRs) of the Asan 
Medical Center (AMC) and Medical Information Mart for Intensive Care III (MIMIC-III)  database15 with same 
criteria for model development and validation. Then, data pre-processing was performed and the models were 
trained using training set. To assess the clinical utility of the models, the initial warfarin dosage prescribed by 
physicians was compared with the models in terms of the mean absolute error (MAE)16 and accuracy. Finally, we 
evaluated our models in the internal validation set that whether the models can provide more accurate warfarin 
dosage than physicians initial dose. In addition, we externally validated the models to external validation set 
derived from the MIMIC-III. Data pre-processing, model development, training and validation were conducted 
in Python 3.8.10. Additionally, we analyzed the predictions of five physicians for 40 data points by calculating 
the intraclass correlation coefficient (ICC)17 value and compared with the distributions of the model predictions 
to explore the objectivity of the models.

Data source
We used the EMRs of the Asan Medical Center (AMC) as the source of development cohort. The EMRs was 
derived from Asan BiomedicaL Research Enviroment (ABLE) platform that Asan Medical Center has been devel-
oping a de-identification system for biomedical  research18. It ensured the accuracy and completeness of the data.
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Data collection
The model development cohort consisted of patients admitted to the cardiovascular or thoracic and cardiovas-
cular surgery departments of AMC between January 1, 2018, and October 31, 2020. All the selected participants 
were at least 19 years old; exclusions were based on the following criteria: none of warfarin prescription at dis-
charge;< 3 warfarin prescriptions; and no weight measurements within 2 days of hospitalization (Fig. 2). The 
external validation set derived from the MIMIC-III followed the same workflow except for medical department 
codes, as the medical department codes of the intensive care unit (ICU) can not be found. Finally, the develop-
ment cohort derived from AMC EMRs comprised 3168 patients and the external validation cohort derived from 
the MIMIC-III comprised 891 patients.

Figure 1.  Overview of the workflow. Our single-center study complied with the workflow in the following 
order: (1) based on clinical rationales, we extracted 17 features associated with warfarin from the electronic 
medical record (EMR) database up to the second day of hospitalization; (2) we conducted data pre-processing, 
such as missing value imputation, outlier filtering, and normalization, and created the final dataset; (3) the 
models that predict the warfarin discharge dosage using the dataset were developed. (4) The discharge dose was 
used as ground-truth to calculate the error with physicians initial dose and model predictions. The yellow circles 
represent the one day during hospitalization. The green and orange circle indicate the first warfarin dosage after 
hospitalization and the warfarin dosage at discharge, respectively.

Figure 2.  Cohort diagram. AMC Asan medical center, EHR electronic health record, MIMIC-III medical 
information mart for intensive care III.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22461  | https://doi.org/10.1038/s41598-023-49831-6

www.nature.com/scientificreports/

Feature selection
The process of feature selection used for model development and validation was conducted only when had already 
been proofed correlations with warfarin based on clinical  rationales19–26. The 17 clinical variables regarded as 
key factors of warfarin dosage adjustments and associated with bleeding were selected from the four tables of 
demographic, diagnosis, medication, vital sign (Supplementary Table S1). First of all, four demographic vari-
ables of age, sex, height, weight were used. Second, disease status of renal disease was selected in the diagnosis 
table, due to association with renal disease and warfarin. Third, seven medicines, affecting functions of warfarin 
and increasing a risk of bleeding and causing warfarin dosage adjustments when combined with warfarin, were 
selected in the medication table. Additionally, systolic blood pressure and diastolic blood pressure measurements 
were selected as variables in the vital sign table because uncontrolled blood pressures can increase bleeding.

