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Environmental and geographical 
factors influence the occurrence 
and abundance of the southern 
house mosquito, Culex 
quinquefasciatus, in Hawai‘i
Oswaldo C. Villena 1,2, Katherine M. McClure 1,3, Richard J. Camp 3, Dennis A. LaPointe 3, 
Carter T. Atkinson 3, Helen R. Sofaer 3 & Lucas Berio Fortini 3*

Hawaiian honeycreepers, a group of endemic Hawaiian forest birds, are being threatened by avian 
malaria, a non-native disease that is driving honeycreepers populations to extinction. Avian malaria 
is caused by the parasite Plasmodium relictum, which is transmitted by the invasive mosquito Culex 
quinquefasciatus. Environmental and geographical factors play an important role in shaping mosquito-
borne disease transmission dynamics through their influence on the distribution and abundance of 
mosquitoes. We assessed the effects of environmental (temperature, precipitation), geographic (site, 
elevation, distance to anthropogenic features), and trap type (CDC light trap, CDC gravid trap) factors 
on mosquito occurrence and abundance. Occurrence was analyzed using classification and regression 
tree models (CART) and generalized linear models (GLM); abundance (count data) was analyzed 
using generalized linear mixed models (GLMMs). Models predicted highest mosquito occurrence at 
mid-elevation sites and between July and November. Occurrence increased with temperature and 
precipitation up to 580 mm. For abundance, the best model was a zero-inflated negative-binomial 
model that indicated higher abundance of mosquitoes at mid-elevation sites and peak abundance 
between August and October. Estimation of occurrence and abundance as well as understanding the 
factors that influence them are key for mosquito control, which may reduce the risk of forest bird 
extinction.

The Hawaiian Islands are home to remarkable examples of adaptive radiation and speciation among endemic 
invertebrates, plants, and forest birds. These taxa are faced with continual threats from invasive species, human 
development, and changing climatic conditions. This is especially true for endemic Hawaiian honeycreepers 
(family Fringillidae, subfamily Carduelinae), a diverse group of forest birds that radiated from a small number 
of ancestral colonists to more than 70 morphologically and ecologically diverse  species1,2. In the past decade, all 
species of Hawaiian honeycreeper have experienced declines; only 17 of over 50 historically known species of 
honeycreeper remain, and of these, 14 are federally listed as  endangered3,4.

A primary cause for honeycreeper declines in Hawai‘i is their high susceptibility to avian malaria, a mosquito-
borne disease caused by the introduced avian malaria parasite Plasmodium relictum5–7 and transmitted by the 
invasive mosquito Culex quinquefasciatus, the primary avian malaria vector in Hawai‘i8–10. Culex quinquefascia-
tus has dramatically expanded its range in the last decades and it is now established in much of the tropics and 
sub-tropics, including on many islands (e.g., Hawaii, the Galapagos) that once were protected from mosquitoes 
through their natural separation from mainland  landmasses10. Culex quinquefasciatus exhibit multiple traits that 
promote invasiveness, including (1) adaptation and association with human environments, such as breeding in 
water polluted with human or animal waste in peri domestic or rural  areas11,95, (2) diverse range of blood-meal 
 hosts12,97, and 3) wide temperature optimum that enable it to thrive in a wide diversity of  habitats13. Although 
Cx. quinquefasciatus is generally thought of as  ornithophilic96, they also feed on diverse hosts such as humans, 
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mammals, and  reptiles12,97. Culex quinquefasciatus have a broad thermal range of transmission from 14.1 to 
32.2 ℃ with an optimum temperature of 25.2℃13. Furthermore, Cx. quinquefasciatus mosquitoes need a period 
of 8–14 days to go from egg to adult stage when temperatures are between 24 and 28 ℃; survival rates are above 
75% when temperatures are between 16 and 32 ℃, and longevity is between 50 and 90 days when temperature 
is between 16 and 24 ℃14. In addition to being a competent vector for avian malaria, Cx. quinquefasciatus are 
vectors of West Nile virus, Rift Valley fever virus, St. Louis and Japanese encephalitis viruses, and filarial worms 
that can cause diseases to humans and/or  animals12,98–100.

Transmission of vector-borne diseases (VBDs) is complex and influenced by a myriad of abiotic and biotic 
 factors15,16. Transmission of VBDs is directly impacted by climatic factors, particularly by temperature and pre-
cipitation and to a lesser degree by humidity and wind  patterns17,18, and by geographic factors associated with 
temperature and land use such as elevation and distance to anthropogenic features,  respectively19. Both climatic 
and geographic factors influence the spatial and temporal distribution, intensity, and duration of  VBDs15,16 and 
avian malaria  specifically20. Mosquito-borne diseases exhibit considerable seasonality linked to environmental 
factors, especially temperature and precipitation, and to the life cycles of the pathogens and the vectors that trans-
mit  them14. Temperature directly affects mosquito life history traits like development rate, mortality rate, biting 
rate,  fecundity13,21 and parasite development  rate13,21,22. Precipitation affects the presence, quality, and quantity 
of mosquito breeding habitats and thus impacts either the increase or decrease of mosquito  populations23. Other 
environmental factors also influence mosquito seasonality. For example, photoperiod impacts overwintering 
behavior of some  mosquitoes24. In addition, temperature plays a major role in the fitness and phenology of both 
vectors and parasites, leading to complex spatial and temporal patterns of distribution of vectors and  VBDs25,26.

In Hawai‘i, temperature and rainfall, in conjunction with naturally-occurring and anthropogenic larval 
habitat, have been identified as key factors influencing Cx. quinquefasciatus populations and avian malaria 
 transmission27–29. Previous work suggests that populations of Culex mosquitoes generally decline across an 
elevational gradient from mid- to high-elevation forest bird habitat, and that avian malaria transmission across 
a broader elevational gradient ranges from year-round in low elevation forests (< 300 m), seasonal with peaks 
in late summer at middle elevations (600–1200 m), with sharp declines at higher elevations (> 1500 m) where 
thermal constraints on the development of mosquitoes and Plasmodium within mosquitoes curtail malaria 
 transmission9,22,27,29,30.

In this study, we explore environmental, anthropogenic, and seasonal drivers of mosquito occurrence and 
abundance across an altitudinal gradient on the Island of Hawai‘I using capture data of adult Cx. quinquefasciatus, 
collected across a broad landscape on the windward slopes of Mauna Loa and Kīlauea Volcanoes on the Island 
of Hawaii from 2002 to 2004. These data are the most extensive available on mosquito populations in natural 
areas in Hawai‘i20,27,29,31, but have posed challenges for analysis due to high numbers of non-detection events (i.e. 
trapping periods that yield zero captures) during sampling. Non-detection events may arise from a combination 
of imperfect detection and/or low mosquito densities in areas where native birds  persist32. Reliable inferences 
depend on selecting an appropriate distribution for zero-inflated  data33. In this work, we leveraged zero-inflated 
models which can handle large proportions of zeros while modeling non-zero data and have been increasingly 
used in epidemiological modeling and other  fields34,35 to explore spatio-temporal variation in mosquito occur-
rence and abundance in mosquito count data with a high proportion of zeros.

To address our questions, we modeled and assessed the effects on mosquito occurrence and abundance of 
mean temperature, precipitation, distance to the nearest anthropogenic features (e.g., residential, farmland), and 
two-time lags for precipitation (one and two months prior to the sampling events). Our analysis and the result-
ing models are relevant to designing sampling strategies for future efforts to monitor the efficacy of proposed 
landscape-scale mosquito control in remote Hawaiian forests and other habitats in the world where mosquito 
vectors occur in low  densities36–38. It also has value for guiding strategies for sampling vector populations with 
extremely low density and for controlling transmission of avian malaria in susceptible native forest birds.

Methods
Mosquito capture
We collected mosquitoes at nine forested sites spanning an altitudinal gradient ranging from sea level to 1800 m 
on Hawai ‘i Island from February 2002 to December 2004 . Sites were located in mesic to wet forests dominated 
by native ‘Ōhi ‘a (Metrosideros polymorpha) with three low elevation (< 300 m), four middle elevation (900 
– 1300 m), and two high elevation (> 1650 m) sites. At each of the nine sites, a 1  km2 grid was established com-
prising 5 transects spaced 200 m apart (Fig. 1). Each week of trapping, the traps were randomly assigned 5 out of 
10 possible locations spaced at least 100 m apart along each transect. We assumed traps could attract mosquitoes 
within a circle with a radius of 50 m making even the closest set traps independent of each other. Mosquitoes 
were captured at 25 sampling locations for 3–6 trap nights every 4–6 weeks. At each mosquito sampling loca-
tion, two traps were deployed: one CDC miniature light trap baited with  CO2 (dry ice) that targets host-seeking 
 females39 and one CDC gravid trap baited with an organic rich timothy-hay infusion that targets egg-laying 
 females40. CDC light traps were operated without the light because in the Hawaiian rain forest, sockets corroded 
rapidly and lights failed regularly; in previous studies, we noticed traps without lights were catching mosquitoes 
similarly to those with lights. Female mosquitoes were morphologically identified by species and counted. For 
this study, we limit our focus to Cx. quinquefasciatus, the primary vector of avian malaria in Hawai ‘i. Mosquito 
count data were aggregated at the mosquito sampling location (i.e., trap site) and month level for the purposes 
of our statistical analysis (Table 1). For more details about Cx. quinquefasciatus trapping, identification, data 
storage, and to access the raw data used in this analysis, please see the U.S. Geological Survey Data Release at 
https:// doi. org/ 10. 5066/ P95LV JIC102.

https://doi.org/10.5066/P95LVJIC
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Figure 1.  Map showing contour lines and the 9 locations where mosquito sampling took place. Low elevation 
sites: Bryson (BRY), Nānāwale (NAN), and Malama Kī (MAL); Middle elevation sites: Waiākea (WAI), Puʻu 
Unit (PUU), Cooper (COO), and Crater Rim (CRA); High elevation sites: Solomon’s (SOL) and CJ Ralph (CJR). 
Insets showing the study area on the Island of Hawai‘i and the mosquito sampling locations per site (transects 
and traps). The Map was created using ArcGIS version 10.8.2 from ESRI (https:// www. esri. com/).