Categorization
We conducted categorization of variables in the status of renal disease and concurrent medication twice to reduce 
redundancy and consider more comprehensive information. It allowed us to group variables with clinical associa-
tions together and capture their collective impact on the prediction. This approach made the machine learning 
models more robust exploring broader patterns and relationships in the dataset. At first, the International Clas-
sification of Diseases, Tenth Revision (ICD-10) codes, which are the diagnostic codes used in the AMC EMRs, 
have a hierarchical structure; therefore, they can be grouped using the first disease category code. For example, 
code I48 includes all diseases related to atrial fibrillation and flutter. Finally, all ICD-10 codes for renal disease 
are selected based on the first three or four characters and can be found as Supplementary Table S2. Then, the 
medication information was categorized into each group based on the associated ingredients of the prescribed 
drugs. In specific, rosuvastatin, simvastatin, and atorvastatin were grouped as statins, whereas furosemide and 
torasemide were grouped as diuretic (loop). Last, isosorbide dinitrate and nitroglycerin were grouped as nitrate. 
Consequently, a total of 35 components were assigned into 7 groups with similar drug effects.

Data transformation
The categorical variables need to convert into numerical values because it can’t use in machine learning models. 
Consequently, we performed one-hot encoding at two times to variables in status of renal disease, sex. First, the 
sex code underwent one-hot encoding, with 1 representing male sex and 2 representing female sex. Next, status 
of renal disease underwent one-hot encoding as 1 if a specific diagnostic code was assigned within 2 days of 
hospitalization and 0 otherwise. Finally, the entire of categorical variables were transformed as numerical vectors 
can be used in machine learning model.

Imputation
Data cleaning was performed for each model, since the appropriate method differs depending on the type of 
model. The XGBoost and Random Forest models are a decision-tree-based ensemble machine learning algorithm, 
but artificial neural network and linear regression models are not. Therefore, we performed two imputation 
methods to preprocess missing values in numeric variables, by considering whether the model was a decision-
tree-based model. Because the tree-based models can automatically handle missing values and are not sensitive 
to missing values or  outliers27, any missing data was replaced with minus 1 in XGBoost and Random Forest 
models. Mean imputation would be appropriate to deal with the missing data for artificial neural network and 
linear regression model, because the numeric variables used in this study do not have a wide range of values. 
Accordingly, we performed mean imputation that convert missing values into mean values of the specific variable 
in artificial neural network and linear regression model.

Normalization
Finally, we conducted normalization in artificial neural network and linear regression models and all variables 
were normalized using the minimum-maximum scaling  method28, resulting in a range from 0 to 1.

Data split
The AMC dataset (n = 3168) was separated as 80% for the training set (n = 2534) and 20% for the internal vali-
dation set (n = 634) using random split method. Additionally, we performed external validation to evaluate the 
generalizability of the model to the external validation set (n = 891) from the MIMIC-III.

Model development and validation
The following models were developed: artificial neural network (ANN)29, linear  regression30, extreme gradient 
boosting (XGBoost)31, and random  forest32 models. These models were trained in training set including 17 
clinical features and predicted a warfarin discharge dosage. We conducted Grid  Search33 with random shuffles 
of 5-fold cross-validation34 to identify the optimal hyperparameters for each model. The entire of final hyper-
parameters of four models was shown in Supplementary Table S3. Finally, the XGBoost and random forest 
models utilized the raw dataset as the input, Whereas the ANN and linear regression models used the minimum-
maximum scaled dataset as the input to help a rapid optimization of each models.

Performance metrics
We used both of MAE and predictive accuracy as performance metrics to evaluate the model prediction ability. 
First, the discharge dosage of warfarin set as target. Then, the error between the predictions, including physicians 
initial dose and model prediction, and the discharge warfarin dosage were calculated for each sample. Finally, 
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the errors for each sample were summed and divided with entire sample size to obtain the MAE. The MAE of 
the models was compared with the physicians initial dose to examine that our models’ predictions were more 
accurate and rapid than the physicians.