Table 1.  Descriptive statistics of Cx. quinquefasciatus captures in windward Island of Hawaiʻi. Total count is 
the number of mosquitoes captured during the entire study period (2002–2004). Trap nights represent total 
nights of sampling. Mean abundance of mosquitoes and standard deviation (SD) per trap site per trapping 
session is shown. The percentage of zeroes represents the zeroes in the data when aggregated by trap site and 
trapping session as analyzed. Low elevation sites: Malama Kī (MAL), Nānāwale (NAN), and Bryson’s (BRY). 
Middle elevation sites: Waiākea (WAI), Pu’u Unit (PUU), Cooper’s Center (COO), and Crater Rim (CRA). 
High elevation sites: Solomon’s (SOL) and CJ Ralph (CJR).

Trap type Site Total Count Trap Nights Mean SD % of zeroes GIS coordinates

CO2

MAL 527 3330 0.61 1.78 89.7 19°26′51′′ N, 154°51′31′′ W

NAN 1549 3252 1.74 4.38 76.9 19°32′49′′ N, 155°53′28′′ W

BRY 768 3303 0.91 2.11 86.9 19°27′12′′ N, 154°55′18′′ W

WAI 3777 3267 4.52 8.77 66.9 19°36′41′′ N, 155°13′30′′ W

COO 3094 3376 3.54 5.59 65.9 19°26′36′′ N, 155°13′30′′ W

CRA 133 3313 0.16 0.81 97.5 19°24′28′′ N, 155°14′41"W

PUU 6268 3160 7.61 15.34 57.4 19°30′16"N,155°15′51′′ W

CJR 22 2410 0.03 0.24 99.2 19°30′17′′ N, 155°19′28"W

SOL 1 2743 0.00 0.04 99.9 19°32′05"N, 155°20′16′′ W

Gravid

MAL 231 3362 0.27 1.28 96.3 19°26′51′′ N, 154°51′31′′ W

NAN 259 3333 0.29 1.32 95.9 19°32′49′′ N, 155°53′28′′ W

BRY 351 3325 0.42 3.02 96.3 19°27′12′′ N, 154°55′18′′ W

WAI 1063 3295 1.28 3.37 86.0 19°36′41′′ N, 155°13′30′′ W

COO 826 3398 0.94 2.53 86.4 19°26′36′′ N, 155°13′30′′ W

CRA 577 3347 0.69 2.58 92.5 19°24′28′′ N, 155°14′41′′ W

PUU 170 3182 0.21 0.90 96.6 19°30′16′′ N, 155°15′51′′ W

CJR 54 2436 0.08 0.48 98.7 19°30′17′′ N, 155°19′28′′ W

SOL 1 2772 0.00 0.04 99.9 19°32′05′′ N, 155°20′16′′ W

https://www.esri.com/
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Environmental variables
For each mosquito sampling location, we aggregated mean monthly temperatures from a gridded 250 m reso-
lution temperature dataset from 1990 to 2014 across the state of Hawai‘i41. We obtained monthly cumulative 
rainfall data from a gridded rainfall dataset available from 1920 to 2012 across the state of Hawai‘i42. We extracted 
monthly precipitation at each sampling location one and two months prior (i.e., the two months leading up) 
to each sampling period (Appendix S1: Table S1). To account for the availability of highly productive artificial 
larval habitats, we calculated the distance from each sampling location to the nearest anthropogenic feature (e.g., 
farmland, urban, roads), using a cloudless Landsat mosaic from the period between 1998 and 2002 obtained 
from Landsat7 satellite imagery (Appendix S1: Table S1)43.

Occurrence estimation with CART and GLM
We explored drivers of occurrence of Culex mosquitoes across an elevational gradient using two approaches, 
classification and regression tree (CART) and generalized linear model (GLM)44,45. For each approach, we fit 
models with and without site as a predictor covariate (referred to here as site-specific (S) and general (G) mod-
els, respectively). Models including a covariate for site were expected to explain more variation, while models 
without site have more generalizability across the landscape. In both S and G models, we included predictors 
for trap type  (CO2 or gravid), sampling month, monthly mean temperature (℃), monthly cumulative precipita-
tion (mm), distance to anthropogenic features (m), and two-time lags for precipitation (1 and 2 months prior 
to the sampling time) to assess the effect of environmental and geographic covariates on the probability of Cx. 
quinquefasciatus occurrence. For the occurrence analysis, we treated our response variable, mosquito detection/
non-detection, as a binary (0/1) response to indicate whether Cx. quinquefasciatus mosquitoes had been captured 
in the trap during that sampling period.

The CART method is a non-parametric machine learning technique applicable to both numerical and cat-
egorical  data46. This method uses a decision tree algorithm to model the relationship between a set of input vari-
ables and a single output  variable46,106. For this approach, we used the rpart function from the rpart  package47 
in  R48. The CART model works by splitting the dataset recursively, which means that the subsets that result 
from a split (child nodes) are further split until a predetermined termination criterion is reached or until no 
improvement can be made. At each step, the split is based on the independent variable that results in the largest 
possible reduction of heterogeneity of the dependent variable to reach an impurity state of zero (i.e., the class is 
homogeneous) or close to  zero49,104. To quantify the level of impurity we used the Gini index method. The Gini 
index reaches maximum value when all classes in the table have equal  probability49. Child nodes terminate at 
leaves and each leaf in the tree diagram is labeled with the probability that the response variable (occurrence 
of Culex) is  true50. Nodes are classified in three types: the root or parent nodes, the child nodes (derived from 
parent nodes), and leaf nodes which are the last nodes on a  tree51.

We also modeled mosquito occurrence using a binomial GLM, using the glm function from the stats package 
in R. We fit an intercept only (null) model and a full model using the same set of predictors used in the CART 
method, as well as a quadratic term for temperature to accommodate a non-linear response of this variable, and 
an interaction term of temperature and  precipitation105,106. We used stepwise model selection in both the forward 
and backwards direction to select a final model using the step function from the stats package in R. To assess GLM 
model assumptions, we computed and plotted the randomized quantile residuals (RQRs) in the statmod  package52 
in R. RQRs behave as standard normal residuals if model assumptions are met and the model adequately fits 
the  data53. We compared the performance of the CART and GLM models using accuracy, precision, recall, and 
F1-score  calculations54,55, as well as comparing models’ marginal prediction  plots56,57,102,103.

Abundance estimation with GLMM
To examine drivers of mosquito abundance, we analyzed Cx. quinquefasciatus count data using generalized 
linear mixed models,  GLMMs58,59. GLMMs provide flexibility to analyze non-normal data and allow both fixed 
and random  effects58,59. Repeated samples at the same location are often correlated, which can be accounted for 
using random  effects60,61. Our fixed effects included mean temperature, squared mean temperature, precipita-
tion, distance to anthropogenic features, trap type, two lag times for precipitation (one and two months prior to 
sampling), and the interaction of temperature with precipitation. We used the glmmTMB  package62 in R, which 
accommodates a diverse set of models for zero-inflated count data and uses maximum likelihood estimation 
and Laplace approximation to integrate over random effects.

Our mosquito count data, particularly counts from gravid traps (Table 1), had excessive zeroes beyond what 
a common count distribution can accommodate, such as Poisson or negative binomial (NB). We compared zero-
inflated63,64 and  hurdle65,66 models, which have been developed to model zero-inflation when count models such 
as Poisson and NB are  unfeasible33,34,63. The count component of a ZI model, which can include sampling zeros 
from non-detection, follows either a Poisson or a NB  distribution63. When modeling the count component, a 
Poisson distribution can be used if the conditional mean equals the conditional  variance34,67, in most count data 
sets the conditional variance is much greater than the conditional mean, a phenomenon called overdispersion, 
in which case a NB distribution provides a better  fit64. In the hurdle model, the positive count data follow either 
truncated Poisson or truncated NB  distributions33,34,65. We used the Akaike information criterion (AIC) for 
model  selection68,69. To assess if model assumptions were adequately met, we used the DHARMa  package70 to 
compute and plot residuals and test that a given model structure could be used to simulate the zero-inflation 
observed in the data.
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Results
Mosquito trapping
During three years of sampling, a total of 19,671 Cx. mosquitoes were collected during 56,604 trap nights, of 
which 16,139 were collected using  CO2 traps and 3,532 using gravid traps. The greatest number of mosquitoes 
were collected at middle elevation sites (WAI, PUU, COO, CRA) in  CO2 (13,272 mosquitoes) or gravid (2,636 
mosquitoes) traps. At low elevation sites (BRY, MAL, NAN), we captured 2,844 and 841 mosquitoes in  CO2 and 
gravid traps, respectively. At high elevations, 23 mosquitoes were collected using  CO2 traps and 55 using gravid 
traps (Table 1; Appendix S1: Fig. S1). Trap-level count data were strongly zero-inflated, with an average of 81% 
zeros in the data collected with  CO2 traps and 94% zeros in data collected with gravid traps.

Culex quinquefasciatus occurrence
CART model
For model G (site not included), the initial branching depended on trap type, with lower occurrence in gravid 
traps compared to  CO2 traps, and sampling month and environmental variables underlying subsequent divisions 
(Fig. 2). At the bottom of the tree, each leaf in the diagram shows the final probabilities of occurrence. For exam-
ple, the values at the left-most leaf in Fig. 2 indicates a probability of 91% of non-detection of Cx. quinquefasciatus 
mosquitoes if the trap type is a gravid trap and the months of sampling are either January, February, March, 
April, May, June, November, or December. The values at the right-most leaf in Fig. 2 show a 31% probability of 
detection of Cx. quinquefasciatus mosquitoes if the trap type was a  CO2 trap, the mean temperature was ≥ 16 ℃ 
and < 20 ℃, precipitation two months prior to sampling was ≥ 106 mm, and precipitation one month prior to 
sampling was ≥ 109 mm. For model S (including site), site was the variable that determined the initial branching, 
followed by trap type and sampling month (Appendix S1: section S2.1.1; Appendix S1: Fig.e S2).