Subsequently, three thresholds set according to the suggestion of cardiovascular physicians that if the pre-
diction error was within 0.5 mg, 1.0 mg, 1.5 mg, the prediction could be accepted as good, normal, the least, 
respectively. Reflecting this, we calculated the accuracy of the model prediction using three thresholds: 0.5 mg, 
1.0 mg, and 1.5 mg. This approach calculating the accuracy was consulted a logistic regression that conducts 
a binary classification whether the prediction was greater than a specific cut-off  value35. The prediction was 
classified as accurate if the MAE of the sample was smaller than the corresponding threshold; otherwise, it was 
classified as inaccurate. For example, when the threshold was 0.5 mg, if the MAE of a particular sample was 0.3 
mg, the prediction was classified as accurate. We calculated the proportion of samples with accurate predictions 
determined by each model and evaluated the accuracy of predictions based on each threshold.

Model interpretations
We used the Shapley additive explanations (SHAP) method to obtain insights of the predictions of our models 
and understand how each variable contributes to  predictions36. The SHAP method is an explainable artificial 
intelligence method that decomposes the output of the model into the contributions of each feature, allowing for 
an analysis of the influence of each feature on the  model37. It considers dependencies between features and can 
calculate positive and negative impacts, unlike traditional variable importance measures. Higher SHAP values 
indicate that the patient needs higher warfarin dose. The SHAP values calculated using the internal validation 
set were applied to visualize beeswarm and waterfall plots. First, the impact of each feature for model predictions 
was analyzed through a beeswarm plot. Second, waterfall plots showed that how the model considers the worth 
of each feature for individual predictions.

Comparison of models’ and physicians’ predictions
We selected 20 data points with accurate model predictions, high physician prediction errors and 20 data points 
with high model prediction errors and accurate physician predictions. The XGBoost model was used. Subse-
quently, we constructed a dataset with 50% models accuracy. Next, we distributed these datasets to five physicians 
and asked them to predict the appropriate warfarin discharge dosage. We analyzed intraclass correlation coef-
ficient (ICC) of the physicians’ predictions to test the interrater agreement using 2-way random effects model in 
R. Finally, we compared the predictions of the machine learning models and those of the physicians.

Results
Participants characteristics
The baseline characteristics of the two datasets used for model development and validation are listed in Table 1. 
Also, we additionally confirmed both of the last INR(PT) value and the duration of hospitalization for check the 
baseline condition of patients, but not used in the models.

Model performance
The MAE and accuracy at the threshold for both datasets are listed in Table 2. The following MAEs were cal-
culated for the internal validation set: XGBoost, 0.9; random forest, 1.0; Artifical neural nets (ANN), 0.9; and 
linear regression, 1.0. All models had better prediction performance than expert physicians (MAE of 1.3). Using 
the external validation dataset, the following MAEs were achieved: physicians, 1.8; random forest, 1.8; linear 
regression, 1.8; ANN, 2.0; and XGBoost, 1.9. Consequently, internal validation of the internal validation set 
from the AMC EMRs confirmed that all predictions of the artificial intelligence models had lower errors and 
higher accuracy than those made by physicians regarding MAEs and accuracy. However, the physicians showed 
similar or superior performance when compared with all machine learning models in terms of the MAE, in 
external validation derived from the MIMIC-III. The MAE box plots of the internal validation set and external 
validation set are shown in Fig. 3.

Model interpretations
We examined the SHAP values of the features with the most impact on model predictions using the beeswarm 
plot (Fig. 4). We also investigated the impact of features on individual predictions. We randomly selected 4 data 
points from the internal validation set with no missing values, and our models accurately predicted all of them. 
Subsequently, we calculated the SHAP values using a waterfall plot to explain individual predictions. The waterfall 
plot explains the influence of each feature on individual predictions (Fig. 5). The patient of Fig. 5a was 61-years-
old male and taken with variable medications including aldosterone antagonist, nitrate, lipid lowering agents, 
diuretic. His height was 169cm and weight was 94.2 kg. The patients of Fig. 5b was 64-years-old male and taken 
nitrate and lipid lowering agents, also have a renal disease. His height was 173.6 cm and weight was 73.85 kg. 
The patient of Fig. 5c was 49-years-old male and taken with Amiodarone. His height was 168.2 cm and weight 
was 72 kg. The patient of Fig. 5d was 26-years-old female and taken with aldosterone antagonist, diuretic, nitrate, 
tramadol. Her height was 165.7 cm and weight was 57 kg. Especially, her systolic and diastolic blood pressure 
were 116 mmHg and 80 mmHg, respectively. As a result, we identified that the contributions of features affected 
a model prediction were different for each patient. For example, weight affected negative impact for patient of 
Fig. 5d, but positive impact to the rest of patients.
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Comparison of models’ and physicians’ predictions
Finally, we collected the predictions of the model and those of the five physicians for 40 data points (Fig. 6). First, 
intraclass correlation coefficient (ICC) of the physicians’ predictions was calculated to measure the interrater 
agreement (Table 3). ICC is a test that how different raters measure subjects similarly from equal data point. It is 
important as it represents measurement errors caused by variation in rater  judgement38. ICC values range from 0 
to 1, with values less than 0.5 indicating low reliability, values between 0.5 and 0.75 indicating moderate reliability, 
values between 0.75 and 0.9 indicating good reliability, and values above 0.9 indicating excellent  reliability17. In 
other words, the high reliability demonstrates less prone to prediction error based on raters. As shown in Table 3, 
the ICC value of five physicians was obtained to 0.36. It showed the significant variability in the distribution of 
dosage predicted by physicians, since the ICC value below 0.5. As shown in Fig. 6, it suggested that each physi-
cian tends to focus on a specific warfarin dosage range based on their clinical experience. Besides, prediction 

Table 1.  Characteristics of participants. The categorical variables, such as sex, status of disease, are presented 
as numbers and percentages of patients with a specific sex, diagnosis, and medication, respectively. The 
remaining numeric variables are presented as the mean and standard deviation. The lipid-lowering mediciation 
included statin family of drugs. SD standard deviation, TIA transient ischemic attack, INR international 
normalized ratio, PT prothrombin time.

AMC dataset (n = 3168) MIMIC-III dataset (n = 891)

Demographics

  Age, mean (SD), years 62.3 (12.5) 65.3 (14.3)

  Male 1674 (52.8%) 510 (57.2%)

  Female 1494 (47.2%) 381 (42.8%)

  Height, mean (SD), cm 162.2 (9.5) 171.0 (10.7)

  Weight, mean (SD), kg 63.5 (13.0) 87.6 (46.1)

Lab events

  First INR(PT), mean (SD), s 1.7 (0.7) 1.7 (0.8)

  Hemoglobin, mean (SD), g/dL 10.8 (1.9) 10.8 (1.9)

  Platelet, mean (SD), K/uL 153.0 (71.2) 215.7 (106.0)

Vital Signs, (mean (SD), mmHg)

  Systolic blood pressure 115.9 (20.3) 115.0 (22.3)

  Diastolic blood pressure 67.4 (12.2) 58.6 (1.4)

Status of disease (n, %)

  Renal disease 303 (9.6%) 292 (32.8%)

Other medication use, mean (SD), mg

  Aldosterone antagonist 54.3 (36.8) 34.4 (18.8)

  Amiodarone 776.6 (810.0) 373.7 (245.7)

  Aspirin 194.9 (67.7) 290.7 (192.2)

  Diuretic, Loop 67.5 (109.0) 80.7 (119.1)

  Lipid-lowering agents 27.7 (50.3) 77.9 (113.7)

Nitrate 97.1 (82.8) 4.2 (8.8)

Tramadol 148.7 (90.7) 95.0 (37.1)

Baseline

Last INR(PT), mean (SD), s 2.2 (0.5) 2.2 (0.8)

Duration of hospitalization, mean (SD), days 14.4 (20.9) 8.2 (8.5)

Table 2.  Model performance according to the MAE and accuracy. We conducted model performance 
evaluations of the internal validation set and external validation using the MAE and calculated the model 
prediction accuracy using three thresholds (0.5 mg, 1.0 mg, 1.5 mg). MAE, mean absolute error.