GLM model
The best general (site not included) logistic regression model to explain Cx. quinquefasciatus occurrence included 
all variables plus the quadratic temperature variable and interaction between mean temperature and monthly 
precipitation (Appendix S1: Table S3). Based on this final model, there was a lower probability of Cx. quinque-
fasciatus occurrence between January and May and a higher probability of Cx. quinquefasciatus occurrence 
between June to December with a peak between August and October (Fig. 3A; Appendix S1: Table S3). Gravid 
traps had 0.251 fewer captures of Cx. quinquefasciatus per trap location/month compared to  CO2 trap location/
month captures (Fig. 3B; Appendix S1: Table S3). Culex occurrence increased with monthly mean temperature 
as expected; an increase of 6.6 mosquitoes per month at each trap location for each Celsius degree increase.

Monthly precipitation and one- and two-month lags in monthly precipitation prior to the sampling month had 
a similar positive effect on Culex occurrence with an increase of 1 mosquito per one mm increase in precipita-
tion up to 200 mm of precipitation after which mosquito occurrence levels off (Appendix S1: Table S3). Greater 
distance to anthropogenic features had a negative impact on Culex occurrence (Appendix S1: Table S3). See full 
description for model S (site included) in section S2.1.2 in appendix S1.

Comparison of occurrence model performance
Predictions from GLM models based on environmental predictors (mean temperature and precipitation) and 
geographical predictors (distance to anthropogenic features) did not adequately fit the non-linear nature of the 
count data and provided a poorer fit compared to CART models, especially for model G when the site vari-
able was not included (Fig. 4; Appendix S1: Fig. S3). Furthermore, CART model predictions showed very little 
sensitivity to including site in the model, with similar responses with or without site included (Fig. 4). Tests of 
accuracy, precision, recall, and F1-scores validated that CART models (with and without site variable) performed 
better than GLM models, even after a quadratic term to account for non-linearity in temperature was included 
in the GLM model. The CART model G (without site) had an accuracy of 79%, a precision of 62%, a recall of 
51%, and a F1-score of 56% while the GLM model G without site had an accuracy of 75%, a precision of 58%, a 
recall of 27%, and a F1-score of 37%. The CART model S (site included) had an accuracy of 81%, a precision of 
67%, a recall of 57%, and a F1-score of 62% while the GLM model S with site included had an accuracy of 79%, 
a precision of 67%, a recall of 45%, and F1-score of 54% (Appendix S1: Section S4).

Culex quinquefasciatus abundance
GLMM models
For both models G and S, a zero-inflated negative binomial distribution best described Cx. quinquefasciatus 
abundance. The zero-inflated negative binomial (ZINB) distribution was the best model based on AIC values, 
the diagnostic of residuals, and the ability to predict the number of zeroes in the data set (Appendix S1: Table S6, 
Figs. S7 and S10) when compared to the Poisson, negative binomial, hurdle models, and the zero-inflated Pois-
son (ZIP) distributions.

For model G, the best model included month, trap type, mean temperature, the distance to anthropogenic 
features, precipitation in the same month, and precipitation in one and two months prior the sampling month 
(Appendix S1: Tables S7 and S8). The conditional part of the model (detection > 0) indicated that Cx. quinquefas-
ciatus abundance showed strong seasonality (Fig. 5). Gravid traps captured fewer Cx. quinquefasciatus mosquitoes 
compared with  CO2 traps (Appendix S1: Table S7 and Fig. S8). Cx. quinquefasciatus abundance increased with 
monthly mean temperature independent of trap type (Appendix S1: Table S7 and Fig. S8A). Cx. quinquefasciatus 
abundance decreased with monthly precipitation, especially when mosquitoes were sampled with  CO2 traps 
(Appendix S1: Fig. S8B). However, precipitation one and two months prior to the sampling event had a positive 
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effect on Cx. quinquefasciatus abundance (Appendix S1: Table S7). Finally, Cx. quinquefasciatus abundance 
decreased with increasing distance from anthropogenic features (Appendix S1: Fig. S8C).

For the zero-inflated portion of the model, month of sampling, monthly mean temperature, precipitation one 
and two months prior to the sampling event, and distance to anthropogenic features best explained non-detection 
of Cx. quinquefasciatus mosquitoes (Appendix S1: Table S8). There was low abundance of Cx. quinquefasciatus 
and frequent non-detection of mosquitoes in both traps in the months of February, March, April, and December 
relative to January (Fig. 5; Appendix S1: Table S8). Monthly mean temperature had a positive effect on detection 
of Cx. quinquefasciatus, with fewer detections of mosquitoes when temperatures were cooler (Appendix S1: 
Table S8). Also, frequency of non-detection events was higher when mosquito traps were located further from 
anthropogenic features (Appendix S1: Table S8).