Internal validation set (n = 634) External validation set (n = 891)

MAE
Accuracy (e = 0.5 
mg)

Accuracy (e = 1.0 
mg)

Accuracy (e = 1.5 
mg) MAE

Accuracy (e = 0.5 
mg)

Accuracy (e = 1.0 
mg)

Accuracy (e = 1.5 
mg)

XGBoost 0.9 50.1 72.4 82.8 1.8 35.6 45.5 56.8

Random forest 1.0 49.1 69.6 81.2 1.8 35.1 44.6 56.6

Artificial neural net 0.9 49.1 70.8 84.4 2.0 30.2 47.8 58.8

Linear regression 1.0 46.5 69.2 85.0 1.8 26.4 48.9 48.9

Physicians initial dose 1.3 32.2 57.3 69.4 1.8 37.1 48.3 53.5
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accuracy of the models and the five physicians was compared. Physicians accurately predicted approximately 9 
of 40 samples, achieving 23% accuracy; however, the models demonstrated 50% accuracy. This indicated that it 
can be difficult for physicians to determine the appropriate warfarin discharge dosage based on the 17 clinical 
features obtained within 2 days of hospitalization.

Discussion
In order to maximize the efficacy and safety of warfarin, it is important to determine the appropriate warfarin 
dosage for each  individual39. However, there are variability in warfarin response for individual, due to differ-
ences about genetic and clinical factors. In particular, VKORC1, CYP2C9, and CYP4F2 polymorphisms account 
for approximately 40% of the variability in warfarin response, and novel genetic variants that have not yet been 
identified are assumed to account for approximately 50% of the variability. In contrast, clinical factors that can 
be considered in clinical practice only affect warfarin response by about 10%40. Nonetheless, genetic test is not 
routinely performed to determine the warfarin because genetic testing is costly and time-consuming41. On 
the other hand, warfarin has very reasonable cost in Korea. Therefore, the trial and error method that tries the 
specific warfarin dose then adjusted the dose has generally been used and is more efficient than genetic test. 
In clinical practice, physicians do not consider the genetic characteristics of patients  rigorously42 and mainly 
decided the initial warfarin dosage through the frequent INR monitoring to maintain the target INR (2.0-3.0). 
Accordingly, we designed the machine learning models that used only clinical factors and predicted warfarin 
dose at discharge, to reflect the medical environment in Korea. Also, our models proposed in this study can be 
adoptable for developing countries where have difficult to conduct the genetic test. Additionally, the complex 
correlation with warfarin, including age, gender, weight, and drug-drug interactions, should be considered for 
warfarin. However, the priorities of features that have impact on warfarin are different as the health conditions 
of each patient are different, such as concurrent medication or disease status. Eventually, physicians depend on 
own clinical experiences to decide the initial warfarin dosage. We required five physicians who prescribed the 
warfarin at least 3 years predict the initial warfarin dosage for 40 data points to identify the difference of judge-
ment of warfarin dosage for each physician. As a result, the ICC value analyzed in this study was 0.36, showing 

Figure 3.  Bar plot representing the MAE. Performance abilities of the models based on the MAE were 
visualized using the internal validation (n = 634) and external validation (n = 891) sets. The unit of error is 
milligram (mg).