Figure 2.  Pruned tree for the general (no site covariate) CART model showing the parameters and values 
that best predict Cx. quinquefasciatus occurrence on Hawai‘i Island. The splits from each node follow the rule 
left = YES. Each node contains the following information: the predicted class (detection (1) or non-detection 
(0)), the probability of detection/non-detection, and the percentage of observations in the node. The color scale 
shows the non-detection (blue) to detection (green), color changes towards white as detection/non-detection 
approaches 50/50 percent. tmean, mean temperature; preciplag1 and preciplag2, one and two months prior 
precipitation to the sampling month; distance, distance to anthropogenic features.
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For model S, the best model included site, month of sampling, trap type, monthly mean temperature, monthly 
precipitation, and distance to anthropogenic features (Appendix S1: Table S4 and S5). In the conditional part of 
the model (detection > 0), sites at middle elevations (PUU, WAI, and COO) had the greatest Cx. quinquefasciatus 
abundance with the exception of CRA site regardless of trap type (Fig. 6). Sites at low elevations (BRY, MAL, 
NAN) had on average 205% fewer Cx. quinquefasciatus mosquitoes than sites at middle elevations when sampled 
using  CO2 traps and 300% fewer Cx. quinquefasciatus mosquitoes when sampled with gravid traps (Fig. 6). At 
high elevations, Cx. quinquefasciatus abundance was very low compared to low and middle elevations, especially 
at Solomon’s (SOL) site where only very few Cx. quinquefasciatus mosquitoes were captured (n = 2; Fig. 6). Trap 
type showed a negative effect on Cx. quinquefasciatus abundance with gravid traps detecting fewer mosquitoes 
in comparison with  CO2 traps (Fig. 6). Similar to model G, monthly mean temperature had a positive effect on 
Cx. quinquefasciatus abundance while precipitation and distance to anthropogenic features had a negative effect 
on Cx. quinquefasciatus abundance (Appendix S1: Table S4).

Discussion
The ability to estimate mosquito occurrence and abundance and understand their environmental and geographi-
cal drivers is critical to the success of efforts to manage mosquito populations and reduce avian malaria trans-
mission in endemic Hawaiian forest bird  populations22. Avian malaria has long been recognized as contributing 
to species extinction and population declines of endemic Hawaiian forest  birds71. Avian malaria transmission 
continues to threaten native bird persistence and  recovery4,72. Recent population declines on the islands of Kauai 
and Maui have been attributed to climate-change driven expansion of mosquito vectors and disease transmission 
at higher  altitudes11,73. We found Cx. quinquefasciatus occurrence and abundance were strongly influenced by 
temperature and precipitation and that occurrence and abundance were highest during the warm and relatively 
dry months of August through October. Our results largely support earlier demographic and transmission 
modeling of this disease  system27,29 and highlight the higher trap efficacy of CDC  CO2-baited traps compared 
with gravid  traps74,75. Our analytical approach was tailored to the zero-inflated nature of our dataset, providing 
a model for quantifying both environmental and site-specific variation in the presence and abundance of low-
density mosquito populations.

We fit and evaluated multiple models of Culex occurrence and abundance to identify a model structure that 
was robust to the zero-inflation and overdispersion seen in our data and hence capable of yielding reliable and 
informative inferences. For occurrence, we observed a good fit between the simulation-based expected distribu-
tion of the residuals and the sample residuals from the GLM, while CART slightly outperformed the GLM based 
on accuracy, precision, and recall. However, both the GLM and CART models yielded similar response curves 
to our focal environmental variables, providing confidence in estimated relationships with mosquito occurrence 
using both analytical approaches. To model abundance, we evaluated zero-inflated and hurdle models, both of 
which provide the flexibility to model overdispersed count data with an excess of  zeroes33,76. The best fit was 
achieved with a zero-inflated negative binomial model, which is a mixture of a negative binomial distribution for 
the counts and a point mass at zero. We note that the proportion of zeroes in our data was nevertheless associated 
with model fit. For example, when estimating Cx. quinquefasciatus abundance by site and seasonality using count 
data collected with  CO2 traps (64% zeroes), we observed a smaller difference between predicted and observed 
values compared with results from count data collected with gravid traps (85% zeroes).

Figure 3.  Model G: GLM model predictions for Culex quinquefasciatus mosquito occurrence by (A) month of 
sampling, and (B) trap type used during sampling.
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Our results showed that the occurrence and abundance of Cx. quinquefasciatus mosquitoes was greater at mid-
dle elevation sites, where seasonally abundant Cx. quinquefasciatus populations overlap with highly susceptible 
native bird species that function as efficient reservoir hosts for  malaria30. Compared to middle elevation sites, 
low elevation sites captured two- and three-fold fewer mosquitoes on average when using  CO2 and gravid traps, 
respectively. While low elevation areas are closer to thermal development optima for Cx. quinquefasciatus13 and 
generally closer in proximity to agricultural and residential land use that may support the highest densities of 
Culex77,78, our low elevation study sites were primarily located in native and non-native forest fragments where 
artificial and natural-occurring larval mosquito habitats were  scarce79. Sites at high elevations had very low occur-
rence and abundance, especially at the highest elevation site, Solomon’s, where only two Cx. quinquefasciatus 
mosquitoes were captured during three years of sampling. Extremely low mosquito occurrence and abundance 
observed during this study within these high elevation forests explain in part the observed low prevalence of 
malaria in the remaining high elevation honeycreeper  refugia3,20. On the eastern flank of Mauna Loa and Kilauea 

Figure 4.  GLM and CART predictions for Cx. quinquefasciatus occurrence for model G (site not included) for: 
(A) temperature (°C), (B) precipitation, (C) distance to anthropogenic features and for model S (site included) 
for: (D) temperature (°C), (E) precipitation, and (F) distance to anthropogenic features.
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Volcanoes, young volcanic soils are very porous with no surface hydrology. Across this landscape, the most 
available larval mosquito habitat within middle elevation native forest bird habitats are naturally-occurring 
rainwater-filled tree fern (Cibotium spp.) cavities created by the destructive feeding of invasive feral  pigs11. Other 
Hawaiian islands outside of our focal study area on the Island of Hawai‘i are characterized by substantially older 
substrates, such as those on the islands of O‘ahu and Kaua‘i. Within these landscapes, riparian habitats may be 
the predominant larval habitats for Cx. quinquefasciatus, and consequently altitudinal trends in occurrence and 
abundance may differ substantially from our observed  patterns73.

Site-specific availability of habitat for larval mosquitoes likely shaped patterns of occurrence and abundance 
across the elevational gradient. Among our mid-elevation sites, Crater Rim had a relatively low mosquito abun-
dance, similar to abundance observed at the low elevation sites. However, of the few mosquito captures most 

Figure 5.  GLMM model predictions for Cx. quinquefasciatus mosquito abundance in Hawai‘i Island for each 
month using (A)  CO2 traps and (B) gravid traps. Black dots represent predicted mean mosquito counts. Red 
dots represented the mean observed mosquito counts. Error bars represent the 95% confidence intervals.

Figure 6.  Culex quinquefasciatus mosquito abundance in Hawai‘i Island at three different elevation gradients 
(Low, Middle, and High) for each of the sampled sites using: (A)  CO2 traps and (B) gravid traps. Black dots 
represent predicted mean mosquito counts. Red dots represented the mean observed mosquito counts. Error 
bars represent the 95% confidence intervals. Site abbreviations: BRY, Bryson; CJR, CJ Ralph; COO, Cooper; 
CRA, Crater Rim; MAL, Malama Kī; NAN, Nānāwale; PUU, Puʻu Unit; SOL, Solomon’s, and WAI, Waiākea.
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were in gravid traps. Crater Rim is located within Hawai‘i Volcanoes National Park where an active resource 
management program controls feral pigs. Larval habitat surveys revealed an absence of naturally occurring or 
pig-created larval mosquito habitats (personal observation, LaPointe.); probably gravid traps become more entic-
ing in this site. Furthermore, this site is also located within a rain shadow receiving less precipitation than the 
other mid-elevation locations. Interestingly, the greatest mosquito abundance was observed at another middle 
elevation site located within Hawai‘i Volcanoes National Park (Pu’u Unit) where feral pigs were also controlled. 
However, water catchment and artificial containers had been placed on the site to support invasive weed control 
efforts and provide habitats for native damselflies and thereby inadvertently supporting high numbers of larval 
 mosquitoes29. This demonstrates how the addition of even a few artificial larval habitats in native forest bird 
habitat can significantly influence vector abundance.

Our models showed that Cx. quinquefasciatus occurrence and abundance are greatly influenced by tempera-
ture. The effects of temperature were observed even after models accounted for variation among months, and 
response curves for occurrence estimated by CART and GLM models were strikingly similar between models 
(Fig. 4). The range of mean temperatures in our study (12.5–25 °C) is well within the thermal performance curve 
for multiple life history traits of Cx. quinquefasciatus mosquitoes (e.g., mosquito lifespan, fecundity, immature 
survival) that were calculated based on laboratory exposure of mosquitoes to different constant temperatures 
from 0 to 45 °C13. Cx. quinquefasciatus immature survival, lifespan, and fecundity have an optimum tempera-
ture and thermal limits of 22 °C (9–38 °C), 18 °C (NA–31 °C), and 21 °C (5–38 °C),  respectively14,80. Multiple 
studies support mean temperature as a key driver of Cx. quinquefasciatus occurrence and abundance and the 
transmission of pathogens (e.g., Plasmodium relictum, West Nile virus) by Cx. quinquefasciatus81–84. Expected 
increases in temperatures due to global warming could lead to the expansion of avian malaria into high elevation 
 forests100,101. Avian malaria expansion into high elevation forest could have catastrophic consequences for the few 
honeycreeper species that persist in high elevation thermal refugia where they have been historically protected 
from exposure to malaria infected  mosquitoes22. Assessment of long-term temperature data (1917–2016) from 
Hawai‘i indicates that mean temperature has increased by 0.052–0.212 °C per decade since the 1910s, with 2016 
showing the greatest single year increase in temperature at 0.2 °C85–88. At this rate of temperature increase, high 
elevation forests will be increasingly less safe place for native birds. In fact, recent population declines on Kauai 
suggest that on lower lying islands, few if any safe havens  remain73,89. Our results support a need for continued 
mosquito monitoring and surveillance as climates warm.