Figure 4.  SHAP beeswarm plot of the features affecting the predictions of the XGBoost model. Features are 
ranked in descending order based on the absolute value of their influence on the XGBoost model. The x-axis 
indicates SHAP values. Each dot denotes a data point. Colors represent high values (red) or low values (blue) of 
specific data points. SHAP Shapley additive explanations.
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Figure 5.  SHAP waterfall plot. The x-axis represents the individual warfarin dosage prediction of the models. 
The y-axis represents the input features of the models. E[f(x)] (2.714) represents the baseline value, which is the 
model output of the entire dataset, and f(x) represents the individual model output for each patient. Each arrow 
indicates whether a specific feature increased (red) or decreased (blue) the warfarin dosage. SHAP Shapley 
additive explanations.

Table 3.  ICC of the predictions by the physicians for 40 data points.

Intraclass correlation coefficient (95% CI) p-value

Five physicians’ prediction 0.36 (0.19–0.54) 2.2e−14

Figure 6.  Distribution of warfarin dosage predicted by the physicians and models. We identified the predictions 
of five physicians and that of our model using 40 data points. The actual warfarin dosage at discharge (yellow) 
was distributed evenly within 1–5 mg. The average prediction dosage of our model (green) was 2 . 6 mg, and the 
maximum prediction dosage of our model was 3 mg. The prediction accuracy of model and the physicians are 
50% and 23%, respectively. WFR warfarin, DC discharge.
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significant variability in the warfarin dose prediction distribution for each physician. Besides, the predictive 
accuracy of the physicians was less than half our XGBoost model. Consequently, our models can support the 
physicians by providing more objective and accurate warfarin dosage.

Our models showed similar or superior performance when compared to other warfarin dosage models 
(Table 4). We identified previous regression models that predict warfarin dosage as numerical target and use MAE 
as a performance metrics, to compare accurately between our models and other models. Gage et al developed a 
multiple regression model that predict warfarin dosage in derivation cohort (N = 1015), included Caucasian and 
African American, Hispanic, and validated the models in validation cohort (N = 292)5. Both of pharmacogenetic 
and clinical model were developed and reached a MAE of 1.0, 1.5, respectively. Pavani et al developed an artificial 
neural network using ten genetic variables as inputs and therapeutic warfarin dosage as the output in Indian 
population (N = 240)6. Roche-Lima et al collected cardiovascular patients of 190 Caribbean Hispanic were > 21 
years old and developed seven machine learning algorithms that predict warfarin dosing in Caribbean Hispanics 
using pharmacogenetic  data7. Among them, random forest regressor (RFR) significantly outperformed all other 
models with a MAE of 4.74. Tong et al recruited 685 patients who diseased atrial fibrillation or thromboem-
bolic venous disease in a Spanish population using the data last 3 consecutive months and used multiple linear 
 regression8. Both of pharmacogenetic and clinical model were developed and internally validated with a MAE of 
3.5, 5.0, respectively in a validation cohort (N = 129). Grossi et al collected 377 patients who were over 18 years 
old and treated with warfarin in Caucasian population and developed an artificial neural network to predict an 
optimal warfarin maintenance  dose9. The final model reached a MAE of 5.72. Saleh recruited 4271 multi-ethnicity 
patients who received warfarin and developed an artificial neural network using both of genotyping and clinical 
data. The artificial neural network model reached a MAE of 9.0. Hernandez et al generated pharmacogenomic 
warfarin dosing model using clinical and genotyping retrospective data from a derivation cohort of 349 African 
Americans patients were ≥ 18 years and the model reached with a MAE of 10.9 mg/week11. Alzubiedi et al col-
lected demographic, clinical, and genetic data from 163 African-American patients with a stable warfarin  dose12. 
They developed both of a multiple linear regression model and artificial neural network model with MAE of 
10.8, 10.9 respectively. Whereas, both of XGBoost and artificial neural network model in this study achieved 0.9 
with MAE and outperformed aforementioned algorithms. Additionally, our models provided more appropriate 
warfarin dosage than those initially prescribed by physicians using clinical data within 2 days of hospitalization. 
It demonstrated that the models can make appropriate warfarin dosing decisions without the same level of effort 
as physicians who would consider various factors such as the INR value. These results are likely the results of 
successfully selecting important variables that may interact with warfarin from our initial clinical data obtained 
through discussions with experienced clinical experts and effectively utilizing the refined variables.