Precipitation had weaker effects on mosquito occurrence and abundance than temperature, and we saw vari-
ability in the direction of effects across models that were dependent on the time lag. CART models predicted 
that Cx. quinquefasciatus occurrence increased with monthly precipitation, reaching a peak around 580 mm, 
and then decreased as precipitation increased. Estimated effects of lagged precipitation showed similar or con-
sistently positive relationships. However, models of abundance estimated negative effects of precipitation in the 
month of sampling, and weak or positive effects of lagged precipitation. Some of the variation among estimates 
may arise from the seasonal nature of precipitation variability in Hawai‘i, where rainfall is divided into two well 
marked periods of six months each; a rainy and dry  season27,85. The intensity and sequence of precipitation events 
can affect mosquito abundance and may contribute to the complexity in estimated relationships. For example, 
a heavy rainfall event may cause direct mortality to adult mosquitoes that is reflected in monthly abundance 
estimates. The same rainfall event may create or maintain larval mosquito habitat that will increase mosquito 
abundance after a lag of adequate duration to complete immature development. Intense precipitation events can 
also increase immature mortality by flushing larvae from their  habitats90.

In general, both Cx. quinquefasciatus occurrence and abundance increased with proximity to anthropogenic 
features. Multiple studies have also found greater numbers of mosquitoes in anthropogenic landscapes such 
as urban and farmland  areas91. Conversion of forest into urban and agriculture fields creates larval mosquito 
habitats, which increases mosquito occurrence and  abundance91. In Hawai`i, the encroachment of ranchland 
and residential subdivisions on native forests increases Cx. quinquefasciatus abundance in nearby  forests28,79.

A key result of our study is our finding that  CO2 traps are more efficient for monitoring mosquito abundance 
in native Hawaiian forest bird habitats compared to gravid traps. The difference in mosquito captures between 
trap types  (CO2 -baited CDC miniature versus gravid traps) is largely due to the type of baits used in each trap. 
 CO2 traps attract female mosquitoes searching for a blood meal while gravid traps attract female mosquitoes in 
search of oviposition sites.  CO2 traps compete with naturally occurring vertebrate hosts (e.g., birds, rodents) while 
gravid traps compete with natural aquatic habitats used for egg-laying. Therefore, trap efficacy may be sensitive 
to environmental context. For example, in low elevations the increased conversion of forested land to residential 
and agriculture land has created abundant artificial habitat for Culex  mosquitoes79. At middle elevations, the 
gravid traps compete with rock pools, tree fern cavities, and ground pools created by feral pigs for oviposition 
 sites22,73,78. Previous studies have shown that traps designed to attract female mosquitoes searching for a host 
blood meal (e.g., humans, birds, small mammals) capture greater numbers of individuals and a wider range of 
species compared to gravid  traps92,93. Most studies focused on assessing distribution, occurrence, and abundance 
of mosquitoes use traps that simulate the host such as the CDC miniature light trap baited with  CO2

19. However, 
we note that gravid traps may be more useful for detecting malaria infection rates within mosquitoes because 
they acquire the parasite through feeding and have necessarily already fed when seeking an oviposition site but 
not when seeking a blood meal. Ultimately the type of trapping method used in mosquito monitoring programs 
(e.g., BG sentinel trap, CDC light trap, gravid trap, etc.) should be selected carefully to reduce the influence of 
competing attractants in the natural environment that could skew mosquito occurrence and  abundance93,94.

In conclusion, our study demonstrated the effectiveness of the zero-inflated negative binomial model for 
representing low density mosquito capture data and the greater efficacy of  CO2 baited traps over gravid traps. 
These tools will be essential for developing effective sampling strategies and to determine release rates and 
control efficacy of Wolbachia-based insect incompatibility control measures planned for the critical habitats of 
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Hawai ‘i’s remaining endemic forest birds. The statistical approach we employed is also applicable to other vector 
monitoring and control programs. Additionally, our analysis of environmental determinants supports earlier 
modeling efforts on the seasonal and altitudinal occurrence and abundance of Cx. quinquefasciatus mosquitoes 
and increases our understanding of the significant role of temperature in driving mosquito abundance in Hawai‘i.

Data availability
The R code for creating model output is available publicly on Zenodo at https:// zenodo. org/ doi/https:// doi. org/ 
10. 5281/ zenodo. 10072 227 and the datasets analyzed during the current study are available in the U.S. Geological 
Survey Data Release at https:// doi. org/ 10. 5066/ P95LV JIC.
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