Limitation
Our study has a limitation of homogeneous caused its single-center design. We suffered the ethical issues of 
obtaining the multi-center EMRs. It is difficult to access to EMRs to different centers, because it includes patient’s 
medical record and cover patient privacy. Eventually, we had no choice about the diverse populations, but to 
should use a single population. It caused that the external validation in this study didn’t successfully perform 
and our models can’t be generalized to the different ethnicity. In the further work, we have to obtain an access of 
a multi-center cohort and conduct a multi-center study, to improve the accuracy and representativeness of the 

Table 4.  Comparison with prior works. Our models were compared with previous models that developed 
using both of genetic and clinical data or only clinical data. Performance metric was used MAE. The 
information of study population’ ethnicity was included. The number of data participants included the number 
of model development and validation cohort. *Represents the best performance model. ANN artificial neural 
network.

Number of data instances Features Study population Algorithm MAE

Choi et al* 3168 Clinical South Korean XGBoost 0.9

Choi et al* 3168 Clinical South Korean ANN 0.9

Choi et al 3168 Clinical South Korean Random Forest 1.0

Choi et al 3168 Clinical South Korean Linear Regression 1.0

Gage et al5 1307 Clinical + pharmacogenetic Caucasian, African American Regression 1.0

Gage et al.5 1307 Clinical Caucasian, African American Regression 1.5

Pavani et al.6 240 Clinical + pharmacogenetic Indian ANN 1.97

Roche-Lima et al.7 190 Clinical + pharmacogenetic Caribbean Hispanics Random forest 4.7

Tong et al.8 685 Clinical + pharmacogenetic Spanish Multiple linear regression 3.5

Tong et al.8 685 Clinical Spanish Multiple linear regression 5.0

Grossi et al.9 377 Clinical + pharmacogenetic Caucasian ANN 5.72

Saleh et al.10 4271 Clinical + pharmacogenetic Multi-ethnicity ANN 9.0

Hernandez et al.11 349 Clinical + pharmacogenetic African–American Multivariate regression 10.9

Alzubiedi et al.12 163 Clinical + pharmacogenetic African–American Linear regression 10.8

Alzubiedi et al.12 163 Clinical + pharmacogenetic African–American ANN 10.9
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models. Additionally, if we obtain the data with larger sample size, it would be proper separating the group by 
low-dose and high-dose, respectively and training the models to improve the accuracy of the models.

Conclusion
The patients who participated in this study hospitalized for an average 14 days and the INR measurement of the 
first and last days of hospitalization were 1.7 and 2.2, respectively. In other words, we assumed that the discharge 
warfarin dosage was appropriate as the initial dosage since the discharge dosage make patients maintain the target 
INR (from 2.0 to 3.0). Finally, we developed 3 machine learning models and 1 deep learning model using data 
of a model development cohort from a tertiary hospital in Korea to predict warfarin discharge dosage. Then, 
we evaluated our models with MAE and accuracy in both of internal and external validation. Our models not 
only outperformed physicians in internal validation, but also the previous models. In internal validation set 
with MAE, XGBoost and artificial neural network models achieved 0.9, and random forest and linear regression 
models achieved 1.0, whereas physicians achieved 1.3. Besides, our models outperformed previous warfarin 
dosing algorithm as we mentioned. Therefore, our models that provide proper warfarin dose within 2 days of 
hospitalization can be useful for patients when just start warfarin and might be effective tools that help physicians 
choose the personalized warfarin dosage when initiation warfarin.

Data availibility
The data that support the findings of this study are available from the corresponding author on reasonable 
request, due to ethical concerns and confidentiality agreements.
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